Daniel Ociński

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8899615/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Water treatment residuals containing iron and manganese oxides for arsenic removal from water – Characterization of physicochemical properties and adsorption studies. Chemical Engineering Journal, 2016, 294, 210-221.	6.6	181
2	Alginate beads containing water treatment residuals for arsenic removal from water—formation and adsorption studies. Environmental Science and Pollution Research, 2016, 23, 24527-24539.	2.7	57
3	Highly efficient arsenic sorbent based on residual from water deironing – Sorption mechanisms and column studies. Journal of Hazardous Materials, 2020, 382, 121062.	6.5	45
4	Evaluation of hybrid anion exchanger containing cupric oxide for As(III) removal from water. Journal of Hazardous Materials, 2019, 370, 117-125.	6.5	37
5	Iron and aluminium oxides containing industrial wastes as adsorbents of heavy metals: Application possibilities and limitations. Waste Management and Research, 2015, 33, 612-629.	2.2	35
6	Synthesis and Evaluation of a Novel Hybrid Polymer Containing Manganese and Iron Oxides as a Sorbent for As(III) and As(V) Removal. Industrial & Engineering Chemistry Research, 2013, 52, 6453-6461.	1.8	32
7	Cu(II)-Fe(III) oxide doped anion exchangers – Multifunctional composites for arsenite removal from water via As(III) adsorption and oxidation. Journal of Hazardous Materials, 2020, 394, 122527.	6.5	30
8	Evaluation of hybrid polymer containing iron oxides as As(III) and As(V) sorbent for drinking water purification. Reactive and Functional Polymers, 2014, 83, 24-32.	2.0	25
9	Callitriche cophocarpa biomass as a potential low-cost biosorbent for trivalent chromium. Journal of Environmental Management, 2018, 214, 295-304.	3.8	17
10	Optimization of hybrid polymer preparation by ex situ embedding of waste Fe/Mn oxides into chitosan matrix as an effective As(III) and As(V) sorbent. Environmental Science and Pollution Research, 2019, 26, 26026-26038.	2.7	17
11	CuO-Loaded Macroreticular Anion Exchange Hybrid Polymers Obtained via Tetrachlorocuprate(II) Ionic Form. International Journal of Polymer Science, 2017, 2017, 1-6.	1.2	13
12	Oxidation and adsorption of arsenic species by means of hybrid polymer containing manganese oxides. Journal of Applied Polymer Science, 2014, 131, .	1.3	12
13	CuO and Cu2(OH)3Cl loaded gel-type anion exchange hybrid polymers obtained via tetrachlorocuprate ionic form. Journal of Environmental Chemical Engineering, 2017, 5, 5668-5676.	3.3	11
14	Oxidation of As(III) in aqueous solutions by means of macroporous redox copolymers with N-chlorosulfonamide pendant groups. Journal of Hazardous Materials, 2011, 189, 794-800.	6.5	9
15	Freeze-drying as the post-processing technique improving adsorptive properties of waste Fe/Mn oxides entrapped in polymer beads towards As(III) and As(V). Separation Science and Technology, 2020, 55, 487-500.	1.3	9
16	Natural community of macroalgae from chromium-contaminated site for effective remediation of Cr(VI)-containing leachates. Science of the Total Environment, 2021, 786, 147501.	3.9	9
17	The application of chelating polymers for the removal of arsenic compounds from water. Polimery, 2011, 56, 11-19.	0.4	5
18	Preparation of Visible-Light Active Oxygen-Rich TiO2 Coatings Using Low Pressure Cold Spraying. Coatings, 2022, 12, 475.	1.2	4

Daniel Ociński

#	Article	IF	CITATIONS
19	Oxidation of arsenite in aqueous solutions by redox copolymer with N-bromosulfonamide functional groups. Reactive and Functional Polymers, 2013, 73, 108-113.	2.0	3
20	Redox polymer with <i>N,N</i> â€dichlorosulfonamide functional groups as arsenite oxidant in aqueous solutions. Journal of Applied Polymer Science, 2015, 132, .	1.3	2
21	Poly(styrene-divinylbenzene) copolymers with N-chlorosulfonamide functional groups as oxidants for arsenite ions in aqueous media — redox studies. Polimery, 2012, 57, 101-105.	0.4	2