List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8899496/publications.pdf Version: 2024-02-01

DIET HEDDEWIIN

#	Article	IF	CITATIONS
1	An Overview of Marketed Nucleoside and Nucleotide Analogs. Current Protocols, 2022, 2, e376.	1.3	11
2	In vivo assembly and expression of DNA containing non anonical bases in the yeast Saccharomyces cerevisiae. ChemBioChem, 2022, , .	1.3	4
3	Reshaping an Acyclic Nucleoside Phosphonate into a Selective Anti-hepatitis B Virus Compound. Journal of Medicinal Chemistry, 2022, 65, 9396-9417.	2.9	2
4	The Network of Replication, Transcription, and Reverse Transcription of a Synthetic Genetic Cassette. Angewandte Chemie - International Edition, 2021, 60, 4175-4182.	7.2	4
5	The Network of Replication, Transcription, and Reverse Transcription of a Synthetic Genetic Cassette. Angewandte Chemie, 2021, 133, 4221-4228.	1.6	1
6	Influence of 4â€2-Substitution on the Activity of Gemcitabine and Its ProTide Against VZV and SARS-CoV-2. ACS Medicinal Chemistry Letters, 2021, 12, 88-92.	1.3	16
7	Introduction of a cyano group at the 2-position of an (<i>R</i> , <i>S</i>)-3-hydroxy-2-(phosphonomethoxy)propyl (HPMP) derivative of thymine elicits selective anti-HBV activity. RSC Medicinal Chemistry, 2021, 12, 804-808.	1.7	1
8	Stable Hairpin Structures Formed by Xyloseâ€Based Nucleic Acids. ChemBioChem, 2021, 22, 1638-1645.	1.3	4
9	Discovery of 3-phenyl- and 3-N-piperidinyl-isothiazolo[4,3-b]pyridines as highly potent inhibitors of cyclin G-associated kinase. European Journal of Medicinal Chemistry, 2021, 213, 113158.	2.6	10
10	Noncanonical DNA polymerization by aminoadenine-based siphoviruses. Science, 2021, 372, 520-524.	6.0	46
11	Functional Comparison of Laboratory-Evolved XNA Polymerases for Synthetic Biology. ACS Synthetic Biology, 2021, 10, 1429-1437.	1.9	16
12	Synthesis and inÂvitro antitumour activity of 4(R)-methyl-3-O-phosphonomethyl-α-l-threose nucleosides. European Journal of Medicinal Chemistry, 2021, 221, 113513.	2.6	3
13	Exploring the dNTP -binding site of HIV-1 reverse transcriptase for inhibitor design. European Journal of Medicinal Chemistry, 2021, 225, 113785.	2.6	3
14	Tenofovir-Amino Acid Conjugates Act as Polymerase Substrates—Implications for Avoiding Cellular Phosphorylation in the Discovery of Nucleotide Analogues. Journal of Medicinal Chemistry, 2021, 64, 782-796.	2.9	2
15	Anno 2021: Which antivirals for the coming decade?. Annual Reports in Medicinal Chemistry, 2021, 57, 49-107.	0.5	4
16	Sliding of HIV-1 reverse transcriptase over DNA creates a transient P pocket – targeting P-pocket by fragment screening. Nature Communications, 2021, 12, 7127.	5.8	6
17	In Vivo Expression of Genetic Information from Phosphoramidate–DNA. ChemBioChem, 2020, 21, 272-278.	1.3	14
18	Orthogonal Genetic Systems. ChemBioChem, 2020, 21, 1408-1411.	1.3	25

#	Article	IF	CITATIONS
19	Structure-activity relationship study of the pyridine moiety of isothiazolo[4,3-b]pyridines as antiviral agents targeting cyclin G-associated kinase. Bioorganic and Medicinal Chemistry, 2020, 28, 115188.	1.4	14
20	Iron/Copper Co-Catalyzed Cross-Coupling Reaction for the Synthesis of 6-Substituted 7-Deazapurines and the Corresponding Nucleosides. Journal of Organic Chemistry, 2020, 85, 403-418.	1.7	14
21	Enzymatic Formation of an Artificial Base Pair Using a Modified Purine Nucleoside Triphosphate. ACS Chemical Biology, 2020, 15, 2872-2884.	1.6	21
22	Synthesis and Antiviral Evaluation of 3'â€ <i>C</i> â€Hydroxymethylâ€3'â€ <i>O</i> â€Phosphonomethylâ€Î²â€Dâ€5'â€deoxyxylose Nucleosides. Eu Organic Chemistry, 2020, 2020, 4995-5002.	rope a a Jou	rnalcof
23	Synthesis and Antitumor Activity of C-7-Alkynylated and Arylated Pyrrolotriazine C-Ribonucleosides. ACS Medicinal Chemistry Letters, 2020, 11, 1605-1610.	1.3	5
24	Scalable Synthesis, In Vitro cccDNA Reduction, and In Vivo Antihepatitis B Virus Activity of a Phosphonomethoxydeoxythreosyl Adenine Prodrug. Journal of Medicinal Chemistry, 2020, 63, 13851-13860.	2.9	8
25	Effect of Molecular Crowding on DNA Polymerase Reactions along Unnatural DNA Templates. Molecules, 2020, 25, 4120.	1.7	5
26	Structural Studies of HNA Substrate Specificity in Mutants of an Archaeal DNA Polymerase Obtained by Directed Evolution. Biomolecules, 2020, 10, 1647.	1.8	7
27	Beneath the XNA world: Tools and targets to build novel biology. Current Opinion in Systems Biology, 2020, 24, 142-152.	1.3	5
28	The Kalimantacin Polyketide Antibiotics Inhibit Fatty Acid Biosynthesis in <i>Staphylococcus aureus</i> by Targeting the Enoylâ€Acyl Carrier Protein Binding Site of Fabl. Angewandte Chemie, 2020, 132, 10636-10643.	1.6	6
29	Structure–Activity Relationship Study of a Potent αâ€Thrombin Binding Aptamer Incorporating Hexitol Nucleotides. Chemistry - A European Journal, 2020, 26, 9589-9597.	1.7	17
30	New Metalâ€Free Route towards Imidazoleâ€Substituted Uridine. European Journal of Organic Chemistry, 2020, 2020, 4022-4025.	1.2	5
31	Anti-norovirus activity of C7-modified 4-amino-pyrrolo[2,1-f][1,2,4]triazine C-nucleosides. European Journal of Medicinal Chemistry, 2020, 195, 112198.	2.6	14
32	The Kalimantacin Polyketide Antibiotics Inhibit Fatty Acid Biosynthesis in Staphylococcus aureus by Targeting the Enoylâ€Acyl Carrier Protein Binding Site of Fabl. Angewandte Chemie - International Edition, 2020, 59, 10549-10556.	7.2	20
33	Chimeric siRNAs with chemically modified pentofuranose and hexopyranose nucleotides: altritol-nucleotide (ANA) containing GalNAc–siRNA conjugates: in vitro and in vivo RNAi activity and resistance to 5′-exonuclease. Nucleic Acids Research, 2020, 48, 4028-4040.	6.5	27
34	Amidate Prodrugs of O-2-Alkylated Pyrimidine Acyclic Nucleosides Display Potent Anti-Herpesvirus Activity. ACS Medicinal Chemistry Letters, 2020, 11, 1410-1415.	1.3	7
35	Vitamin-guanosine monophosphate conjugates for in vitro transcription priming. Chemical Communications, 2020, 56, 2787-2790.	2.2	1
36	Synthesis of tetradialdose phosphonate nucleosides as mimics of l-nucleotides. Tetrahedron, 2019, 75, 130497.	1.0	1

#	Article	IF	CITATIONS
37	Rational design of an XNA ligase through docking of unbound nucleic acids to toroidal proteins. Nucleic Acids Research, 2019, 47, 7130-7142.	6.5	23
38	Synthesis of Poly(ADPâ€ribose) Monomer Containing 2′â€Oâ€Î±â€Dâ€Ribofuranosyl Adenosine. Current Prot in Nucleic Acid Chemistry, 2019, 78, e92.	ocols 0.5	1
39	Invading <i>Escherichia coli</i> Genetics with a Xenobiotic Nucleic Acid Carrying an Acyclic Phosphonate Backbone (ZNA). Journal of the American Chemical Society, 2019, 141, 10844-10851.	6.6	25
40	<i>N</i> ⁸ -Glycosylated 8-Azapurine and Methylated Purine Nucleobases: Synthesis and Study of Base Pairing Properties. Journal of Organic Chemistry, 2019, 84, 13394-13409.	1.7	2
41	Synthesis of a Threosylâ€Câ€nucleoside Phosphonate. European Journal of Organic Chemistry, 2019, 2019, 6666-6672.	1.2	2
42	Full Pre‣teady‣tate Kinetic Analysis of Single Nucleotide Incorporation by DNA Polymerases. Current Protocols in Nucleic Acid Chemistry, 2019, 78, e98.	0.5	1
43	Synthesis of 3′-fluoro-4′-amino-hexitol nucleosides with a pyrimidine nucleobase as building blocks for oligonucleotides. Tetrahedron, 2019, 75, 1107-1114.	1.0	2
44	Enzymatic Synthesis of Backboneâ€Modified Oligonucleotides Using T4 DNA Ligase. Current Protocols in Chemical Biology, 2019, 11, e62.	1.7	3
45	Synthesis and Structure–Activity Relationship Studies of Benzo[b][1,4]oxazinâ€3(4 H)â€one Analogues as Inhibitors of Mycobacterial Thymidylate Synthaseâ€X. ChemMedChem, 2019, 14, 645-662.	1.6	9
46	What Is XNA?. Angewandte Chemie - International Edition, 2019, 58, 11570-11572.	7.2	78
47	On the Enzymatic Formation of Metal Base Pairs with Thiolated and pKaâ€Perturbed Nucleotides. ChemBioChem, 2019, 20, 3032-3040.	1.3	15
48	Was ist XNA?. Angewandte Chemie, 2019, 131, 11694-11696.	1.6	10
49	Synthesis and Structure–Activity Relationships of 3,5-Disubstituted-pyrrolo[2,3- <i>b</i>)pyridines as Inhibitors of Adaptor-Associated Kinase 1 with Antiviral Activity. Journal of Medicinal Chemistry, 2019, 62, 5810-5831.	2.9	44
50	Synthesis and Conformation of Pentopyranoside Nucleoside Phosphonates. Journal of Organic Chemistry, 2019, 84, 6589-6603.	1.7	4
51	Highly stable hexitol based XNA aptamers targeting the vascular endothelial growth factor. Nucleic Acids Research, 2019, 47, 4927-4939.	6.5	73
52	Xylo-C-nucleosides with a pyrrolo[2,1-f][1,2,4]triazin-4-amine heterocyclic base: Synthesis and antiproliferative properties. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1450-1453.	1.0	6
53	Kinetic analysis of <i>N</i> -alkylaryl carboxamide hexitol nucleotides as substrates for evolved polymerases. Nucleic Acids Research, 2019, 47, 2160-2168.	6.5	10
54	Reprint of: Non Canonical Genetic Material. Current Opinion in Biotechnology, 2019, 60, 259-267.	3.3	10

#	Article	IF	CITATIONS
55	Non canonical genetic material. Current Opinion in Biotechnology, 2019, 57, 25-33.	3.3	30
56	Cyclin G-associated kinase (GAK) affinity and antiviral activity studies of a series of 3-C-substituted isothiazolo[4,3-b]pyridines. European Journal of Medicinal Chemistry, 2019, 163, 256-265.	2.6	10
57	Synthesis and Anti-HIV Activity of Guanine Modified Fluorinated Acyclic Nucleoside Phosphonate Derivatives. Chemistry and Biodiversity, 2019, 16, e1800532.	1.0	3
58	Towards the enzymatic formation of artificial metal base pairs with a carboxy-imidazole-modified nucleotide. Journal of Inorganic Biochemistry, 2019, 191, 154-163.	1.5	31
59	A Scaffoldâ€Hopping Strategy toward the Identification of Inhibitors of Cyclinâ€G Associated Kinase. ChemMedChem, 2019, 14, 237-254.	1.6	1
60	Where cone snails and spiders meet: design of small cyclic sodiumâ€channel inhibitors. FASEB Journal, 2019, 33, 3693-3703.	0.2	23
61	Synthesis of a C-Nucleoside Phosphonate by Base-Promoted Epimerization. Organic Letters, 2018, 20, 1203-1206.	2.4	3
62	Modulation of BACE1 Activity by Chemically Modified Aptamers. ChemBioChem, 2018, 19, 754-763.	1.3	23
63	Phosphonomethyl Oligonucleotides as Backbone-Modified Artificial Genetic Polymers. Journal of the American Chemical Society, 2018, 140, 6690-6699.	6.6	48
64	Amidate Prodrugs of Cyclic 9-(<i>S</i>)-[3-Hydroxy-2-(phosphonomethoxy)propyl]adenine with Potent Anti-Herpesvirus Activity. ACS Medicinal Chemistry Letters, 2018, 9, 381-385.	1.3	13
65	Synthesis and antiviral evaluation of cyclopentyl nucleoside phosphonates. European Journal of Medicinal Chemistry, 2018, 150, 616-625.	2.6	5
66	Emimycin and its nucleoside derivatives: Synthesis and antiviral activity. European Journal of Medicinal Chemistry, 2018, 144, 93-103.	2.6	6
67	Synthesis and Biological Evaluation of Pyrrolo[2,1â€ <i>f</i>][1,2,4]triazine <i>C</i> â€Nucleosides with a Ribose, 2â€2â€Deoxyribose, and 2â€2,3â€2â€Dideoxyribose Sugar Moiety. ChemMedChem, 2018, 13, 97-104.	1.6	17
68	Synthesis of Protected Amino Hexitol Nucleosides as Building Blocks for Oligonucleotide Synthesis. Journal of Organic Chemistry, 2018, 83, 15155-15169.	1.7	8
69	Incorporation of a minimal nucleotide into DNA. Tetrahedron Letters, 2018, 59, 4241-4244.	0.7	7
70	Synthesis of a 3′â€Deoxyâ€ <i>C</i> â€Nucleoside Phosphonate Bearing 9â€Deazaadenine as Base Moiety. Eu Journal of Organic Chemistry, 2018, 2018, 6657-6664.	ropean 1.2	1
71	A Single Amino Acid Substitution in Therminator DNA Polymerase Increases Incorporation Efficiency of Deoxyxylonucleotides. ChemBioChem, 2018, 19, 2410-2420.	1.3	4
72	Frontispiece: Chimeric XNA: An Unconventional Design for Orthogonal Informational Systems. Chemistry - A European Journal, 2018, 24, .	1.7	0

#	Article	IF	CITATIONS
73	XNA ligation using T4 DNA ligase in crowding conditions. Chemical Communications, 2018, 54, 6408-6411.	2.2	30
74	Discovery of a Potent, Orally Bioavailable PI4KIIIβ Inhibitor (UCB9608) Able To Significantly Prolong Allogeneic Organ Engraftment <i>in Vivo</i> . Journal of Medicinal Chemistry, 2018, 61, 6705-6723.	2.9	18
75	Optimization of Isothiazolo[4,3- <i>b</i>]pyridine-Based Inhibitors of Cyclin G Associated Kinase (GAK) with Broad-Spectrum Antiviral Activity. Journal of Medicinal Chemistry, 2018, 61, 6178-6192.	2.9	36
76	Metabolic Recruitment and Directed Evolution of Nucleoside Triphosphate Uptake inEscherichia coli. ACS Synthetic Biology, 2018, 7, 1565-1572.	1.9	14
77	Mutant Variants of the Substrate-Binding Protein DppA from Escherichia coli Enhance Growth on Nonstandard γ-Glutamyl Amide-Containing Peptides. Applied and Environmental Microbiology, 2018, 84, .	1.4	3
78	Phosphorus Pentachloride Promoted gem-Dichlorination of 2′- and 3′-Deoxynucleosides. Molecules, 2018, 23, 1457.	1.7	1
79	Methylated Nucleobases: Synthesis and Evaluation for Base Pairing Inâ€Vitro and Inâ€Vivo. Chemistry - A European Journal, 2018, 24, 12695-12707.	1.7	6
80	Chimeric XNA: An Unconventional Design for Orthogonal Informational Systems. Chemistry - A European Journal, 2018, 24, 12811-12819.	1.7	9
81	Peptidoglycan glycosyltransferase-ligand binding assay based on tryptophan fluorescence quenching. Biochimie, 2018, 152, 1-5.	1.3	5
82	PCR Amplification of Baseâ€Modified DNA. Current Protocols in Chemical Biology, 2018, 10, 18-48.	1.7	3
83	Random-sequence genetic oligomer pools display an innate potential for ligation and recombination. ELife, 2018, 7, .	2.8	43
84	Oligonucleotide promoted peptide bond formation using a tRNA mimicking approach. Chemical Communications, 2017, 53, 5013-5016.	2.2	0
85	On the enzymatic incorporation of an imidazole nucleotide into DNA. Organic and Biomolecular Chemistry, 2017, 15, 4449-4455.	1.5	35
86	Synthesis and antiviral evaluation of base-modified deoxythreosyl nucleoside phosphonates. Organic and Biomolecular Chemistry, 2017, 15, 5513-5528.	1.5	4
87	Baseâ€Modified Nucleic Acids as a Powerful Tool for Synthetic Biology and Biotechnology. Chemistry - A European Journal, 2017, 23, 9560-9576.	1.7	28
88	Discovery of a new Mycobacterium tuberculosis thymidylate synthase X inhibitor with a unique inhibition profile. Biochemical Pharmacology, 2017, 135, 69-78.	2.0	16
89	The 5-chlorouracil:7-deazaadenine base pair as an alternative to the dT:dA base pair. Organic and Biomolecular Chemistry, 2017, 15, 168-176.	1.5	20
90	Astemizole analogues with reduced hERG inhibition as potent antimalarial compounds. Bioorganic and Medicinal Chemistry, 2017, 25, 6332-6344.	1.4	17

#	Article	IF	CITATIONS
91	Enzymatic Incorporation of Modified Purine Nucleotides in DNA. ChemBioChem, 2017, 18, 2408-2415.	1.3	2
92	Synthesis of a 3′-Fluoro-3′-deoxytetrose Adenine Phosphonate. Journal of Organic Chemistry, 2017, 82, 9464-9478.	1.7	5
93	Molecular Dynamics of Double Stranded Xylo-Nucleic Acid. Journal of Chemical Theory and Computation, 2017, 13, 5028-5038.	2.3	9
94	Facile immobilization of DNA using an enzymatic his-tag mimic. Chemical Communications, 2017, 53, 13031-13034.	2.2	23
95	Expanding the Antiviral Spectrum of 3-Fluoro-2-(phosphonomethoxy)propyl Acyclic Nucleoside Phosphonates: Diamyl Aspartate Amidate Prodrugs. Journal of Medicinal Chemistry, 2017, 60, 6220-6238.	2.9	22
96	Overcoming the membrane barrier: Recruitment of γ-glutamyl transferase for intracellular release of metabolic cargo from peptide vectors. Metabolic Engineering, 2017, 39, 60-70.	3.6	5
97	Substrate-Dependence of Competitive Nucleotide Pyrophosphatase/Phosphodiesterase1 (NPP1) Inhibitors. Frontiers in Pharmacology, 2017, 8, 54.	1.6	36
98	Anticancer kinase inhibitors impair intracellular viral trafficking and exert broad-spectrum antiviral effects. Journal of Clinical Investigation, 2017, 127, 1338-1352.	3.9	188
99	Structural and Functional Elucidation of Peptide Ts11 Shows Evidence of a Novel Subfamily of Scorpion Venom Toxins. Toxins, 2016, 8, 288.	1.5	26
100	Incorporation of Amino Acids with Long-Chain Terminal Olefins into Proteins. Molecules, 2016, 21, 287.	1.7	10
101	Chemical Morphing of DNA Containing Four Noncanonical Bases. Angewandte Chemie, 2016, 128, 7641-7645.	1.6	11
102	Chemical Morphing of DNA Containing Four Noncanonical Bases. Angewandte Chemie - International Edition, 2016, 55, 7515-7519.	7.2	40
103	Syntheses of 5′â€Nucleoside Monophosphate Derivatives with Unique Aminal, Hemiaminal, and Hemithioaminal Functionalities: A New Class of 5′â€Peptidyl Nucleotides. Chemistry - A European Journal, 2016, 22, 8167-8180.	1.7	7
104	l-Aspartic and l-glutamic acid ester-based ProTides of anticancer nucleosides: Synthesis and antitumoral evaluation. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2142-2146.	1.0	12
105	Lipophilic nalmefene prodrugs to achieve a one-month sustained release. Journal of Controlled Release, 2016, 232, 196-202.	4.8	10
106	Bifunctional aryloxyphosphoramidate prodrugs of 2′-C-Me-uridine: synthesis and anti-HCV activity. Organic and Biomolecular Chemistry, 2016, 14, 8743-8757.	1.5	4
107	Amidate Prodrugs of Deoxythreosyl Nucleoside Phosphonates as Dual Inhibitors of HIV and HBV Replication. Journal of Medicinal Chemistry, 2016, 59, 9513-9531.	2.9	26
108	Synthesis of a Nucleobase-Modified ProTide Library. Organic Letters, 2016, 18, 5816-5819.	2.4	9

#	Article	IF	CITATIONS
109	Evaluation of anhydrohexitol nucleic acid, cyclohexenyl nucleic acid and <scp>d</scp> -altritol nucleic acid-modified 2′-O-methyl RNA mixmer antisense oligonucleotides for exon skipping in vitro. Chemical Communications, 2016, 52, 13467-13470.	2.2	39
110	Theoretical Analysis of a Self-Replicator With Reduced Template Inhibition Based on an Informational Leaving Group. Journal of Molecular Evolution, 2016, 82, 93-109.	0.8	2
111	Thiazolo[3,2-a]benzimidazol-3(2H)-one derivatives: Structure–activity relationships of selective nucleotide pyrophosphatase/phosphodiesterase1 (NPP1) inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 3157-3165.	1.4	19
112	Nanostructures from Synthetic Genetic Polymers. ChemBioChem, 2016, 17, 1107-1110.	1.3	57
113	Molecular simulation of cyclohexanyl nucleic acid (CNA) duplexes with CNA, DNA and RNA and CNA triloop and tetraloop hairpin structures. Bioorganic and Medicinal Chemistry, 2016, 24, 1778-1785.	1.4	2
114	Base pairing involving artificial bases in vitro and in vivo. Chemical Science, 2016, 7, 995-1010.	3.7	19
115	Synthesis and <i>in Vitro</i> Antiviral Activities of [(Dihydrofuranâ€2â€yl)oxy]methylâ€phosphonate Nucleosides with 2â€6ubstituted Adenine as Base. Chemistry and Biodiversity, 2015, 12, 813-822.	1.0	5
116	Nucleosides with Transposed Base or 4′-Hydroxymethyl Moieties and Their Corresponding Oligonucleotides. Chemical Reviews, 2015, 115, 13484-13525.	23.0	21
117	Positive cooperativity between acceptor and donor sites of the peptidoglycan glycosyltransferase. Biochemical Pharmacology, 2015, 93, 141-150.	2.0	9
118	Isoguanine and 5â€Methylâ€Isocytosine Bases, In Vitro and In Vivo. Chemistry - A European Journal, 2015, 21, 5009-5022.	1.7	33
119	Achiral, acyclic nucleic acids: synthesis and biophysical studies of a possible prebiotic polymer. Organic and Biomolecular Chemistry, 2015, 13, 9249-9260.	1.5	10
120	NMR-based conformational analysis of 2′,6-disubstituted uridines and antiviral evaluation of new phosphoramidate prodrugs. Bioorganic and Medicinal Chemistry, 2015, 23, 5809-5815.	1.4	5
121	In vitro disposition profiling of heterocyclic compounds. International Journal of Pharmaceutics, 2015, 491, 78-90.	2.6	2
122	1′,5′-Anhydro- <scp> </scp> - <i>ribo</i> -hexitol Adenine Nucleic Acids (α- <scp> </scp> -HNA-A): Synthesis and Chiral Selection Properties in the Mirror Image World. Journal of Organic Chemistry, 2015, 80, 5014-5022.	1.7	13
123	Selective Inhibitors of Cyclin G Associated Kinase (GAK) as Anti-Hepatitis C Agents. Journal of Medicinal Chemistry, 2015, 58, 3393-3410.	2.9	54
124	Aspartic acid based nucleoside phosphoramidate prodrugs as potent inhibitors of hepatitis C virus replication. Organic and Biomolecular Chemistry, 2015, 13, 5158-5174.	1.5	23
125	Oligonucleotides containing a ribo-configured cyclohexanyl nucleoside: probing the role of sugar conformation in base pairing selectivity. Organic and Biomolecular Chemistry, 2015, 13, 10041-10049.	1.5	4
126	Synthesis and evaluation of C-5 modified 2′-deoxyuridine monophosphates as inhibitors of M. tuberculosis thymidylate synthase. Bioorganic and Medicinal Chemistry, 2015, 23, 7131-7137.	1.4	25

#	Article	IF	CITATIONS
127	Isothiazolo[4,3-b]pyridines as inhibitors of cyclin G associated kinase: synthesis, structure–activity relationship studies and antiviral activity. MedChemComm, 2015, 6, 1666-1672.	3.5	16
128	Xylonucleic acid: synthesis, structure, and orthogonal pairing properties. Nucleic Acids Research, 2015, 43, 7189-7200.	6.5	23
129	Catalysts from synthetic genetic polymers. Nature, 2015, 518, 427-430.	13.7	230
130	Nucleoside Phosphate-Conjugates Come of Age: Catalytic Transformation, Polymerase Recognition and Antiviral Properties. Current Medicinal Chemistry, 2015, 22, 3980-3990.	1.2	5
131	A Convenient Route for the Synthesis of 3â€Đeazaspongosine. European Journal of Organic Chemistry, 2014, 231-236.	1.2	5
132	Design and synthesis of nucleolipids as possible activated precursors for oligomer formation via intramolecular catalysis: stability study and supramolecular organization. Journal of Systems Chemistry, 2014, 5, 5.	1.7	11
133	Tailoring Peptide–Nucleotide Conjugates (PNCs) for Nucleotide Delivery in Bacterial Cells. European Journal of Organic Chemistry, 2014, 2014, 2322-2348.	1.2	4
134	Synthesis of an Apionucleoside Family and Discovery of a Prodrug with Anti-HIV Activity. Journal of Organic Chemistry, 2014, 79, 5097-5112.	1.7	27
135	Synthesis of new biocarrier–nucleotide systems for cellular delivery in bacterial auxotrophic strains. Tetrahedron, 2014, 70, 8843-8851.	1.0	1
136	Mutations in the chikungunya virus non-structural proteins cause resistance to favipiravir (T-705), a broad-spectrum antiviral. Journal of Antimicrobial Chemotherapy, 2014, 69, 2770-2784.	1.3	187
137	Discovery of a new subclass of α-conotoxins in the venom of Conus australis. Toxicon, 2014, 91, 145-154.	0.8	25
138	Discovery of Dual Death-Associated Protein Related Apoptosis Inducing Protein Kinase 1 and 2 Inhibitors by a Scaffold Hopping Approach. Journal of Medicinal Chemistry, 2014, 57, 7624-7643.	2.9	38
139	Probing Ambiguous Baseâ€Pairs by Genetic Transformation with XNA Templates. ChemBioChem, 2014, 15, 2255-2258.	1.3	18
140	Organophosphorus-catalyzed diaza-Wittig reaction: application to the synthesis of pyridazines. Organic and Biomolecular Chemistry, 2014, 12, 7159-7166.	1.5	28
141	Hydroxy fatty acids for the delivery of dideoxynucleosides as anti-HIV agents. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 817-820.	1.0	5
142	Phospho-carboxylic anhydride of a homologated nucleoside leads to primer degradation in the presence of a polymerase. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2720-2723.	1.0	10
143	Synthesis of α- <scp>l</scp> -Threose Nucleoside Phosphonates via Regioselective Sugar Protection. Journal of Organic Chemistry, 2013, 78, 7137-7144.	1.7	19
144	Binary Genetic Cassettes for Selecting XNAâ€Templated DNA Synthesis In Vivo. Angewandte Chemie - International Edition, 2013, 52, 8139-8143.	7.2	45

#	Article	IF	CITATIONS
145	Strategy for the Synthesis of Pyridazine Heterocycles and Their Derivatives. Journal of Organic Chemistry, 2013, 78, 7845-7858.	1.7	50
146	A novel and convenient strategy for the synthesis of phthalazines from an aryne precursor. Tetrahedron Letters, 2013, 54, 7056-7058.	0.7	11
147	Regioselective 2′-O-debenzoylation of 2',3'-di-O-benzoyl threose nucleosides. Tetrahedron Letters, 2013, 54, 6084-6086.	0.7	4
148	A short and straightforward approach towards 6-amino and 6-aminoalkyl thiazolo[4,5-c]pyridazines. Tetrahedron Letters, 2013, 54, 830-833.	0.7	5
149	The biolabile 2′-O-pivaloyloxymethyl modification in an RNA helix: an NMR solution structure. Organic and Biomolecular Chemistry, 2013, 11, 2638.	1.5	2
150	Simple approach to the synthesis of 3-fluoro pyrazolo[1,5-a]pyrimidine analogues. Tetrahedron Letters, 2013, 54, 2612-2614.	0.7	23
151	Enantiomeric Selection Properties of βâ€homoDNA: Enhanced Pairing for Heterochiral Complexes. Angewandte Chemie - International Edition, 2013, 52, 6662-6665.	7.2	14
152	A Synthetic Substrate of DNA Polymerase Deviating from the Bases, Sugar, and Leaving Group of Canonical Deoxynucleoside Triphosphates. Chemistry and Biology, 2013, 20, 416-423.	6.2	20
153	Chemical fidelity of an RNA polymerase ribozyme. Chemical Science, 2013, 4, 2804.	3.7	30
154	Synthesis of Phosphonoglycine Backbone Units for the Development of Phosphono Peptide Nucleic Acids. European Journal of Organic Chemistry, 2013, 2013, 4804-4815.	1.2	13
155	Structure, stability and function of 5-chlorouracil modified A:U and G:U base pairs. Nucleic Acids Research, 2013, 41, 2689-2697.	6.5	18
156	Effects of Sixâ€Membered Carbohydrate Rings on Structure, Stability, and Kinetics of Gâ€Quadruplexes. Chemistry - A European Journal, 2013, 19, 14719-14725.	1.7	9
157	How does hydroxyl introduction influence the double helical structure: the stabilization of an altritol nucleic acid:ribonucleic acid duplex. Nucleic Acids Research, 2012, 40, 7573-7583.	6.5	6
158	2′â€Đeoxyribonucleoside Phosphoramidate Triphosphate Analogues as Alternative Substrates for <i>E. coli</i> Polymerase III. ChemBioChem, 2012, 13, 2439-2444.	1.3	9
159	Dipeptides as Leaving Group in the Enzyme atalyzed DNA Synthesis. Chemistry and Biodiversity, 2012, 9, 2685-2700.	1.0	4
160	Synthesis and Antisense Properties of Fluoro Cyclohexenyl Nucleic Acid (F-CeNA), a Nuclease Stable Mimic of 2′-Fluoro RNA. Journal of Organic Chemistry, 2012, 77, 5074-5085.	1.7	41
161	Synthesis of Modified Peptidoglycan Precursor Analogues for the Inhibition of Glycosyltransferase. Journal of the American Chemical Society, 2012, 134, 9343-9351.	6.6	58
162	A short and convenient strategy for the synthesis of pyridazines via Diaza–Wittig reaction. Tetrahedron Letters, 2012, 53, 6489-6491.	0.7	16

#	Article	IF	CITATIONS
163	Synthetic Genetic Polymers Capable of Heredity and Evolution. Science, 2012, 336, 341-344.	6.0	635
164	Redesigning the leaving group in nucleic acid polymerization. FEBS Letters, 2012, 586, 2049-2056.	1.3	19
165	Pre-microRNA binding aminoglycosides and antitumor drugs as inhibitors of Dicer catalyzed microRNA processing. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1709-1711.	1.0	56
166	Synthesis of 6-aryl-2′-deoxyuridine nucleosides via a Liebeskind cross-coupling methodology. Tetrahedron Letters, 2012, 53, 253-255.	0.7	9
167	1,2;3,4-Di-O-isopropylidene-l-galactose synthesis from its d-enantiomer. Tetrahedron Letters, 2012, 53, 2253-2256.	0.7	11
168	34. Miniaturization of μ-Conotoxins as Peptidomimetic Strategy to Develop Selective Sodium Channel Blockers. Toxicon, 2012, 60, 112.	0.8	0
169	Influence of the Nucleobase and Anchimeric Assistance of the Carboxyl Acid Groups in the Hydrolysis of Amino Acid Nucleoside Phosphoramidates. Chemistry - A European Journal, 2012, 18, 857-868.	1.7	26
170	Solution Structure and Conformational Dynamics of Deoxyxylonucleic Acids (dXNA): An Orthogonal Nucleic Acid Candidate. Chemistry - A European Journal, 2012, 18, 869-879.	1.7	21
171	3-Phosphono-l-alanine as pyrophosphate mimic for DNA synthesis using HIV-1 reverse transcriptase. Organic and Biomolecular Chemistry, 2011, 9, 111-119.	1.5	21
172	Synthesis of (<i>E</i>)-3′-Phosphonoalkenyl Modified Nucleoside Phosphonates via a Highly Stereoselective Olefin Cross-Metathesis Reaction. Journal of Organic Chemistry, 2011, 76, 3742-3753.	1.7	30
173	Discovery of 7- <i>N</i> -Piperazinylthiazolo[5,4- <i>d</i>]pyrimidine Analogues as a Novel Class of Immunosuppressive Agents with in Vivo Biological Activity. Journal of Medicinal Chemistry, 2011, 54, 655-668.	2.9	35
174	Synthesis and Evaluation of 5-Substituted 2′-deoxyuridine Monophosphate Analogues As Inhibitors of Flavin-Dependent Thymidylate Synthase in <i>Mycobacterium tuberculosis</i> . Journal of Medicinal Chemistry, 2011, 54, 4847-4862.	2.9	68
175	Synthesis of new acyclic nucleoside phosphonates (ANPs) substituted on the 1′ and/or 2′ positions. Tetrahedron Letters, 2011, 52, 6896-6898.	0.7	5
176	Enzymatic synthesis of DNA employing pyrophosphate-linked dinucleotide substrates. Journal of Systems Chemistry, 2011, 2, .	1.7	8
177	2′â€Đeoxyâ€2′â€Î±â€ <i>C</i> â€{hydroxymethyl)adenosine as Potential antiâ€HCV Agent. European Journal Chemistry, 2011, 2011, 1140-1147.	l of Organ 1.2	iç
178	Asymmetric Synthesis of New Î²â€Łactam Lipopeptides as Bacterial Signal Peptidase I Inhibitors. European Journal of Organic Chemistry, 2011, 2011, 3437-3449.	1.2	7
179	Synthesis of 3′â€ <i>S</i> â€Phosphonomethylâ€Modified Nucleoside Phosphonates with a 3′â€Deoxyâ€3′â€thioâ€l±â€ <scp>L</scp> â€threosyl Sugar Moiety. European Journal of Organic Chemistry, 3450-3457.	2011,20	19,
180	Chemical Evolution of a Bacterium's Genome. Angewandte Chemie - International Edition, 2011, 50, 7109-7114.	7.2	167

#	Article	IF	CITATIONS
181	Synthesis and Antibacterial Evaluation of a Novel Series of 2-(1,2-Dihydro-3-oxo-3H-pyrazol-2-yl)benzothiazoles. Chemistry and Biodiversity, 2011, 8, 253-265.	1.0	10
182	Structural and Binding Study of Modified siRNAs with the Argonauteâ€2 PAZ Domain by NMR Spectroscopy. Chemistry - A European Journal, 2011, 17, 1519-1528.	1.7	5
183	The Crystal Structure of the CeNA:RNA Hybrid ce(GCGTAGCG):r(CGCUACGC). Chemistry - A European Journal, 2011, 17, 7823-7830.	1.7	8
184	Iminodipropionic Acid as the Leaving Group for DNA Polymerization by HIV-1 Reverse Transcriptase. ChemBioChem, 2011, 12, 1868-1880.	1.3	20
185	Synthesis of novel 5-amino-thiazolo[4,5-d]pyrimidines as E. coli and S. aureus SecA inhibitors. Bioorganic and Medicinal Chemistry, 2011, 19, 702-714.	1.4	48
186	Synthesis and in vitro evaluation of 2-amino-4-N-piperazinyl-6-(3,4-dimethoxyphenyl)-pteridines as dual immunosuppressive and anti-inflammatory agents. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 145-149.	1.0	23
187	Simple approach to 1-O-protected (R)- and (S)-glycerols from l- and d-arabinose for glycerol nucleic acids (GNA) monomers research. Tetrahedron Letters, 2011, 52, 3853-3855.	0.7	3
188	Influence of the Linkage between Leaving Group and Nucleoside on Substrate Efficiency for Incorporation in DNA Catalyzed by Reverse Transcriptase. ChemBioChem, 2010, 11, 1399-1403.	1.3	12
189	Synthesis of 2′,3′-Disubstituted 3′-Deoxythymidine Derivatives. Bulletin Des Sociétés Chimiques Bel 2010, 98, 943-947.	ges.0	9
190	Nucleic Acids with a Sixâ€Membered â€~Carbohydrate' Mimic in the Backbone. Chemistry and Biodiversity, 2010, 7, 1-59.	1.0	79
191	Isolation and Purification of a New Kalimantacin/Batumin-Related Polyketide Antibiotic and Elucidation of Its Biosynthesis Gene Cluster. Chemistry and Biology, 2010, 17, 149-159.	6.2	78
192	Crystallization and preliminary X-ray study of theD-altritol oligonucleotide GTGTACAC. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 460-462.	0.7	1
193	Comparison between the orthorhombic and tetragonal forms of the heptamer sequence d[GCG(xT)GCG]/d(CGCACGC). Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1028-1031.	0.7	2
194	Welcome Home, Systems Chemists!. Journal of Systems Chemistry, 2010, 1, .	1.7	81
195	Nucleoside Prodrugs and Delivery Strategies. Current Protocols in Nucleic Acid Chemistry, 2010, 43, 15.0.1.	0.5	0
196	A screen of chemical modifications identifies position-specific modification by UNA to most potently reduce siRNA off-target effects. Nucleic Acids Research, 2010, 38, 5761-5773.	6.5	157
197	Iminodiacetic-phosphoramidates as metabolic prototypes for diversifying nucleic acid polymerization in vivo. Nucleic Acids Research, 2010, 38, 2541-2550.	6.5	20
198	Synthesis and Anti-HIV Activity of New 3'-O-Phosphonomethyl Nucleosides. Heterocycles, 2010, 82, 663.	0.4	1

#	Article	IF	CITATIONS
199	Direct observation of two cyclohexenyl (CeNA) ring conformations in duplex DNA. Artificial DNA, PNA & XNA, 2010, 1, 2-8.	1.4	13
200	Inhibition of hepatitis B virus replication in vivo using lipoplexes containing altritol-modified antiviral siRNAs. Artificial DNA, PNA & XNA, 2010, 1, 17-26.	1.4	28
201	Helical Structure of Xylose-DNA. Journal of the American Chemical Society, 2010, 132, 587-595.	6.6	47
202	Towardl-Homo-DNA: Stereoselective de Novo Synthesis of β-l-erythro-Hexopyranosyl Nucleosides. Journal of Organic Chemistry, 2010, 75, 6402-6410.	1.7	26
203	Synthesis and biological evaluation of inosine phosphonates. New Journal of Chemistry, 2010, 34, 875.	1.4	6
204	Synthesis of Modified Nucleosides. Current Protocols in Nucleic Acid Chemistry, 2009, 36, 1.0.1.	0.5	0
205	Evaluation of the type I signal peptidase as antibacterial target for biofilm-associated infections of Staphylococcus epidermidis. Microbiology (United Kingdom), 2009, 155, 3719-3729.	0.7	13
206	Synthesis of 3′-O-Phosphonoethyl Nucleosides with an Adenine and a Thymine Base Moiety. Nucleosides, Nucleotides and Nucleic Acids, 2009, 28, 337-351.	0.4	9
207	Biological effects of hexitol and altritol-modified siRNAs targeting B-Raf. European Journal of Pharmacology, 2009, 606, 38-44.	1.7	40
208	Polymerase atalysed Incorporation of Glucose Nucleotides into a DNA Duplex. Chemistry - A European Journal, 2009, 15, 5463-5470.	1.7	19
209	Synthesis and Base Pairing Properties of 1′,5′â€Anhydroâ€ <scp>L</scp> â€Hexitol Nucleic Acids (<scp>L</scp> â€HNA). Chemistry - A European Journal, 2009, 15, 10121-10131.	1.7	30
210	Detection of RNA Hybridization by Pyrene‣abeled Probes. ChemBioChem, 2009, 10, 1175-1185.	1.3	32
211	Phosphodiester Substrates for Incorporation of Nucleotides in DNA Using HIVâ€1 Reverse Transcriptase. ChemBioChem, 2009, 10, 2246-2252.	1.3	12
212	Toward Safe Genetically Modified Organisms through the Chemical Diversification of Nucleic Acids. Chemistry and Biodiversity, 2009, 6, 791-808.	1.0	145
213	Antibacterial 5′-O-(N-dipeptidyl)-sulfamoyladenosines. Bioorganic and Medicinal Chemistry, 2009, 17, 260-269.	1.4	22
214	δ-Di-carboxybutyl phosphoramidate of 2′-deoxycytidine-5′-monophosphate as substrate for DNA polymerization by HIV-1 reverse transcriptase. Bioorganic and Medicinal Chemistry, 2009, 17, 7008-7014.	1.4	29
215	Substrate based peptide aldehyde inhibits bacterial type I signal peptidase. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 2880-2883.	1.0	24
216	An easy and fast method for the evaluation of Staphylococcus epidermidis type I signal peptidase inhibitors. Journal of Microbiological Methods, 2009, 78, 231-237.	0.7	12

#	Article	IF	CITATIONS
217	A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity. Nucleic Acids Research, 2009, 37, 2867-2881.	6.5	315
218	Oligodeoxynucleotides Containing <i>N</i> ¹ â€Methylâ€2â€2â€Deoxyadenosine and <i>N</i> ⁶ â€Methylâ€2â€2â€Deoxyadenosine. Current Protocols in Nucleic Acid Chemistry, 2009, 38 Unit 4.36 1-19.	8,0.5	1
219	HNA and ANA high-affinity arrays for detections of DNA and RNA single-base mismatches. Biosensors and Bioelectronics, 2008, 23, 1728-1732.	5.3	23
220	De novo approach to l-anhydrohexitol nucleosides as building blocks for the synthesis of l-hexitol nucleic acids (l-HNA). Tetrahedron Letters, 2008, 49, 6068-6070.	0.7	18
221	Enzymatic Polymerization of Phosphonate Nucleosides. ChemBioChem, 2008, 9, 2883-2888.	1.3	12
222	Enzymatically Catalyzed DNA Synthesis Using <scp>L</scp> â€Aspâ€dGMP, <scp>L</scp> â€Aspâ€dCMP, and <scp>L</scp> â€Aspâ€dTMP. Chemistry and Biodiversity, 2008, 5, 31-39.	1.0	23
223	Dendritic Nucleotides: Interaction with an Aliphatic Acid Monolayer. Chemistry and Biodiversity, 2008, 5, 1675-1682.	1.0	1
224	Synthesis of 2′-O-α-d-ribofuranosyladenosine, monomeric unit of poly(ADP–ribose). Tetrahedron, 2008, 64, 2871-2876.	1.0	23
225	Carbohydrate chiral-pool approach to four enantiomerically pure 2-naphthylmethyl 3-hydroxy-2-methylbutanoates. Tetrahedron, 2008, 64, 5551-5562.	1.0	13
226	Phosphoramidite building blocks for efficient incorporation of 2′-O-aminoethoxy(and propoxy)methyl nucleosides into oligonucleotides. Tetrahedron, 2008, 64, 6238-6251.	1.0	18
227	Synthesis of N-methyl-d-ribopyranuronamide nucleosides. Tetrahedron, 2008, 64, 10062-10067.	1.0	6
228	Carbohydrate-based approach to four enantiomerically pure 2-naphthylmethyl 3-hydroxy-2-methylbutanoates. Tetrahedron Letters, 2008, 49, 1331-1335.	0.7	2
229	Structure of the Fully Modified Left-Handed Cyclohexene Nucleic Acid Sequence GTGTACAC. Journal of the American Chemical Society, 2008, 130, 1979-1984.	6.6	18
230	Aminoacyl-tRNA Synthetase Inhibitors as Potent and Synergistic Immunosuppressants. Journal of Medicinal Chemistry, 2008, 51, 3020-3029.	2.9	28
231	Influence of the incorporation of a cyclohexenyl nucleic acid (CeNA) residue onto the sequence d(CGCGAATTCGCC). Nucleic Acids Research, 2008, 36, 1407-1414.	6.5	14
232	Synthesis of 2′-Cyclohexenylnucleosides and Corresponding CeNA Building Blocks. , 2008, Chapter 1, 1.20.1-1.20.21.		2
233	Synthesis of Modified Nucleosides. Current Protocols in Nucleic Acid Chemistry, 2008, 35, 1.0.1.	0.5	0
234	Polymerase-catalyzed synthesis of DNA from phosphoramidate conjugates of deoxynucleotides and amino acids. Nucleic Acids Research, 2007, 35, 5060-5072.	6.5	51

#	Article	IF	CITATIONS
235	Inhibition of MDR1 expression with altritol-modified siRNAs. Nucleic Acids Research, 2007, 35, 1064-1074.	6.5	73
236	Nucleic acids with a six-membered carbohydrate mimic and RNA interference. Blood Cells, Molecules, and Diseases, 2007, 38, 100-101.	0.6	2
237	2′-O-Hydroxyalkoxymethylribonucleosides and their Incorporation into Oligoribonucleotides. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 1509-1512.	0.4	4
238	Structural Characterization and Biological Evaluation of Small Interfering RNAs Containing Cyclohexenyl Nucleosides. Journal of the American Chemical Society, 2007, 129, 9340-9348.	6.6	46
239	Synthesis of Altritol Nucleoside Phosphoramidites for Oligonucleotide Synthesis. Current Protocols in Nucleic Acid Chemistry, 2007, 30, Unit 1.18.	0.5	6
240	A Methyl Group Controls Conformational Equilibrium in Human Mitochondrial tRNA ^{Lys} . Journal of the American Chemical Society, 2007, 129, 13382-13383.	6.6	77
241	Biophysical Analysis of Nucleic Acids. Current Protocols in Nucleic Acid Chemistry, 2007, 29, 7.0.1.	0.5	Ο
242	Structure of the α-Homo-DNA:RNA Duplex and the Function of Twist and Slide To Catalogue Nucleic Acid Duplexes. Chemistry - A European Journal, 2007, 13, 90-98.	1.7	10
243	Enzymatic Synthesis of Phosphonomethyl Oligonucleotides by Therminator Polymerase. Angewandte Chemie - International Edition, 2007, 46, 2501-2504.	7.2	23
244	Amino Acid Phosphoramidate Nucleotides as Alternative Substrates for HIV-1 Reverse Transcriptase. Angewandte Chemie - International Edition, 2007, 46, 4356-4358.	7.2	67
245	On Chemistry Leading to Life's Origin. Chemistry and Biodiversity, 2007, 4, 539-540.	1.0	2
246	Chemical Etiology of Nucleic Acids: Aminopropyl Nucleic Acids (APNAs). Chemistry and Biodiversity, 2007, 4, 740-761.	1.0	5
247	Conformational and Chiral Selection of Oligonucleotides. Chemistry and Biodiversity, 2007, 4, 803-817.	1.0	17
248	Synthesis of a Pyridoxine–Peptide Based Delivery System for Nucleotides. Chemistry and Biodiversity, 2007, 4, 1450-1465.	1.0	4
249	Oligodeoxynucleotides Containing 2′-Deoxy-1-methyladenosine andDimroth Rearrangement. Helvetica Chimica Acta, 2007, 90, 928-937.	1.0	9
250	Synthesis of Nicotinamide Adenine Dinucleotide (NAD) Analogues with a Sugar Modified Nicotinamide Moiety. Helvetica Chimica Acta, 2007, 90, 1266-1278.	1.0	6
251	Fmoc-Protected Altritol Phosphoramidite Building Blocks and Their Application in the Synthesis of Altritol Nucleic Acids (ANAs). European Journal of Organic Chemistry, 2007, 2007, 1446-1456.	1.2	5
252	Synthesis of 3′-O-phosphonomethyl nucleosides with an adenine base moiety. Tetrahedron, 2007, 63, 2634-2646.	1.0	33

#	Article	IF	CITATIONS
253	Synthesis and evaluation of hexitol nucleoside congeners as ambiguous nucleosides. Tetrahedron Letters, 2007, 48, 2143-2145.	0.7	2
254	Stereoselective synthesis of (â^)-ara-cyclohexenyl-adenine. Tetrahedron Letters, 2007, 48, 3621-3623.	0.7	17
255	3-Deoxy-1,2-O-isopropylidene-3-C-methyl-5-O-(p-tolylsulfonyl)-D-ribofuranose. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o2678-o2680.	0.2	1
256	Inhibition of human immunodeficiency virus type 1 transcription by N-aminoimidazole derivatives. Virology, 2007, 365, 220-237.	1.1	8
257	Complexation of Lipofectamine and Cholesterol-Modified DNA Sequences Studied by Single-Molecule Fluorescence Techniques. Biomacromolecules, 2007, 8, 3382-3392.	2.6	9
258	Synthesis of Oligoribonucleotides Containing Pyrimidine 2'-O-[(Hydroxyalkoxy)methyl]ribonucleosides. Collection of Czechoslovak Chemical Communications, 2006, 71, 804-819.	1.0	6
259	Synthesis of 2′―O â€Î²â€•d â€Ribofuranosylnucleosides. Current Protocols in Nucleic Acid Chemistry, 2006, 2 Unit 1.14.	27. 0.5	3
260	Baseâ^'Base Interactions in the Minor Groove of Double-Stranded DNA. Journal of Organic Chemistry, 2006, 71, 5423-5431.	1.7	40
261	Glycosyl Transferase Activity of theEscherichia coliPenicillin-Binding Protein 1b:Â Specificity Profile for the Substrateâ€. Biochemistry, 2006, 45, 4007-4013.	1.2	22
262	Regioselective cross-coupling reactions and nucleophilic aromatic substitutions on a 5,7-dichloropyrido[4,3-d]pyrimidine scaffold. Tetrahedron Letters, 2006, 47, 8917-8920.	0.7	11
263	The interplay between antiviral activity, oligonucleotide hybridisation and nucleic acids incorporation studies. Antiviral Research, 2006, 71, 317-321.	1.9	10
264	Development of Synthetic Strategies for the Construction of Pyrido[4,3-d]pyrimidine Libraries – the Discovery of a New Class of PDE-4 Inhibitors. European Journal of Organic Chemistry, 2006, 2006, 4257-4269.	1.2	14
265	Synthesis of Deoxygenated Disaccharide Precursors for Modified Lipid II Synthesis. European Journal of Organic Chemistry, 2006, 2006, 5158-5166.	1.2	10
266	Synthetic dsDNA-Binding Peptides Using Natural Compounds as Model. Helvetica Chimica Acta, 2006, 89, 1194-1219.	1.0	6
267	Synthesis of Aminopropyl Phosphonate Nucleosides with Purine and Pyrimidine Bases. Collection of Czechoslovak Chemical Communications, 2006, 71, 15-34.	1.0	17
268	Conformational Analysis, Solvent-Accessible Surface and Geometric Extent of Inhibitors and Substrates. Collection of Czechoslovak Chemical Communications, 2006, 71, 842-858.	1.0	1
269	Incorporation of a disaccharide nucleoside into the backbone of double stranded DNA: crystallization and preliminary X-ray diffraction. Acta Crystallographica Section A: Foundations and Advances, 2006, 62, s134-s134.	0.3	0
270	Cyclohexenyl nucleic acids: conformationally flexible oligonucleotides. Nucleic Acids Research, 2005, 33, 2452-2463.	6.5	29

#	Article	IF	CITATIONS
271	Synthesis and Properties of Oligonucleotides Containing 2,4-Dihydroxycyclohexyl Nucleosides. Helvetica Chimica Acta, 2005, 88, 3210-3224.	1.0	3
272	Synthesis of RNA ContainingO-β-D-Ribofuranosyl-(1″2′)-adenosine-5″-phosphate and 1-Methyladenosir Minor Components of tRNA. Chemistry and Biodiversity, 2005, 2, 1153-1163.	^{າe} .0	11
273	Synthesis and Properties of Aminopropyl Nucleic Acids. ChemBioChem, 2005, 6, 2298-2304.	1.3	25
274	Oligonucleotides with cyclohexene-nucleoside building blocks: crystallization and preliminary X-ray studies of a left-handed sequence GTGTACAC. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 585-586.	0.7	0
275	Incorporation of a disaccharide nucleoside into the backbone of double-stranded DNA: crystallization and preliminary X-ray diffraction. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 953-955.	0.7	1
276	Investigation of the DNA-dependent cyclohexenyl nucleic acid polymerization and the cyclohexenyl nucleic acid-dependent DNA polymerization. Nucleic Acids Research, 2005, 33, 3828-3836.	6.5	60
277	Synthesis of Peptidoglycan Units with UDP at the Anomeric Position. Collection of Czechoslovak Chemical Communications, 2005, 70, 1615-1641.	1.0	16
278	Delivery of Antisense Oligonucleotides Using Cholesterol-Modified Sense Dendrimers and Cationic Lipids. Bioconjugate Chemistry, 2005, 16, 827-836.	1.8	24
279	ENZYMATIC RESOLUTION AND BASE PAIRING PROPERTIES OF D- AND L-CYCLOHEXENYL NUCLEIC ACIDS (CeNA). Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 993-998.	0.4	3
280	Reinforced HNA Backbone Hydration in the Crystal Structure of a Decameric HNA/RNA Hybrid. Journal of the American Chemical Society, 2005, 127, 2937-2943.	6.6	30
281	Deoxythreosyl Phosphonate Nucleosides as Selective Anti-HIV Agents. Journal of the American Chemical Society, 2005, 127, 5056-5065.	6.6	114
282	Hexitol Nucleic Acid-Containing Aptamers Are Efficient Ligands of HIV-1 TAR RNAâ€. Biochemistry, 2005, 44, 2926-2933.	1.2	38
283	Strategies in the Design of Antiviral Drugs. , 2005, , 1135-1190.		4
284	Synthesis and Conformational Analysis of a Ribo-Type Cyclohexenyl Nucleoside. Journal of Organic Chemistry, 2005, 70, 4591-4597.	1.7	17
285	Cyclohexene oligonucleotides: structure of the L-CeNA sequence GTGTACAC. Acta Crystallographica Section A: Foundations and Advances, 2005, 61, c220-c220.	0.3	1
286	Inhibition of MDR1 gene expression by chimeric HNA antisense oligonucleotides. Nucleic Acids Research, 2004, 32, 4411-4419.	6.5	50
287	Increased uptake of antisense oligonucleotides by delivery as double stranded complexes. Biochemical Pharmacology, 2004, 68, 403-407.	2.0	34
288	Interaction of HIV-1 Reverse Transcriptase with Modified Oligonucleotide Primers Containing 2Â-O-Â-D-Ribofuranosyladenosine. Biochemistry (Moscow), 2004, 69, 130-136.	0.7	1

#	Article	IF	CITATIONS
289	Synthesis of Dâ€Altritol Nucleosides with a 3′â€Oâ€Tertâ€Butyldimethylsilyl Protecting Group. Nucleosides, Nucleotides and Nucleic Acids, 2004, 23, 439-455.	0.4	12
290	One-Step Synthesis of Hypoxanthine from Glycinamide and Diformylurea. Chemistry and Biodiversity, 2004, 1, 106-111.	1.0	14
291	Synthesis and Leukemia Cell Growth Inhibition of a Series of 1,3-Dithiazolylbenzene Derivatives ChemInform, 2004, 35, no.	0.1	0
292	Synthesis of enantiomeric-pure cyclohexenyl nucleoside building blocks for oligonucleotide synthesis. Tetrahedron, 2004, 60, 2111-2123.	1.0	12
293	A neural network for predicting the stability of RNA/DNA hybrid duplexes. Chemometrics and Intelligent Laboratory Systems, 2004, 70, 123-128.	1.8	7
294	Synthesis and Stability of Oligonucleotides Containing Acyclic Achiral Nucleoside Analogues with Two Base Moieties. Organic Letters, 2004, 6, 51-54.	2.4	28
295	Synthesis and Conformational Analysis of 1-[2,4-Dideoxy-4-C-hydroxymethyl-α-l-lyxopyranosyl]thymine. Journal of Organic Chemistry, 2004, 69, 4446-4453.	1.7	20
296	Synthesis and Leukemia Cell Growth Inhibition of a Series of 1,3-Dithiazolylbenzene Derivatives. Collection of Czechoslovak Chemical Communications, 2004, 69, 1491-1498.	1.0	4
297	N-Aminoimidazole Derivatives Inhibiting Retroviral Replication via a Yet Unidentified Mode of Action. Journal of Medicinal Chemistry, 2003, 46, 1546-1553.	2.9	40
298	Synthesis and Properties of OD-ribofuranosyl-(1″→2′)-guanosine-5″- O-phosphate and Its Derivatives. Helvetica Chimica Acta, 2003, 86, 504-514.	1.0	9
299	New dsDNA-Binding Hybrid Molecules Combining an Unnatural Peptide and an Intercalating Moiety. Helvetica Chimica Acta, 2003, 86, 533-547.	1.0	5
300	Mycobacterium tuberculosis Thymidine Monophosphate Kinase Inhibitors: Biological Evaluation and Conformational Analysis of 2â€2- and 3â€2-Modified Thymidine Analogues. European Journal of Organic Chemistry, 2003, 2003, 2911-2918.	1.2	9
301	Straightforward Synthesis of Labeled and Unlabeled Pyrimidine d4Ns via 2′,3′-Diyne seco Analogues through Olefin Metathesis Reactions. European Journal of Organic Chemistry, 2003, 2003, 666-671.	1.2	16
302	Synthesis of Pyranose Nucleosides and Related Nucleosides with a Six-Membered Carbohydrate Mimic. ChemInform, 2003, 34, no.	0.1	0
303	Comparison of library screening techniques used in the development of dsDNA ligands. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 47-50.	1.0	8
304	3â€~-C-Branched-Chain-Substituted Nucleosides and Nucleotides as Potent Inhibitors of Mycobacterium tuberculosis Thymidine Monophosphate Kinase. Journal of Medicinal Chemistry, 2003, 46, 3811-3821.	2.9	53
305	Stereocontrolled Synthesis of Ara-Type Cyclohexenyl Nucleosides. Journal of Organic Chemistry, 2003, 68, 4499-4505.	1.7	16
306	Synthesis and Conformational Properties ofO-β-D-Ribofuranosyl-(1″-2′)-guanosine and (Adenosine)-5″-phosphate. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 1109-1111.	0.4	4

#	Article	IF	CITATIONS
307	Replication of hexitol oligonucleotides as a prelude to the propagation of a third type of nucleic acid in vivo. Comptes Rendus - Biologies, 2003, 326, 1175-1184.	0.1	39
308	Synthesis and Antiviral Evaluation of Ribavirin Congeners Containing a Hexitol Moiety. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 849-851.	0.4	2
309	Oligonucleotides Containing Disaccharide Nucleosides: Synthesis, Physicochemical, and Substrate Properties. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 1117-1118.	0.4	1
310	Ribavirin Derivatives with a Hexitol Moiety: Synthesis and Antiviral Evaluation. Antiviral Chemistry and Chemotherapy, 2003, 14, 23-30.	0.3	3
311	Synthesis and Antiviral Activity of a Series of New Cyclohexenyl Nucleosides. Antiviral Chemistry and Chemotherapy, 2003, 14, 31-37.	0.3	8
312	Difference in conformational diversity between nucleic acids with a six-membered 'sugar' unit and natural 'furanose' nucleic acids. Nucleic Acids Research, 2003, 31, 2975-2989.	6.5	48
313	Base Pairing Properties of D- and L-Cyclohexene Nucleic Acids (CeNA). Oligonucleotides, 2003, 13, 479-489.	2.7	12
314	Evaluation of Capillary HPLC/Mass Spectrometry as an Alternative Analysis Method for Gel Electrophoresis of Oligonucleotides. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 1513-1516.	0.4	3
315	Chemical Incorporation of 1-Methyladenosine, Minor tRNA Component, into Oligonucleotides. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 1113-1115.	0.4	1
316	Methylated Hexitol Nucleic Acids, Towards Congeners with Improved Antisense Potential. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 1227-1229.	0.4	2
317	Synthesis and Biological Evaluation of a Series of New Cyclohexenyl Nucleosides. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 845-847.	0.4	3
318	Cleavage of DNA without loss of genetic information by incorporation of a disaccharide nucleoside. Nucleic Acids Research, 2003, 31, 6758-6769.	6.5	4
319	Recognition of threosyl nucleotides by DNA and RNA polymerases. Nucleic Acids Research, 2003, 31, 6221-6226.	6.5	76
320	Six-membered Carbocyclic Nucleosides. Advances in Antiviral Drug Design, 2003, , 119-145.	0.7	6
321	Synthesis and Properties of Phosphorylated 3′-O-β-D-Ribofuranosyl-2′-deoxythymidine. Nucleosides, Nucleotides and Nucleic Acids, 2003, 22, 359-371.	0.4	7
322	Synthesis of 1,5â€Anhydrohexitol Building Blocks for Oligonucleotide Synthesis. Current Protocols in Nucleic Acid Chemistry, 2003, 14, Unit 1.9.	0.5	8
323	Chemical incorporation of 1-methyladenosine into oligonucleotides. Nucleic Acids Research, 2002, 30, 1124-1131.	6.5	32
324	Chemical Synthesis of 13C and 15N Labeled Nucleosides. Synthesis, 2002, 2002, 301-314.	1.2	28

#	Article	IF	CITATIONS
325	AFFINITY MODIFICATION OFEcoRII DNA METHYLTRANSFERASE BY THE DIALDEHYDE-SUBSTITUTED DNA DUPLEXES: MAPPING THE ENZYME REGION THAT INTERACTS WITH DNA. Nucleosides, Nucleotides and Nucleic Acids, 2002, 21, 753-764.	0.4	8
326	RNA as a Target for Drug Design, the Example of Tat-TAR Interaction. Current Topics in Medicinal Chemistry, 2002, 2, 1123-1145.	1.0	34
327	α-l-ribo-Configured Locked Nucleic Acid (α-L-LNA): Synthesis and Properties. Journal of the American Chemical Society, 2002, 124, 2164-2176.	6.6	141
328	5â€~-Deoxy Congeners of 9-(3-Amido-3-deoxy-β-d-xylofuranosyl)-N6-cyclopentyladenine: New Adenosine A1Receptor Antagonists and Inverse Agonists. Journal of Medicinal Chemistry, 2002, 45, 1845-1852.	2.9	13
329	Crystal Structure of Double Helical Hexitol Nucleic Acids. Journal of the American Chemical Society, 2002, 124, 928-933.	6.6	75
330	Recognition of HNA and 1,5-anhydrohexitol nucleotides by DNA metabolizing enzymes. BBA - Proteins and Proteomics, 2002, 1597, 115-122.	2.1	10
331	1,2,4-Triazole Derivatives Inhibiting the Human Immunodeficiency Virus Type 1 (HIV-1) in vitro. Helvetica Chimica Acta, 2002, 85, 1883.	1.0	20
332	Selection of New Sequence-Selective Unnatural Peptides Binding to Double-Stranded Deoxyribonucleic Acids (dsDNA) by Means of a Gel-Retardation Experiment for Library Analysis. Helvetica Chimica Acta, 2002, 85, 2258-2283.	1.0	14
333	Predicting melting temperature (Tm) of oligoribonucleotide duplex by neural network. Journal of Chemometrics, 2002, 16, 75-80.	0.7	7
334	An additional 2′-ribofuranose residue at a specific position of the DNA primer prevents Its elongation by HIV-1 reverse transcriptase. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 681-684.	1.0	11
335	Synthesis and evaluation of thymidine-5′-O-monophosphate analogues as inhibitors of Mycobacterium tuberculosis thymidylate kinase. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 2695-2698.	1.0	54
336	Characterization and sequence confirmation of unnatural amino acid containing peptide libraries using electrospray ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2002, 16, 982-987.	0.7	3
337	New dsDNA binding unnatural oligopeptides with pyrimidine selectivity. Bioorganic and Medicinal Chemistry, 2002, 10, 3401-3413.	1.4	14
338	Synthesis of Pyranose Nucleosides and Related Nucleosides with a Six-Membered Carbohydrate Mimic. , 2002, , 239-290.		2
339	(D)- AND (L)-CYCLOHEXENYL-G, A NEW CLASS OF ANTIVIRAL AGENTS: SYNTHESIS, CONFORMATIONAL ANALYSIS, MOLECULAR MODELING, AND BIOLOGICAL ACTIVITY. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 727-730.	0.4	10
340	INCREASED RNA AFFINITY OF HNA ANALOGUES BY INTRODUCING ALKOXY SUBSTITUENTS AT THE C-1 OR C-3 POSITION. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 781-784.	0.4	3
341	Hybridization between "Six-Membered―Nucleic Acids:  RNA as a Universal Information System. Organic Letters, 2001, 3, 4129-4132.	2.4	19
342	A NEURAL NETWORK TO PREDICT MELTING TEMPERATURE (Tm) OF RNA DUPLEX. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 261-269.	0.4	2

#	Article	IF	CITATIONS
343	Epimerization During Coupling to the Unnatural Amino Acid in Solid Phase Peptide Synthesis. Collection of Czechoslovak Chemical Communications, 2001, 66, 923-932.	1.0	2
344	The Cyclohexene Ring as Bioisostere of a Furanose Ring: Synthesis and Antiviral Activity of Cyclohexenyl Nucleosides. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1591-1597.	1.0	47
345	Oligonucleotides Containing Disaccharide Nucleosides. Helvetica Chimica Acta, 2001, 84, 2387-2397.	1.0	22
346	Poly(2-acrylamido-2-methyl-1-propanamide) (PAMPA): A Neutral, Water-Soluble Synthetic Polymer with Double-Stranded Helix Conformation. Helvetica Chimica Acta, 2001, 84, 2398-2408.	1.0	10
347	α-Homo-DNA and RNA Form a Parallel Oriented Non-A, Non-B-Type Double Helical Structure. Chemistry - A European Journal, 2001, 7, 5183-5194.	1.7	19
348	TNA as a Potential Alternative to Natural Nucleic Acids. Angewandte Chemie - International Edition, 2001, 40, 2249-2251.	7.2	42
349	Title is missing!. European Journal of Plant Pathology, 2001, 107, 839-844.	0.8	34
350	Reverse transcriptase incorporation of 1,5-anhydrohexitol nucleotides. Nucleic Acids Research, 2001, 29, 3154-3163.	6.5	52
351	Improved hybridisation potential of oligonucleotides comprising O-methylated anhydrohexitol nucleoside congeners. Nucleic Acids Research, 2001, 29, 4187-4194.	6.5	15
352	A Straightforward Stereoselective Synthesis ofd- andl-5-Hydroxy-4-hydroxymethyl-2-cyclohexenylguanine. Journal of Organic Chemistry, 2001, 66, 8478-8482.	1.7	31
353	RNase H mediated cleavage of RNA by cyclohexene nucleic acid (CeNA). Nucleic Acids Research, 2001, 29, 4941-4947.	6.5	53
354	CYCLOHEXENE NUCLEIC ACIDS (CeNA) FORM STABLE DUPLEXES WITH RNA AND INDUCE RNASE H ACTIVITY. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 785-788.	0.4	21
355	IDENTIFICATION OF THE EXOPOLYSACCHARIDE AMYLOVORAN BY NMR[1]. Journal of Carbohydrate Chemistry, 2001, 20, 109-120.	0.4	3
356	Selection of An Unnatural Peptide Library For dsDNA Binding. Current Medicinal Chemistry, 2001, 8, 517-531.	1.2	8
357	Nonenzymatic Template-Directed Reactions on Altritol Oligomers, Preorganized Analogues of Oligonucleotides. Chemistry - A European Journal, 2000, 6, 151-155.	1.7	45
358	Synthesis of the Anticodon HairpintRNAfMet ContainingN-{[9-(β-D-Ribofuranosyl)-9H-purin-6-yl]carbamoyl}-L-threonine (=N6-{{[(15,2R)-1-Carboxy-2-hydroxypropyl]amino}carbonyl}adenosine, t6A). Helvetica Chimica Acta, 2000 83 152-161	1.0	23
359	Title is missing!. Helvetica Chimica Acta, 2000, 83, 1278-1289.	1.0	14
360	Solution Structure of a Hexitol Nucleic Acid Duplex with Four Consecutive Tâ‹T Base Pairs. Helvetica Chimica Acta, 2000, 83, 1291-1310.	1.0	14

#	ARTICLE	IF	CITATIONS
361	Molecular-Dynamics Studies of Single-Stranded Hexitol, Altritol, Mannitol, and Ribose Nucleic Acids (HNA, MNA, ANA, and RNA, Resp.) and of the Stability of HNAâ‹RNA, ANAâ‹RNA, and MNAâ‹RNA Duplexes. Helvetica Chimica Acta, 2000, 83, 2153-2182.	1.0	14
362	Synthesis of Fluorinated Sphinganine and Dihydroceramide Analogues. European Journal of Organic Chemistry, 2000, 2000, 3177-3183.	1.2	41
363	Solution structure of a HNA–RNA hybrid. Chemistry and Biology, 2000, 7, 719-731.	6.2	66
364	Synthesis of Alanine and Proline Amino Acids with Amino or Guanidinium Substitution on the Side Chain. Tetrahedron, 2000, 56, 2513-2522.	1.0	15
365	Synthesis and antiviral evaluation of some β-l-2′,3′-dideoxy-5-chloropyrimidine nucleosides and pronucleotides. Antiviral Research, 2000, 45, 169-183.	1.9	14
366	Biological activity of hexitol nucleic acids targeted at Ha-ras and intracellular adhesion molecule-1 mRNA. Biochemical Pharmacology, 2000, 59, 655-663.	2.0	24
367	Synthesis, Biological Activity, and Molecular Modeling of Ribose-Modified Deoxyadenosine Bisphosphate Analogues as P2Y1Receptor Ligands. Journal of Medicinal Chemistry, 2000, 43, 829-842.	2.9	129
368	Synthesis and Properties of O-β-D-Ribofuranosyl-(1″-2′)-Adenosine-5″-O-Phosphate and Its Derivatives. Nucleosides, Nucleotides and Nucleic Acids, 2000, 19, 1847-1859.	0.4	14
369	Probing the Mval Methyltransferase Region that Interacts with DNA: Affinity Labeling with the Dialdehyde-Containing DNA Duplexes. Nucleosides, Nucleotides and Nucleic Acids, 2000, 19, 1805-1820.	0.4	7
370	Investigation of The Kinetics of Degradation of Hexopyranosylated Cytosine Nucleosides Using Liquid Chromatography. Nucleosides, Nucleotides and Nucleic Acids, 2000, 19, 189-203.	0.4	2
371	Enzymatic Incorporation in DNA of 1,5-Anhydrohexitol Nucleotides. Biochemistry, 2000, 39, 12757-12765.	1.2	66
372	Cyclohexene Nucleic Acids (CeNA):Â Serum Stable Oligonucleotides that Activate RNase H and Increase Duplex Stability with Complementary RNA. Journal of the American Chemical Society, 2000, 122, 8595-8602.	6.6	129
373	The Cyclohexene Ring System as a Furanose Mimic:  Synthesis and Antiviral Activity of Both Enantiomers of Cyclohexenylguanine. Journal of Medicinal Chemistry, 2000, 43, 736-745.	2.9	81
374	Synthesis and Biological Evaluation of Ceramide Analogues with Substituted Aromatic Rings or an Allylic Fluoride in the Sphingoid Moiety. Journal of Medicinal Chemistry, 2000, 43, 4189-4199.	2.9	33
375	Heterocyclic Modifications of Oligonucleotides and Antisense Technology. Oligonucleotides, 2000, 10, 297-310.	4.4	89
376	Glycosylation of 1-Aminoimidazole-2(3H)-thiones. Collection of Czechoslovak Chemical Communications, 2000, 65, 1145-1155.	1.0	2
377	Evaluation of the cellular uptake of hexitol nucleic acids in HeLa cells. Die Pharmazie, 2000, 55, 615-7.	0.3	2
378	Base pairing of anhydrohexitol nucleosides with 2,6-diaminopurine, 5- methylcytosine and uracil asbase moiety. Nucleic Acids Research, 1999, 27, 1450-1456.	6.5	29

#	Article	IF	CITATIONS
379	Enantioselective Synthesis and Conformational Analysis of Cyclohexene Carbocyclic Nucleosides. Nucleosides & Nucleotides, 1999, 18, 593-594.	0.5	4
380	d(GCGTAGC), an Equilibrium Between a Hairpin Structure and an Unusual Duplex. Nucleosides & Nucleotides, 1999, 18, 2721-2744.	0.5	1
381	Properties of Oligonucleotides with Six Membered Carbohydrate Mimics and a 1,4-Relationship Between the Base Moiety and the Hydroxymethyl Group. Nucleosides & Nucleotides, 1999, 18, 1371-1376.	0.5	2
382	Oligonucleotides with Reactive Dialdehyde Groups as Novel Affinity Reagents. Nucleosides & Nucleotides, 1999, 18, 1469-1470.	0.5	2
383	Synthesis of protected D-altritol nucleosides as building blocks for oligonucleotide synthesis. Tetrahedron, 1999, 55, 6527-6546.	1.0	35
384	5-Substituted pyrimidine 1,5-anhydrohexitols: Conformational analysis and interaction with viral thymidine kinase. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 1563-1566.	1.0	7
385	Oligonucleotides with 1,5-anhydrohexitol nucleoside building blocks: crystallization and preliminary X-ray studies of h(GTGTACAC). Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 279-280.	2.5	0
386	Antimalarial antisense activity of hexitol nucleic acids. Parasitology Research, 1999, 85, 864-866.	0.6	8
387	Conformationally restricted carbohydrate-modified nucleic acids and antisense technology. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1999, 1489, 167-179.	2.4	120
388	Synthesis and Pairing Properties of Oligonucleotides Containing 3-Hydroxy-4-hydroxymethyl-1-cyclohexanyl Nucleosides. Chemistry - A European Journal, 1999, 5, 2139-2150.	1.7	53
389	D-Altritol Nucleic Acids (ANA): Hybridisation Properties, Stability, and Initial Structural Analysis. Chemistry - A European Journal, 1999, 5, 2424-2431.	1.7	66
390	A Highly Enantio-Selective Hexitol Nucleic Acid Template for Nonenzymatic Oligoguanylate Synthesis. Journal of the American Chemical Society, 1999, 121, 1108-1109.	6.6	51
391	Nonenzymatic Synthesis of RNA and DNA Oligomers on Hexitol Nucleic Acid Templates:  The Importance of the A Structure. Journal of the American Chemical Society, 1999, 121, 2653-2656.	6.6	64
392	Unexpected Shift to a 4-Imino Tautomer Upon N4-Acylation of 5-Methylcytosin-1-yl Nucleoside Analogues. Nucleosides & Nucleotides, 1999, 18, 1079-1082.	0.5	9
393	Studies on Disaccharide Nucleoside Synthesis. Mechanism of the Formation of Trisaccharide Purine Nucleosides. Nucleosides & Nucleotides, 1999, 18, 691-692.	0.5	4
394	Replicative Capability of Anhydrohexitol Analogues of Nucleotides. Nucleosides & Nucleotides, 1999, 18, 1015-1017.	0.5	0
395	Polyethylenimine but Not Cationic Lipid Improves Antisense Activity of 3′-Capped Phosphodiester Oligonucleotides. Oligonucleotides, 1999, 9, 515-525.	4.4	64
396	Lead Optimization of <i>N</i> ⁶ -Cyclopentyl-3′-amido-3′-deoxyxylofuranosyladenines as Adenosine A ₁ Receptor Antagonists. Nucleosides & Nucleotides, 1999, 18, 735-736.	0.5	0

#	Article	IF	CITATIONS
397	Efficient Transfer of Information from Hexitol Nucleic Acids to RNA during Nonenzymatic Oligomerization. Journal of the American Chemical Society, 1999, 121, 5856-5859.	6.6	52
398	Evaluation of the Kinetics of Hydrolysis of Diamino Analogues of 2′- Or 3′-Deoxyadenosine and of 9-(2-Deoxy-β-D- <i>threo</i> â^²Pentofuranosyl)adenine or 9-(3-Dexoy-β-D- <i>threo</i> â^²Pentofuranosyl)adenine By Liquid Chromatography. Nucleosides & Nucleotides, 1999, 18, 1863-1877.	0.5	0
399	Mapping of T7 RNA polymerase active site with novel reagents - oligonucleotides with reactive dialdehyde groups. FEBS Letters, 1999, 442, 20-24.	1.3	21
400	In vivo synthesis of complex N -glycans by expression of human N -acetylglucosaminyltransferase I in the filamentous fungus Trichoderma reesei. FEBS Letters, 1999, 452, 365-370.	1.3	35
401	Enantioselective Synthesis and Conformational Study of Cyclohexene Carbocyclic Nucleosides. Journal of Organic Chemistry, 1999, 64, 7820-7827.	1.7	56
402	Oligonucleotides with 2,6-Diaminopurine Base Replacing for Adenine: Synthesis and Properties. Nucleosides & Nucleotides, 1999, 18, 1429-1431.	0.5	3
403	A Novel and Enantioselective Approach to the Synthesis of Cyclohexane Carbocyclic Nucleosides Starting from (-)-Carvone. Nucleosides & Nucleotides, 1999, 18, 591-592.	0.5	5
404	Investigations on Sarcosine and Isonipecotic Acid Containing Peptide Nucleic Acids. Nucleosides & Nucleotides, 1999, 18, 1535-1538.	0.5	0
405	Structureâ^'Activity Relationships of Bisphosphate Nucleotide Derivatives as P2Y1Receptor Antagonists and Partial Agonists. Journal of Medicinal Chemistry, 1999, 42, 1625-1638.	2.9	60
406	Antisense PNA tridecamers targeted to the coding region of ha-ras mRNA arrest polypeptide chain elongation. Journal of Molecular Biology, 1999, 294, 403-416.	2.0	90
407	Synthesis and Conformational Analysis of 1,5-Anhydro-2,4-dideoxy-D-mannitol Nucleosides. Nucleosides & Nucleotides, 1999, 18, 161-180.	0.5	6
408	Synthesis and Pairing Properties of Oligonucleotides Containing 3-Hydroxy-4-hydroxymethyl-1-cyclohexanyl Nucleosides. , 1999, 5, 2139.		1
409	TYPING OF THE EPS COAT OF ERWINIA AMYLOVORA STRAINS IN RELATION TO THEIR PHYTOPATHOLOGICAL PROPERTIES. Acta Horticulturae, 1999, , 337-340.	0.1	0
410	DNA-Binding Ligands from Peptide Libraries Containing Unnatural Amino Acids. Chemistry - A European Journal, 1998, 4, 425-433.	1.7	26
411	Exploring the active site of herpes simplex virus type-1 thymidine kinase by X-ray crystallography of complexes with aciclovir and other ligands. , 1998, 32, 350-361.		123
412	29Si NMR spectra of trimethylsilyl andtert-butyldimethylsilyl derivatives of purines and pyrimidines. Magnetic Resonance in Chemistry, 1998, 36, 55-63.	1.1	6
413	Synthesis of 3′-C-branched 1′,5′-anhydromannitol nucleosides as new antiherpes agents. Tetrahedron, 1998, 54, 2209-2226.	1.0	19
414	Practical method for the parallel synthesis of 2′-amido-2′-deoxyadenosines. Tetrahedron Letters, 1998, 39, 5175-5176.	0.7	20

#	Article	IF	CITATIONS
415	Hybridization properties of base-modified oligonucleotides within the double and triple helix motif. European Journal of Medicinal Chemistry, 1998, 33, 515-576.	2.6	112
416	3′-Amidated 3′-Deoxyxylofuranose Analogues of <i>N</i> ⁶ - ^{â~²} Cyclopentyladenosines: a New Class of Non-Xanthine Antagonists at the Adenosine A ₁ Receptor Nucleosides & Nucleotides, 1998, 17, 1571-1576.	0.5	2
417	Facile Synthesis of 3′-C-Branched 1,5-Anhydrohexitol Nucleosides. Nucleosides & Nucleotides, 1998, 17, 1781-1786.	0.5	6
418	Synthetic Strategies Towards the Synthesis of 1–(2,4-Dideoxy-4-C-hydroxymethyl-α-L-Lyxopyranosyl)base Nucleosies Nucleosides & Nucleotides, 1998, 17, 2085-2086.	0.5	3
419	Oligonucleotides Composed of 2â€~-Deoxy-1â€~,5â€~-anhydro-d-mannitol Nucleosides with a Purine Base Moiety. Journal of Organic Chemistry, 1998, 63, 1574-1582.	1.7	22
420	Enantioselective Approach to the Synthesis of Cyclohexane Carbocyclic Nucleosides. Journal of Organic Chemistry, 1998, 63, 3051-3058.	1.7	31
421	Molecular Dynamics Simulation To Investigate Differences in Minor Groove Hydration of HNA/RNA Hybrids As Compared to HNA/DNA Complexes. Journal of the American Chemical Society, 1998, 120, 5381-5394.	6.6	46
422	5-Substituted Pyrimidines with a 1,5-Anhydro-2,3-dideoxy-d-arabino-hexitol Moiety at N-1:Â Synthesis, Antiviral Activity, Conformational Analysis, and Interaction with Viral Thymidine Kinase. Journal of Medicinal Chemistry, 1998, 41, 4343-4353.	2.9	50
423	Disaccharide Nucleosides And Their Enzymatic And Chemical Incorporation Into Oligonucleotides. Nucleosides & Nucleotides, 1998, 17, 1681-1684.	0.5	6
424	Some 6-Aza-5-substituted-2'-deoxyuridines Show Potent and Selective Inhibition of Herpes Simplex Virus Type 1 Thymidine Kinase. Nucleosides, Nucleotides and Nucleic Acids, 1998, 17, 187-206.	0.4	14
425	1,5-Anhydro-2-Deoxy-D-Altritol Oligonucleotides as Conformationally Restricted Analogues of Rna. Nucleosides & Nucleotides, 1998, 17, 1523-1526.	0.5	2
426	Synthesis of 1,5-Anhydro-D-Mannitol Nucleosides with a Purine Base Moeety. Nucleosides & Nucleotides, 1998, 17, 1775-1779.	0.5	2
427	Divers Stereoisomers of <i>N</i> -Acetylhydroxyprolinol as Sugar Substitute in Oligonucleotides. Nucleosides & Nucleotides, 1998, 17, 1577-1581.	0.5	Ο
428	Protection of 2,6-Diaminopurine 2′-Deoxyriboside. Nucleosides & Nucleotides, 1997, 16, 1649-1652.	0.5	10
429	DNA duplexes with reactive dialdehyde groups as novel reagents for cross-linking to restriction- modification enzymes. Nucleic Acids Research, 1997, 25, 3302-3309.	6.5	23
430	Synthesis and hybridization properties of inverse oligonucleotides. Nucleic Acids Research, 1997, 25, 3034-3041.	6.5	7
431	Structural Study of Two 5-Heteroaromatic-2′ deoxyuridines and Their 5-Bromine-heteroaromatic Analogues: Theoretical Conformational Analysis and NMR Experiments. Nucleosides & Nucleotides, 1997, 16, 339-346.	0.5	0
432	Access to a New Type of Homo- <i>C</i> -Nucleosides with a "Split―8-Deazapurine via a 1,3-Dipolar Cycloaddition Reaction. Nucleosides & Nucleotides, 1997, 16, 291-300.	0.5	5

#	Article	IF	CITATIONS
433	A Versatile NMR Technique for the Identification of Phosphorylation Sites in Oligosaccharides. Journal of Carbohydrate Chemistry, 1997, 16, 165-170.	0.4	4
434	Hexitol Nucleic Acids (HNA): Synthesis and Properties. Nucleosides & Nucleotides, 1997, 16, 973-976.	0.5	9
435	Fully selective intramolecular ortho photocycloaddition of 4-(4-methoxy-phenoxy)-3-(N3-benzoylthymin-1-yl)but-1- ene: an unprecedented benzene–thymine photocycloaddition. Chemical Communications, 1997, , 817-818.	2.2	11
436	An Efficient Synthesis and Physico-Chemical Properties OF 2'-O-d-Ribofuranosylnuleosides, Minor tRNA Components. Journal of Carbohydrate Chemistry, 1997, 16, 75-92.	0.4	37
437	Conformational Studies on 2â€~,3â€~-Unsaturated Pentopyranosyl Nucleosides by1H NMR Spectroscopy. Impact of π → σ* Interactions on the Axial Preference of the Purine versus Pyrimidine Nucleobase. Journal of the American Chemical Society, 1997, 119, 9782-9792.	6.6	7
438	Synthesis and Antiviral Activity of the α-Analogues of 1,5-Anhydrohexitol Nucleosides (1,5-Anhydro-2,3-dideoxy-d-ribohexitol Nucleosides). Journal of Organic Chemistry, 1997, 62, 2442-2447.	1.7	42
439	Synthesis and Conformational Study of 3-Hydroxy-4-(Hydroxymethyl)-1-Cyclohexanyl Purines and Pyrimidines. Journal of Organic Chemistry, 1997, 62, 2861-2871.	1.7	66
440	N6-Cyclopentyl-3â€~-substituted-xylofuranosyladenosines: A New Class of Non-Xanthine Adenosine A1Receptor Antagonists. Journal of Medicinal Chemistry, 1997, 40, 3765-3772.	2.9	25
441	NMR evidence for a novel asparagine-linked oligosaccharide on cellobiohydrolase I from Trichoderma reesei RUTC 30. FEBS Letters, 1997, 405, 111-113.	1.3	17
442	Screening a Random Pentapeptide Library, Composed of 14 D-Amino Acids, against the COOH-terminal Sequence of Fructose-1,6-bisphosphate Aldolase from Trypanosoma brucei. Journal of Biological Chemistry, 1997, 272, 11378-11383.	1.6	4
443	Structural requirements for antiviral activity in nucleosides. Drug Discovery Today, 1997, 2, 235-242.	3.2	38
444	Structural Characterization of N-Linked Oligosaccharides from Cellobiohydrolase I Secreted by the Filamentous Fungus Trichoderma Reesei RUTC 30. FEBS Journal, 1997, 245, 617-625.	0.2	80
445	Liquid chromatographic separation of hexopyranosylated cytosine nucleosides from their degradation products. Journal of Pharmaceutical and Biomedical Analysis, 1997, 16, 533-540.	1.4	2
446	trans- andcis-S—C—C—S Conformations in 5-(2,2'-Dithien-5-yl)-2'-deoxyuridine. Acta Crystallographica Section C: Crystal Structure Communications, 1997, 53, 892-895.	0.4	0
447	Oligonucleotides with 3-hydroxy-N-acetylprolinol as sugar substitute. Tetrahedron, 1997, 53, 14957-14974.	1.0	13
448	Improved Synthesis of Anhydrohexitol Building Blocks for Oligonucleotide Synthesis. Liebigs Annalen, 1997, 1997, 1453-1461.	0.8	17
449	1′, 5′ â€Anhydrohexitol Oligonucleotides: Synthesis, Base Pairing and Recognition by Regular Oligodeoxyribonucleotides and Oligoribonucleotides. Chemistry - A European Journal, 1997, 3, 110-120.	1.7	141
450	1′,5′â€Anhydrohexitol Oligonucleotides: Hybridisation and Strand Displacement with Oligoribonucleotides, Interaction with RNase H and HIV Reverse Transcriptase. Chemistry - A European Journal, 1997, 3, 1513-1520.	1.7	66

#	Article	IF	CITATIONS
451	Oligonucleotide Analogues with 4-Hydroxy-N-Acetylprolinol as Sugar Substitute. Chemistry - A European Journal, 1997, 3, 1997-2010.	1.7	20
452	Hadamard 1D1H TOCSY and its application to oligosaccharides. Magnetic Resonance in Chemistry, 1997, 35, 883-888.	1.1	14
453	Fast-atom bombardment mass spectrometric study of SATE Foscarnet prodrugs and of a series of Foscarnet-AZT conjugates. Rapid Communications in Mass Spectrometry, 1997, 11, 1212-1218.	0.7	2
454	αâ€Amino acids derived from ornithine as building blocks for peptide synthesis. Chemical Biology and Drug Design, 1997, 49, 183-189.	1.2	0
455	Rational Development of New Sleeping Sickness Drugs. Current Medicinal Chemistry, 1997, 4, 359-384.	1.2	1
456	Understanding the Binding of 5-Substituted 2â€~-Deoxyuridine Substrates to Thymidine Kinase of Herpes Simplex Virus Type-1. Journal of Medicinal Chemistry, 1996, 39, 4727-4737.	2.9	37
457	SYNTHESIS OF <i>N</i> ⁶ -ALKYLATED ADENOSINE DERIVATIVES. Nucleosides & Nucleotides, 1996, 15, 1863-1869.	0.5	6
458	Selection of hammerhead ribozymes for optimum cleavage of interleukin 6 mRNA. Biochemical Journal, 1996, 314, 655-661.	1.7	20
459	Relationship between structural properties and affinity for herpes simplex virus type 1 thymidine kinase of bromine substituted 5-heteroaromatic 2′-deoxyuridines. Antiviral Research, 1996, 30, 63-74.	1.9	10
460	Branched-chain nucleosides: Synthesis of 3â€2-deoxy-3â€2-C- hydroxymethyl-α-l-lyxopyranosyl thymine and 3â€2-deoxy- 3â€2-C-hydroxymethyl-α-l-threofuranosyl thymine Tetrahedron, 1996, 52, 1651-1668.	1.0	19
461	Synthesis and conformational behavior of purine and pyrimidine β-d-threo-hex-3'-enopyranosyl nucleosides. Tetrahedron, 1996, 52, 9249-9262.	1.0	10
462	5-(thien-2-yl) uracil analogs: 5-(5-methylthien-2-yl)-2′-deoxyuridine, 5-(5-thien-2-yl)-2′-deoxyuridine, and 5-(5-bromothien-2-yl)-2′-deoxyuridine. Journal of Chemical Crystallography, 1996, 26, 777-789.	0.5	6
463	Synthesis of 2?-Deoxy-5-(isothiazol-5-yl)uridine and Its Interaction with the HSV-1 Thymidine Kinase. Helvetica Chimica Acta, 1996, 79, 1462-1474.	1.0	10
464	Incorporation of 5-hydroxytryptophan in oligopeptides. Tetrahedron, 1996, 52, 6965-6972.	1.0	7
465	Synthesis and antiviral activity of acyclic analogues of 1,5-anhydrohexitol nucleosides using Mitsunobu reaction. Tetrahedron, 1996, 52, 13655-13670.	1.0	28
466	The synthesis of modified D- and L-anhydrohexitol nucleosides. Tetrahedron Letters, 1996, 37, 8147-8150.	0.7	21
467	Synthesis and antiviral activity of 2-deoxy-1,5-anhydro-D-mannitol nucleosides containing a pyrimidine base moiety. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 1457-1460.	1.0	20
468	Homo-N-nucleosides: Incorporation into oligonucleotides and antiviral activity. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 1465-1468.	1.0	19

#	Article	IF	CITATIONS
469	1,5-Anhydro-2,3-dideoxy-2-(guanin-9-yl)-D-arabino-hexitol. Acta Crystallographica Section C: Crystal Structure Communications, 1996, 52, 1213-1215.	0.4	5
470	Synthesis of 1,5-Anhydrohexitol Nucleosides as Mimics of AZT, D4T and DDC. Nucleosides & Nucleotides, 1996, 15, 325-335.	0.5	2
471	Use of Cyclohexene Epoxides in the Preparation of Carbocyclic Nucleosides. Nucleosides & Nucleotides, 1996, 15, 867-878.	0.5	13
472	Ribosylation of Pyrimidine 2′-Deoxynucleosides. Nucleosides & Nucleotides, 1996, 15, 1323-1334.	0.5	19
473	Targeting RNA with Conformationally Restricted Oligonucleotides. Liebigs Annalen, 1996, 1996, 1337-1348.	0.8	46
474	Synthesis of disaccharide nucleosides and their incorporation into oligonucleotides. Collection of Czechoslovak Chemical Communications, 1996, 61, 206-209.	1.0	5
475	Nucleosides and oligonucleotides derived from trans-4-hydroxy-N-acetylprolinol. Collection of Czechoslovak Chemical Communications, 1996, 61, 234-237.	1.0	3
476	Crystal structure of glycosomal glyceraldehyde-3-phosphate dehydrogenase fromLeishmania mexicana: mechanistic implications and potential drug binding sites. Acta Crystallographica Section A: Foundations and Advances, 1996, 52, C97-C97.	0.3	0
477	1,5â€Anhydrohexitâ€Nucleinsären, neue potentielle Antisenseâ€Wirkstoffe. Angewandte Chemie, 1995, 107, 1483-1485.	1.6	15
478	1,5-Anhydrohexitol Nucleic Acids, a New Promising Antisense Construct. Angewandte Chemie International Edition in English, 1995, 34, 1338-1339.	4.4	102
479	Synthesis of 3′-Deoxy-3′-C-Hydroxymethyl-aldopentopyranosyl Nucleosides and their Incorporation in Oligonucleotides. Part II 1 Tetrahedron, 1995, 51, 12319-12336.	1.0	13
480	Amino acids derived from ornithine. International Journal of Peptide Research and Therapeutics, 1995, 2, 206-208.	0.1	2
481	Screening of a synthetic peptide library against glycosomal phosphoglycerate kinase of Trypanosoma brucei. International Journal of Peptide Research and Therapeutics, 1995, 2, 217-219.	0.1	2
482	5-Hydroxytryptophan as a building block in oligopeptides using Fmoc/tBu SPPS. International Journal of Peptide Research and Therapeutics, 1995, 2, 225-228.	0.1	0
483	Screening of a synthetic pentapeptide library composed of d-amino acids against fructose-1,6-biphosphate aldolase. International Journal of Peptide Research and Therapeutics, 1995, 2, 259-260.	0.1	3
484	The effect of addition of carbon powder to samples in liquid secondary ion mass spectrometry: Improved ionization of apolar compounds. Rapid Communications in Mass Spectrometry, 1995, 9, 1499-1501.	0.7	4
485	Identification of a peptide inhibitor against glycosomal phosphoglycerate kinase of Trypanosoma brucei by a synthetic peptide library approach. Bioorganic and Medicinal Chemistry, 1995, 3, 257-265.	1.4	23
486	Stereocontrolled synthesis of phosphonate derivatives of tetrahydro- and dihydro-2H-pyranyl nucleosides: The selectivity of the Ferrier rearrangement. Tetrahedron: Asymmetry, 1995, 6, 973-984.	1.8	15

#	Article	IF	CITATIONS
487	Synthesis and antiviral activity of phosphonate derivatives of enantiomeric dihydro-2H-pyranyl nucleosides. Bioorganic and Medicinal Chemistry Letters, 1995, 5, 1115-1118.	1.0	39
488	Liquid chromatographic separation of diamino analogues of 2′- or 3′-deoxyadenosine from adenine on a poly(styrene-divinylbenzene) polymer column. Journal of Chromatography A, 1995, 689, 247-254.	1.8	3
489	Synthesis and antiviral evaluation of 3′-substituted thymidine analogues derived from 3′-amino-3′-deoxythymidine. Tetrahedron, 1995, 51, 5369-5380.	1.0	4
490	3′-Deoxy-3′-hydroxymethyl-aldopentopyranosyl nucleoside synthesis. Part I. Tetrahedron, 1995, 51, 5381-5396.	1.0	11
491	Synthesis of β configured 2′,3′-unsaturated pentopyranosyl nucleosides. Tetrahedron Letters, 1995, 36, 1321-1324.	0.7	9
492	Synthesis of an Uncharged cAMP-Analogue. Nucleosides & Nucleotides, 1995, 14, 117-127.	0.5	8
493	Synthesis of the β-2',3'-Unsaturated Pentopyranosyl Nucleosides and Their 3'-Hydroxymethyl Congeners. Nucleosides, Nucleotides and Nucleic Acids, 1995, 14, 317-320.	0.4	2
494	Evaluation of the Kinetics of Hydrolysis of Monoamino Analogues of 2â€2- or 3â€2-Deoxyadenosine and of 9-(2-Deoxy-Î2-D- <i>Threo</i> -pentofuranosyl)Adenine or 9-(3-Deoxy-Î2-D- <i>threo</i> -pentofuranosyl)Adenine by Liquid Chromatography. Nucleosides & Nucleotides, 1995, 14, 1559-1579.	0.5	2
495	Synthesis and Antiviral Evaluation of 3'-Substituted Thymidine Analogues Derived from 3'-Amino-3'-deoxythymidine. Nucleosides, Nucleotides and Nucleic Acids, 1995, 14, 541-544.	0.4	2
496	In Search of Acyclic Analogues as Universal Nucleosides in Degenerate Probes. Nucleosides, Nucleotides and Nucleic Acids, 1995, 14, 1053-1056.	0.4	3
497	The N1-(3'-Deoxythymidin-3'-yl)-N2-cyano-N3-(5'-deoxythymidin-5'-yl) Guanidine Dimeric Building Block in Automated DNA Synthesis and Mass Spectrometric Analysis of Its Integrity. Nucleosides, Nucleotides and Nucleic Acids, 1995, 14, 1037-1040.	0.4	0
498	2′-Deoxyuridines with a 5-Heteroaromatic Substituent: Synthesis and Biological Evaluation. Antiviral Chemistry and Chemotherapy, 1995, 6, 262-270.	0.3	8
499	An acyclic 5-nitroindazole nucleoside analogue as ambiguous nucleoside. Nucleic Acids Research, 1995, 23, 4363-4370.	6.5	32
500	Incorporation of 2′-amido-nucleosides in oligodeoxynucleotides and oligoribonucleotides as a model for 2′-linked conjugates. Nucleic Acids Research, 1995, 23, 51-57.	6.5	37
501	Synthesis and Properties of Some 2'-O-d-Ribofuranosyl-nucleosides. Nucleosides, Nucleotides and Nucleic Acids, 1995, 14, 481-484.	0.4	16
502	Synthesis of 3'-Amino-3'-deoxyadenosine Derivatives as Potential Drugs for the Treatment of Malaria. Nucleosides, Nucleotides and Nucleic Acids, 1995, 14, 409-411.	0.4	3
503	Catalytic Activity and Stability of Hammerhead Ribozymes Containing 2′-Acetamido-2′-Deoxyribonucleosides. Biochemical and Biophysical Research Communications, 1995, 210, 67-73.	1.0	12
504	In Vitro Ncp7 Enhancement of Ribozyme-Mediated Cleavage of Full-Length Human IL-6 mRNA. Biochemical and Biophysical Research Communications, 1995, 214, 36-43.	1.0	4

#	Article	IF	CITATIONS
505	Synthesis of 1,5-Anhydro-2-(N6-Cyclopentyladenin-9-Yl)-2-Deoxy-D-Altrohexitol. Nucleosides, Nucleotides and Nucleic Acids, 1995, 14, 321-324.	0.4	4
506	Application of the Mitsunobu-Type Condensation Reaction to the Synthesis of Phosphonate Derivatives of Cyclohexenyl and Cyclohexanyl Nucleosides. Journal of Organic Chemistry, 1995, 60, 1531-1537.	1.7	51
507	Synthesis and Structure-Activity Relationships of Analogs of 2'-Deoxy-2'-(3-methoxybenzamido)adenosine, a Selective Inhibitor of Trypanosomal Glycosomal Glyceraldehyde-3-phosphate Dehydrogenase. Journal of Medicinal Chemistry, 1995, 38, 3838-3849.	2.9	48
508	Solid Phase Synthesis of 2′, 5′-Oligoadenylates Containing 3′-Fluorinated Ribose. Nucleosides & Nucleotides, 1995, 14, 1259-1267.	0.5	2
509	Peptide Analogues of DNA Consisting of l-α-Amino-γ-thymine Butyric Acid and l-Valine Subunits. Nucleosides, Nucleotides and Nucleic Acids, 1995, 14, 813-816.	0.4	6
510	Synthesis and Antiviral Activities of Some New 5-Heteroaromatic Substituted Derivatives of 2'-Deoxyuridine. Nucleosides, Nucleotides and Nucleic Acids, 1995, 14, 525-528.	0.4	10
511	Phosphonates Derivatives of 2',3'-Dideoxy-2',3'-didehydro-pentopyranosyl Nucleosides. Nucleosides, Nucleotides and Nucleic Acids, 1995, 14, 707-710.	0.4	5
512	Easy Synthesis and Different Conformational Behavior of Purine and Pyrimidine .betaD-glycero-Pent-2'-enopyranosyl Nucleosides. Journal of Organic Chemistry, 1995, 60, 7909-7919.	1.7	30
513	Conjugation of Oligonucleotides to 3′â€Polar Moieties. Bulletin Des Sociétés Chimiques Belges, 1995, 1 717-720.	.04, _{0.0}	15
514	2-Hydroxyethoxyethylated Bases as Acyclic Analogues of 1,5-Anhydrohexitol Nucleoside Derivatives. Nucleosides & Nucleotides, 1994, 13, 1791-1800.	0.5	5
515	Synthesis of a new branched chain hexopyranosyl nucleoside: 1-[2′,3′-dideoxy-3′-C-(hydroxymethyl)-α-D-erythro-pentopyranosyl]-thymine. Tetrahedron, 1994, 50, 11	.89 ⁻¹ 198.	15
516	Synthesis, enzymatic stability and physicochemical properties of oligonucleotides containing a N-cyanoguanidine linkage Tetrahedron, 1994, 50, 7231-7246.	1.0	10
517	Stereospecific synthesis of a pentopyranosyl analogue of d4T monophosphate. Bioorganic and Medicinal Chemistry Letters, 1994, 4, 1199-1202.	1.0	9
518	Mixed oligonucleotide analogues with an acyclic carbohydrate moiety and a N-cyanoguanidine functionality. Bioorganic and Medicinal Chemistry Letters, 1994, 4, 1203-1206.	1.0	2
519	Characterization of modification sites during peptide synthesis using liquid secondary ion/collision-induced dissociation mass spectrometry and a computer program. Organic Mass Spectrometry, 1994, 29, 654-658.	1.3	9
520	Synthesis and Conformational Analysis of 2?-Deoxy-2?-(3-methoxybenzamido)adenosine, a rational-designed inhibitor of trypanosomal glyceraldehyde phosphate dehydrogenase (GAPDH). Helvetica Chimica Acta, 1994, 77, 631-644.	1.0	20
521	Comparative stability study of thymidine and (dideoxy-d-erythro-hexopyranosyl)thymine analogues monitored by capillary electrophoresis. Journal of Chromatography A, 1994, 687, 167-173.	1.8	4
522	Hexopyranosyl-Like Oligonucleotides. ACS Symposium Series, 1994, , 80-99.	0.5	15

#	Article	IF	CITATIONS
523	Synthesis of 3′-Fluoro-3′-deoxy-N6-cyclopentyladenosine. Nucleosides & Nucleotides, 1994, 13, 1991-2000.	0.5	3
524	Stereoelectronic properties of five anti-HSV-1 2′-deoxynucleosides analogues with heterocyclic substituents in the 5-position: A comparison with BVDU. Antiviral Research, 1994, 24, 289-304.	1.9	11
525	Synthesis of 3′-fluoromethylthio-, 3′-fluoromethylsulfinyl- and 3′-fluoromethylsulfonyl-substituted 3′-deoxythymidine. Journal of the Chemical Society Perkin Transactions 1, 1994, , 249-255.	0.9	5
526	Comparative Liquid Chromatographic Stability Study of Thymidine and 1- (2-Deoxy-α-D-Erythro-Pentofuranosyl) Thymine. Nucleosides & Nucleotides, 1994, 13, 1113-1123.	0.5	2
527	Selective Inhibition of Trypanosomal Glyceraldehyde-3-phosphate Dehydrogenase by Protein Structure-Based Design: Toward New Drugs for the Treatment of Sleeping Sickness. Journal of Medicinal Chemistry, 1994, 37, 3605-3613.	2.9	75
528	Mechanism of cytostatic action of novel 5-(thien-2-yl)- and 5-(furan-2-yl)-substituted pyrimidine nucleoside analogues against tumor cells transfected by the thymidine kinase gene of herpes simplex virus Journal of Biological Chemistry, 1994, 269, 8036-8043.	1.6	17
529	Mechanism of cytostatic action of novel 5-(thien-2-yl)- and 5-(furan-2-yl)-substituted pyrimidine nucleoside analogues against tumor cells transfected by the thymidine kinase gene of herpes simplex virus. Journal of Biological Chemistry, 1994, 269, 8036-43.	1.6	12
530	Gas chromatographic determination of alkyl lysophospholipids after solid-phase extraction from cell culture media. Biomedical Applications, 1993, 612, 21-26.	1.7	9
531	Separation of the anomers and isomers of 2′-deoxyuridine and thymidine by capillary zone electrophoresis. Journal of Chromatography A, 1993, 648, 299-305.	1.8	2
532	Liquid chromatographic study of the stability of 5-halogeno-2′-deoxyuridines. Journal of Pharmaceutical and Biomedical Analysis, 1993, 11, 345-351.	1.4	7
533	Synthesis of nucleoside analogues with a 1,5-anhydrohexitol moiety. Bioorganic and Medicinal Chemistry Letters, 1993, 3, 1013-1018.	1.0	6
534	Synthesis of Novel -substituted guanidine linked nucleoside dimers and their incorporation into oligonucleotides. Bioorganic and Medicinal Chemistry Letters, 1993, 3, 193-198.	1.0	11
535	Acyclic oligonucleotides: possibilities and limitations. Tetrahedron, 1993, 49, 7223-7238.	1.0	52
536	Liquid chromatographic separation of monoamino analogues of dideoxyadenosine and 9-(dideoxy-β-D-lyxo-pentofuranosyl)adenine from adenine. Chromatographia, 1993, 35, 451-454.	0.7	2
537	Stability study of 2′-deoxyuridine by liquid chromatography. Journal of Chromatography A, 1993, 657, 208-212.	1.8	2
538	Synthesis and antiviral activity of 5-thien-2-yl-2'-deoxyuridine analogs. Journal of Medicinal Chemistry, 1993, 36, 538-543.	2.9	65
539	Synthesis, enzymatic stability and base-pairing properties of oligothymidylates containing thymidine dimers with different N-substituted guanidine linkages. Journal of the Chemical Society Perkin Transactions 1, 1993, , 1567.	0.9	15
540	Synthesis of 2,4-dideoxybetaD-erythro-hexopyranosyl nucleosides. Journal of Organic Chemistry, 1993, 58, 2977-2982.	1.7	41

#	Article	IF	CITATIONS
541	Synthesis and antiherpes virus activity of 1,5-anhydrohexitol nucleosides. Journal of Medicinal Chemistry, 1993, 36, 2033-2040.	2.9	150
542	Hybridization specificity, enzymatic activity and biological (Ha-ras) activity of oligonucleotides containing 2,4-dideoxy-β-D-erythro-hexopyranosyl nucleosides. Nucleic Acids Research, 1993, 21, 4670-4676.	6.5	17
543	Conformational Analysis of Substituent Effects on the Sugar Puckering Mode and the anti-HIV Activity of 2′,3′-Dideoxypyrimidine Nucleosides. Antiviral Chemistry and Chemotherapy, 1993, 4, 289-299.	0.3	12
544	Eicar (5-ethynyl-1-beta-D-ribofuranosylimidazole-4-carboxamide). A novel potent inhibitor of inosinate dehydrogenase activity and guanylate biosynthesis Journal of Biological Chemistry, 1993, 268, 24591-24598.	1.6	64
545	Eicar (5-ethynyl-1-beta-D-ribofuranosylimidazole-4-carboxamide). A novel potent inhibitor of inosinate dehydrogenase activity and guanylate biosynthesis. Journal of Biological Chemistry, 1993, 268, 24591-8.	1.6	58
546	Incorporation of hexose nucleoside analogues into oligonucleotides: synthesis, base-pairing properties and enzymatic stability. Nucleic Acids Research, 1992, 20, 4711-4716.	6.5	68
547	Synthesis and antiviral activity of acyclic nucleosides with a 3(S),5-dihydroxypentyl or 4(R)-methoxy-3(S),5-dihydroxypentyl sidechain. Journal of Medicinal Chemistry, 1992, 35, 1458-1465.	2.9	46
548	Solution conformations and hydrolytic stability of 2′ - and 3′ -substituted 2′,3′-dideoxyribonucleosides including some potential inhibitors of human immunodeficiency virus. Journal of Physical Organic Chemistry, 1992, 5, 741-747.	0.9	3
549	Dimeric building blocks with N-cyanoguanidine linkage for oligonucleotide synthesis. Tetrahedron Letters, 1992, 33, 7609-7612.	0.7	16
550	Straightforward C-8 alkylation of adenosine analogues with tetraalkyltin reagents. Tetrahedron Letters, 1992, 33, 2413-2416.	0.7	28
551	Synthesis of 1-(2,4-dideoxy-β-D-erythro-hexopyranosyl)thymine and its incorporation into oligonucleotides. Bioorganic and Medicinal Chemistry Letters, 1992, 2, 945-948.	1.0	18
552	Synthesis and anti-herpes activity of 5-trifluorovinyl-2′-deoxyuridine. Bioorganic and Medicinal Chemistry Letters, 1992, 2, 1057-1062.	1.0	6
553	Liquid chromatographic separation of the anomers and isomers of 2′-deoxyuridine. Chromatographia, 1992, 33, 571-574.	0.7	4
554	Structure of a nucleoside analogue 2',3'-dideoxy-3',5-difluorouridine. Acta Crystallographica Section C: Crystal Structure Communications, 1992, 48, 590-592.	0.4	0
555	Structure of the modified nucleoside 2',3'-dideoxy-3'-fluorocytidine. Erratum. Acta Crystallographica Section C: Crystal Structure Communications, 1992, 48, 220-220.	0.4	0
556	1-(2,3-Dideoxy-erythro-β-D-hexopyranosyl)cytosine: an example of the conformational and stacking properties of pyranosyl pyrimidine nucleosides. A crystallographic and computational approach. Acta Crystallographica Section B: Structural Science, 1992, 48, 95-103.	1.8	10
557	Influence of the Incorporation of 1â€(2,3â€Dideoxyâ€Î²â€Dâ€Erythroâ€Hexopyranosyl)â€Thymine on the Enzyma Stability and Baseâ€Pairing Properties of Oligodeoxynucleotides. Bulletin Des Sociétés Chimiques Belges, 1992, 101, 119-130.	tic 0.0	27
558	Synthesis of Thymidine Analogues with a Cyanoimido Substituent. Nucleosides & Nucleotides, 1991, 10, 583-584.	0.5	6

#	Article	IF	CITATIONS
559	5-(5-Bromothien-2-yl)-2'-deoxyuridine and 5-(5-chlorothien-2-yl)-2'-deoxyuridine are equipotent to (E)-5-(2-bromovinyl)-2'-deoxyuridine in the inhibition of herpes simplex virus type I replication. Journal of Medicinal Chemistry, 1991, 34, 2383-2389.	2.9	102
560	Synthesis and antiviral activity of 5-heteroaryl-substituted 2'-deoxyuridines. Journal of Medicinal Chemistry, 1991, 34, 1767-1772.	2.9	45
561	Synthesis of 5′-O-phosphonomethyl-2′,3′-didehydro-2′,3′-dideoxyuridine by use of P-methoxybenzy N3-protecting group Tetrahedron Letters, 1991, 32, 1905-1908.	l as a 0.7	20
562	9-[(2RS)-3-fluoro-2-phosphonylmethoxypropyl] derivatives of purines: a class of highly selective antiretroviral agents in vitro and in vivo Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 4961-4965.	3.3	90
563	Kinetics of the hydrolysis of 2′,3′-dideoxyguanosine: a potent anti-HIV agent. International Journal of Pharmaceutics, 1991, 73, 105-110.	2.6	5
564	Structure of the modified nucleoside 2,3'-dideoxy-3'-fluorocytidine. Acta Crystallographica Section C: Crystal Structure Communications, 1991, 47, 832-835.	0.4	3
565	Structure of a nucleoside analogue: 3'-azido-5-chloro-2',3'-dideoxyuridine. Acta Crystallographica Section C: Crystal Structure Communications, 1991, 47, 678-680.	0.4	1
566	Structure of 1-(2-deoxy-β-D-ribopyranosyl)-5-iodouracil. Acta Crystallographica Section C: Crystal Structure Communications, 1991, 47, 835-837.	0.4	4
567	Structures of 1-(2,3-dideoxy-erythro-α-D-hexopyranosyl)thymine and the 1-(2,3-dideoxy-erythro-β-D-hexopyranosyl)thymine.dioxane complex. Acta Crystallographica Section C: Crystal Structure Communications, 1991, 47, 838-842.	0.4	5
568	Structure of nucleoside analogues 3'-fluoro-2',3'-dideoxyuridine, 3'-fluoro-2',3'-dideoxy-5-bromouridine and 3'-azido-2',3'-dideoxy-5-bromouridine. Acta Crystallographica Section C: Crystal Structure Communications, 1991, 47, 898-902.	0.4	0
569	Structures of the 1-(2-deoxy-2-fluoro-β-D-arabinopyranosyl)thymine–water complex and 1-(2-deoxy-2-fluoro-β-D-arabinopyranosyl)-5-ethyluracil. Acta Crystallographica Section C: Crystal Structure Communications, 1991, 47, 1693-1697.	0.4	2
570	Structure of 1-(2-deoxy-2-fluoro-α-D-arabinopyranosyl)-5-iodouracil. Acta Crystallographica Section C: Crystal Structure Communications, 1991, 47, 2245-2247.	0.4	4
571	Structure of nucleoside analogues 3'-fluoro-2',3'-dideoxyuridine, 3'-fluoro-2',3'-dideoxy-5-bromouridine and 3'-azido-2',3'-dideoxy-5-bromouridine. Erratum. Acta Crystallographica Section C: Crystal Structure Communications, 1991, 47, 1776-1776.	0.4	0
572	Structures of two nucleoside analogues: 1-[(2R,6R)-6-hydroxymethyl-1,4-dioxan-2-yl]uracil and 5-bromo-1-[(2R,6R)-6-hydroxymethyl-1,4-dioxan-2-yl]uracil. Acta Crystallographica Section C: Crystal Structure Communications, 1991, 47, 2420-2423.	0.4	2
573	Nucleotides. Part XXXIVSynthesis of Modified Oligomeric 2?-5?A Analogues: Potential Antiviral Agents. Helvetica Chimica Acta, 1991, 74, 7-23.	1.0	14
574	Capillary GC analysis of alkyl lysophospholipids after derivatization with trimethylsilylbromide. Journal of High Resolution Chromatography, 1991, 14, 699-701.	2.0	3
575	Synthesis of thymidine from 5-iodo-2′-deoxyuridine. Tetrahedron Letters, 1991, 32, 4397-4400.	0.7	28
576	Influence of the incorporation of (S)-9-(3,4-dihydroxybutyl) adenine on the enzymatic stability and base-pairing properties of oligodeoxynucleotides. Nucleic Acids Research, 1991, 19, 2587-2593.	6.5	49

#	Article	IF	CITATIONS
577	5-(Thien-2-yl)-2′-deoxyuridine: A New and Potent Inhibitor of Herpes Simplex Virus Type 1 Replication. Nucleosides & Nucleotides, 1991, 10, 585-586.	0.5	2
578	Synthesis and Anti-HIV Activity of Dideoxycytidine Analogues Containing a Pyranose Carbohydrate Moiety. Nucleosides & Nucleotides, 1991, 10, 589-590.	0.5	7
579	Sugar Modified Oligonucleotides. Nucleosides & Nucleotides, 1991, 10, 587-588.	0.5	9
580	Intracellular metabolism and mechanism of anti-retrovirus action of 9-(2-phosphonylmethoxyethyl)adenine, a potent anti-human immunodeficiency virus compound Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 1499-1503.	3.3	214
581	Synthesis and Antiviral Activity of 1.4-Dioxane, 1.4-Oxathiane and 1,4-Morpholine Nucleoside Analogues. Nucleosides & Nucleotides, 1991, 10, 591-592.	0.5	4
582	Synthesis of 2′-Deoxy-2′ -Fluoro-D-Arabinopyranopyranosyl Nucleosides and Their 3′,4′-Seco analogues Nucleosides & Nucleotides, 1991, 10, 1525-1549.	^{S.} 0.5	16
583	Synthesis of Pyranose Nucleosides. Nucleosides & Nucleotides, 1991, 10, 119-127.	0.5	17
584	Synthesis of 8â€Mercaptoâ€2â€2,3â€2â€Dideoxyadenosine and 8â€Mercaptoâ€2â€2,3â€2â€Dideoxyinosine. Bul Chimiques Belges, 1991, 100, 183-184.	letin Des S 0.0	Société
585	Synthesis and Structure of 2′,3′-Dideoxy-3′-fluoro-5-cyanouridine. Nucleosides & Nucleotides, 1990, 9, 547-557.	0.5	5
586	Structure of a nucleoside analogue, 3'-deoxy-2'-fluorothymidine. Acta Crystallographica Section C: Crystal Structure Communications, 1990, 46, 1934-1936.	0.4	2
587	Structure of a nucleoside analogue, 2',3'-dideoxy-3'-fluoro-5-iodouridine. Acta Crystallographica Section C: Crystal Structure Communications, 1990, 46, 1936-1938.	0.4	2
588	Potent and Selective Anti-HIV Activity of 5-Chloro-Substituted Derivatives of 3'-Azido-2',3'-Dideoxycytidine, 3'-Fluoro-2',3'-Dideoxycytidine, and 2',3'-Didehydro-2',3'-Dideoxycytidine. Annals of the New York Academy of Sciences, 1990, 616, 480-482.	1.8	0
589	5'-O-Phosphonomethyl-2',3'-dideoxynucleosides: synthesis and anti-HIV activity. Journal of Medicinal Chemistry, 1990, 33, 2481-2487.	2.9	39
590	Synthesis and antiviral activity of 3'-heterocyclic substituted 3'-deoxythymidines. Journal of Medicinal Chemistry, 1990, 33, 868-873.	2.9	33
591	2′-Azido-2′,3′-dideoxythymidine: Synthesis and crystal structure of a 2′-substituted dideoxynucleoside Antiviral Research, 1990, 14, 357-369.	· 1.9	9
592	Nucleoside Analogues with a 1,4â€Dioxane, 1,4â€Oxathiane or 1,4â€Oxazine Ring Structure as the Carbohydrate Fragment. Bulletin Des Sociétés Chimiques Belges, 1990, 99, 769-777.	0.0	10
593	Synthesis of trideoxyhexopyranosylated and hexenopyranosylated nucleoside analogues as potential antiâ€HIV agents. Bulletin Des Sociétés Chimiques Belges, 1990, 99, 895-901.	0.0	14
594	Hydrolytic stability of potential antiviral nucleoside analogues: 3'-Substituted 2',3'-dideoxy- and 2',3'-didehydro-2',3'-dideoxyribonucleosides. Collection of Czechoslovak Chemical Communications, 1990, 55, 17-20.	1.0	11

PIET HERDEWIJN

#	Article	IF	CITATIONS
595	Influence of Fluorination of the Sugar Moiety on the Anti-HIV-1 Activity of 2',3'-Dideoxynucleosides. Nucleosides, Nucleotides and Nucleic Acids, 1989, 8, 1121-1122.	0.4	9
596	Sugar and Base-Modified 2',3'-Dideoxynucleosides as Potential Anti-Aids Drugs. Nucleosides, Nucleotides and Nucleic Acids, 1989, 8, 1125-1126.	0.4	1
597	Anti-Hiv-1 Activity of 2',3'-Dideoxinucleoside Analogues : Structure-Activity Relationship. Nucleosides, Nucleotides and Nucleic Acids, 1989, 8, 659-671.	0.4	92
598	Synthesis of 2-Amino-6-acetamidomethyl-9-(β-D-ribofuranosyl) purine. Synthesis, 1989, 1989, 961-962.	1.2	8
599	Synthesis of 9-(3-azido-2,3-dideoxy-β-Dpentofuranosyl)-2,6-diaminopurine (AzddDAP). Tetrahedron Letters, 1989, 30, 855-858.	0.7	15
600	Reaction of adenine nucleosides, tosylated in the carbohydrate moiety, with lithium triethylborohydride. Tetrahedron, 1989, 45, 6563-6580.	1.0	15
601	3'-Fluoro-2',3'-dideoxy-5-chlorouridine: most selective anti-HIV-1 agent among a series of new 2'- and 3'-fluorinated 2',3'-dideoxynucleoside analogs. Journal of Medicinal Chemistry, 1989, 32, 1743-1749.	2.9	99
602	2′,3′-Didehydro-2′,3′-dideoxy-5-chlorocytidine is a selective anti-retrovirus agent. Biochemical and Biophysical Research Communications, 1989, 164, 1190-1197.	1.0	9
603	5-chloro-substituted derivatives of 2',3'-didehydro-2' ,3'-dideoxyuridine, 3'-fluoro-2' ,3'-dideoxyuridine and 3'-azido-2' ,3'-dideoxyuridine as anti-HIV agents. Biochemical Pharmacology, 1989, 38, 869-874.	2.0	45
604	Synthesis and antiviral activity evaluation of 3′-fluoro-3′-deoxyribonucleosides: broad-spectrum antiviral activity of 3′-fluoro-3′-deoxyadenosine. Antiviral Research, 1989, 12, 133-150.	1.9	37
605	Synthesis of Nucleosides Fluorinated in the Sugar Moiety. The Application of Diethylaminosulfur Trifluoride to the Synthesis of Fluorinated Nucleosides. Nucleosides & Nucleotides, 1989, 8, 65-96.	0.5	66
606	Nucleic acid related compounds. 57. Synthesis, x-ray crystal structure, lipophilic partition properties, and antiretroviral activities of anomeric 3'-azido-2',3'-dideoxy-2,6-diaminopurine ribosides. Journal of Medicinal Chemistry, 1989, 32, 1763-1768.	2.9	29
607	Synthesis and Biological Activity of the Mono- and Diamino Analogues of 2′-Deoxyadenosine, Cordycepin, 9-(3-Deoxy-α-D-Threo-Pentofuranosyl)-Adenine (A Structural Component of Agrocin 84) and 9-(2-Deoxy-α-D-Threo-Pentofuranosyl)Adenine. Nucleosides & Nucleotides, 1989, 8, 1231-1257.	0.5	18
608	Double Protection of the Heterocyclic Base of Xanthosine and 2′-Deoxyxanthosine. Nucleosides & Nucleotides, 1989, 8, 159-178.	0.5	10
609	Some Examples of the Use of Trifluoromethane Sulfonic Anhydride in Nucleic Acid Chemistry. Nucleosides, Nucleotides and Nucleic Acids, 1989, 8, 933-937.	0.4	15
610	Synthesis of 3'-Fluoro-3'-Deoxyribonucleosides; Anti-HIV-1 and Cytostatic Properties. Nucleosides, Nucleotides and Nucleic Acids, 1989, 8, 1123-1124.	0.4	6
611	3′â€(1,2,3â€Triazolâ€1â€yl)â€2′,3′â€dideoxythymidine and 3′â€(1,2,3â€triazolâ€1â€yl)â€2′,3â€ Chemistry, 1989, 26, 1635-1642.	²â€dideox 1.4	yuridine. Jou 45

512 Synthesis of 2′â€Chloroâ€2′,3′â€Dideoxyâ€2′,3′â€Didehydro Nucleosides. Bulletin Des Sociétés Chimiques Belges, 1989, 98, 931-936.

#	Article	IF	CITATIONS
613	2,3′â€Difluoroâ€and 3′â€Azidoâ€2′â€Fluoro Substituted Dideoxypyrimidines as Potential Antiâ€HIV Ager Des Sociétés Chimiques Belges, 1989, 98, 937-941.	nts, Bulleti 0.0	ŋ1
614	Differential Patterns of Intracellular Metabolism of 2′,3′-Didehydro-2′,3′-dideoxythymidine and 3′-Azido-2′,3′-dideoxythymidine, Two Potent Anti-human Immunodeficiency Virus Compounds. Journal of Biological Chemistry, 1989, 264, 6127-6133.	1.6	308
615	Differential patterns of intracellular metabolism of 2',3'-didehydro-2',3'-dideoxythymidine and 3'-azido-2',3'-dideoxythymidine, two potent anti-human immunodeficiency virus compounds. Journal of Biological Chemistry, 1989, 264, 6127-33.	1.6	249
616	5-Halogeno-3'-fluoro-2',3'-dideoxyuridines as inhibitors of human immunodeficiency virus (HIV): potent and selective anti-HIV activity of 3'-fluoro-2',3'-dideoxy-5-chlorouridine. Molecular Pharmacology, 1989, 35, 571-7.	1.0	27
617	Synthesis and anti-HIV activity of different sugar-modified pyrimidine and purine nucleosides. Journal of Medicinal Chemistry, 1988, 31, 2040-2048.	2.9	117
618	Anti-retrovirus activity of 3′-fluoro- and 3′-azido-substituted pyrimidine 2′,3′-dideoxynucleoside analogues. Biochemical Pharmacology, 1988, 37, 2847-2856.	2.0	193
619	Investigations on the anti-HIV activity of 2′, 3′-dideoxyadenosine analogues with modifications in either the pentose or purine moiety. Biochemical Pharmacology, 1988, 37, 1317-1325.	2.0	49
620	Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds. Journal of Virological Methods, 1988, 20, 309-321.	1.0	1,644
621	Silica Gel Functionalised with Different Spacers as Solid Support for Oligonucleotide Synthesis. Nucleosides & Nucleotides, 1988, 7, 75-90.	0.5	9
622	Protection of the Lactam Function of $2\hat{a}$ €²-Deoxyinosine with A 2-(4-Nitrophenyl)-Ethyl Moiety. Nucleosides & Nucleotides, 1988, 7, 519-536.	0.5	12
623	Potent and selective activity of 3'-azido-2,6-diaminopurine-2',3'-dideoxyriboside, 3'-fluoro-2,6-diaminopurine-2',3'-dideoxyriboside, and 3'-fluoro-2',3'-dideoxyguanosine against human immunodeficiency virus. Molecular Pharmacology, 1988, 33, 243-9.	1.0	55
624	Synthesis and Biological Activity of 3′-Modified 2′-5′ Adenylate Trimers. Nucleosides & Nucleotides, 1987, 6, 443-444.	0.5	4
625	Synthesis and Activity of Oligonucleotides Containing a Biologically Active Nucleoside at the 2′End. Nucleosides & Nucleotides, 1987, 6, 441-442.	0.5	3
626	Synthesis of 2′-5′ Adenylate Trimers Containing 3′-Modified β-D-Xylofuranosyl-Adenine Derivatives at the 2′-End. Nucleosides & Nucleotides, 1987, 6, 527-528.	0.5	1
627	Sensitive and rapid assay on MT-4 cells for detection of antiviral compounds against the AIDS virus. Journal of Virological Methods, 1987, 16, 171-185.	1.0	192
628	Both 2′,3′-dideoxythymidine and its 2′,3′-unsaturated derivative (2′,3′-dideoxythymidinene) are p selective inhibitors of human immunodeficiency virus replication in vitro. Biochemical and Biophysical Research Communications, 1987, 142, 128-134.	otent and 1.0	329
629	The 2′,3′-dideoxyriboside of 2,6-diaminopurine selectively inhibits human immunodeficiency virus (HIV) replication invitro. Biochemical and Biophysical Research Communications, 1987, 145, 269-276.	1.0	67
630	Selective inhibition of human immunodeficiency virus (HIV) by 3′-Azido-2′,3′-dideoxyguanosine invitro. Biochemical and Biophysical Research Communications, 1987, 145, 1080-1086.	1.0	56

PIET HERDEWIJN

#	Article	IF	CITATIONS
631	Synthesis and anti-HIV activity of various 2'- and 3'-substituted 2',3'-dideoxyadenosines: a structure-activity analysis. Journal of Medicinal Chemistry, 1987, 30, 2131-2137.	2.9	126
632	3'-Substituted 2',3'-dideoxynucleoside analogs as potential anti-HIV (HTLV-III/LAV) agents. Journal of Medicinal Chemistry, 1987, 30, 1270-1278.	2.9	307
633	The anti-HTLV-III (anti-HIV) and cytotoxic activity of 2',3'-didehydro-2',3'-dideoxyribonucleosides: a comparison with their parental 2',3'-dideoxyribonucleosides. Molecular Pharmacology, 1987, 32, 162-7.	1.0	208
634	Synthesis and antiviral activity of (E)-5-(2-bromovinyl)uracil and (E)-5-(2-bromovinyl)uridine. Journal of Medicinal Chemistry, 1986, 29, 213-217.	2.9	59
635	Potent and selective anti-HTLV-IIILAV activity of 2′,3′-dideoxycytidinene, the 2′,3′-unsaturated derivati 2′,3′-dideoxycytidine. Biochemical and Biophysical Research Communications, 1986, 140, 735-742.	ve of 1.0	135
636	Additions and Corrections - Resolution of Aristeromycin Enantiomers Journal of Medicinal Chemistry, 1985, 28, 1965-1965.	2.9	0
637	Synthesis and Antiviral Activity of the Carbocyclic Analogues of (E)-5-(2-Halovinyl)-2'-deoxyuridines and (E)-5-(2-Halovinyl)-2'-deoxycytidines. Journal of Medicinal Chemistry, 1985, 28, 550-555.	2.9	91
638	Preparation of 6-deuteriopenicillins. Journal of Organic Chemistry, 1981, 46, 2046-2049.	1.7	3
639	2′-Deoxyribose-Modified Nucleoside Triphosphates and their Recognition by DNA Polymerases. , 0, , 75-95.		0
640	Locked Nucleic Acids: Properties, Applications, and Perspectives. , 0, , 133-152.		0