Jeremy M Henley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8899487/publications.pdf

Version: 2024-02-01

223 papers 12,758 citations

25014 57 h-index 27389 106 g-index

237 all docs

237 docs citations

times ranked

237

10523 citing authors

#	Article	IF	CITATIONS
1	Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors. Nature, 1993, 363, 347-350.	13.7	716
2	Mechanisms, regulation and consequences of protein SUMOylation. Biochemical Journal, 2010, 428, 133-145.	1.7	549
3	NSF Binding to GluR2 Regulates Synaptic Transmission. Neuron, 1998, 21, 87-97.	3.8	539
4	Synaptic AMPA receptor composition in development, plasticity and disease. Nature Reviews Neuroscience, 2016, 17, 337-350.	4.9	403
5	Regulation of glutamate release by presynaptic kainate receptors in the hippocampus. Nature, 1996, 379, 78-81.	13.7	373
6	Surface Expression of AMPA Receptors in Hippocampal Neurons Is Regulated by an NSF-Dependent Mechanism. Neuron, 1999, 23, 365-376.	3.8	311
7	Hippocampal LTD Expression Involves a Pool of AMPARs Regulated by the NSF–GluR2 Interaction. Neuron, 1999, 24, 389-399.	3.8	298
8	PDZ Proteins Interacting with C-Terminal GluR2/3 Are Involved in a PKC-Dependent Regulation of AMPA Receptors at Hippocampal Synapses. Neuron, 2000, 28, 873-886.	3.8	297
9	Lateral Diffusion Drives Constitutive Exchange of AMPA Receptors at Dendritic Spines and Is Regulated by Spine Morphology. Journal of Neuroscience, 2006, 26, 7046-7055.	1.7	272
10	SUMOylation regulates kainate-receptor-mediated synaptic transmission. Nature, 2007, 447, 321-325.	13.7	255
11	Kainate receptors: subunits, synaptic localization and function. Trends in Pharmacological Sciences, 1999, 20, 26-35.	4.0	250
12	Removal of AMPA Receptors (AMPARs) from Synapses Is Preceded by Transient Endocytosis of Extrasynaptic AMPARs. Journal of Neuroscience, 2004, 24, 5172-5176.	1.7	219
13	The Molecular Pharmacology and Cell Biology of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptors. Pharmacological Reviews, 2005, 57, 253-277.	7.1	206
14	Developmental Changes in Synaptic AMPA and NMDA Receptor Distribution and AMPA Receptor Subunit Composition in Living Hippocampal Neurons. Journal of Neuroscience, 2000, 20, 7922-7931.	1.7	205
15	The protein kinase Cα binding protein PICK1 interacts with short but not long form alternative splice variants of AMPA receptor subunits. Neuropharmacology, 1999, 38, 635-644.	2.0	201
16	Rapid and Differential Regulation of AMPA and Kainate Receptors at Hippocampal Mossy Fibre Synapses by PICK1 and GRIP. Neuron, 2003, 37, 625-638.	3.8	196
17	Ubiquitin C-terminal hydrolase L1 (UCH-L1): structure, distribution and roles in brain function and dysfunction. Biochemical Journal, 2016, 473, 2453-2462.	1.7	193
18	Emerging extranuclear roles of protein SUMOylation in neuronal function and dysfunction. Nature Reviews Neuroscience, 2007, 8, 948-959.	4.9	185

#	Article	IF	CITATIONS
19	AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging. Dialogues in Clinical Neuroscience, 2013, 15, 11-27.	1.8	180
20	SENP3-mediated deSUMOylation of dynamin-related protein 1 promotes cell death following ischaemia. EMBO Journal, 2013, 32, 1514-1528.	3.5	177
21	Regulation of Synaptic Strength and AMPA Receptor Subunit Composition by PICK1. Journal of Neuroscience, 2004, 24, 5381-5390.	1.7	160
22	Neuronal SUMOylation: Mechanisms, Physiology, and Roles in Neuronal Dysfunction. Physiological Reviews, 2014, 94, 1249-1285.	13.1	157
23	Receptor-activity-modifying proteins are required for forward trafficking of the calcium-sensing receptor to the plasma membrane. Journal of Cell Science, 2005, 118, 4709-4720.	1.2	150
24	Routes, destinations and delays: recent advances in AMPA receptor trafficking. Trends in Neurosciences, 2011, 34, 258-268.	4.2	147
25	PICK1 Interacts with and Regulates PKC Phosphorylation of mGLUR7. Journal of Neuroscience, 2000, 20, 7252-7257.	1.7	144
26	PICK1 is a calcium-sensor for NMDA-induced AMPA receptor trafficking. EMBO Journal, 2005, 24, 3266-3278.	3.5	142
27	The PDZ Proteins PICK1, GRIP, and Syntenin Bind Multiple Glutamate Receptor Subtypes. Journal of Biological Chemistry, 2002, 277, 15221-15224.	1.6	128
28	Hippocalcin Functions as a Calcium Sensor in Hippocampal LTD. Neuron, 2005, 47, 487-494.	3.8	120
29	Targets and consequences of protein SUMOylation in neurons. Brain Research Reviews, 2010, 64, 195-212.	9.1	113
30	Corticosterone Alters AMPAR Mobility and Facilitates Bidirectional Synaptic Plasticity. PLoS ONE, 2009, 4, e4714.	1.1	113
31	It's green outside: tracking cell surface proteins with pH-sensitive GFP. Trends in Neurosciences, 2004, 27, 257-261.	4.2	112
32	Adenosine: setting the stage for plasticity. Trends in Neurosciences, 2013, 36, 248-257.	4.2	112
33	The non-NMDA receptors: types, protein structure and molecular biology. Trends in Pharmacological Sciences, 1990, 11, 500-507.	4.0	110
34	The N-Terminal Domain of \hat{I}^3 -Aminobutyric Acid _B Receptors Is Sufficient to Specify Agonist and Antagonist Binding. Molecular Pharmacology, 1999, 56, 448-454.	1.0	109
35	Activity-dependent endocytic sorting of kainate receptors to recycling or degradation pathways. EMBO Journal, 2004, 23, 4749-4759.	3.5	106
36	Transient synaptic activation of NMDA receptors leads to the insertion of native AMPA receptors at hippocampal neuronal plasma membranes. Neuropharmacology, 2001, 41, 700-713.	2.0	101

#	Article	IF	CITATIONS
37	Metabotropic Glutamate Receptor-Mediated LTD Involves Two Interacting Ca2+ Sensors, NCS-1 and PICK1. Neuron, 2008, 60, 1095-1111.	3.8	100
38	Wrestling with stress: Roles of protein SUMOylation and deSUMOylation in cell stress response. IUBMB Life, 2014, 66, 71-77.	1.5	97
39	SUMOylation and phosphorylation of GluK2 regulate kainate receptor trafficking and synaptic plasticity. Nature Neuroscience, 2012, 15, 845-852.	7.1	93
40	Effects of memantine on recombinant rat NMDA receptors expressed in HEK 293 cells. British Journal of Pharmacology, 1996, 119, 195-204.	2.7	90
41	Increased protein SUMOylation following focal cerebral ischemia. Neuropharmacology, 2008, 54, 280-289.	2.0	90
42	PICK1 inhibition of the Arp2/3 complex controls dendritic spine size and synaptic plasticity. EMBO Journal, 2011, 30, 719-730.	3.5	89
43	GABAB Receptors Couple Directly to the Transcription Factor ATF4. Molecular and Cellular Neurosciences, 2001, 17, 637-645.	1.0	82
44	Interactions between AMPA receptors and intracellular proteins. Neuropharmacology, 2000, 39, 919-930.	2.0	80
45	Homeostatic Synaptic Scaling Is Regulated by Protein SUMOylation. Journal of Biological Chemistry, 2012, 287, 22781-22788.	1.6	72
46	Shaping the synaptic signal: molecular mobility inside and outside the cleft. Trends in Neurosciences, 2011, 34, 359-369.	4.2	71
47	Agonist-induced PKC phosphorylation regulates GluK2 SUMOylation and kainate receptor endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19772-19777.	3.3	69
48	SUMOylation Is Required for Glycine-Induced Increases in AMPA Receptor Surface Expression (ChemLTP) in Hippocampal Neurons. PLoS ONE, 2013, 8, e52345.	1.1	67
49	Enhanced SUMOylation and SENP-1 Protein Levels following Oxygen and Glucose Deprivation in Neurones. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 17-22.	2.4	66
50	Cyclothiazide unmasks AMPAâ€evoked stimulation of [³ H]â€Lâ€glutamate release from rat hippocampal synaptosomes. British Journal of Pharmacology, 1994, 113, 339-341.	2.7	61
51	Experience-dependent development of NMDA receptor transmission. Nature Neuroscience, 1999, 2, 297-299.	7.1	61
52	Mechanisms and roles of mitochondrial localisation and dynamics in neuronal function. Neuronal Signaling, 2020, 4, NS20200008.	1.7	61
53	Surface expression and metabolic half-life of AMPA receptors in cultured rat cerebellar granule cells. Neuropharmacology, 1998, 37, 1345-1353.	2.0	60
54	Protein SUMOylation modulates calcium influx and glutamate release from presynaptic terminals. European Journal of Neuroscience, 2009, 29, 1348-1356.	1.2	60

#	Article	IF	Citations
55	PICK1 Mediates Transient Synaptic Expression of GluA2-Lacking AMPA Receptors during Glycine-Induced AMPA Receptor Trafficking. Journal of Neuroscience, 2012, 32, 11618-11630.	1.7	60
56	Extranuclear SUMOylation in Neurons. Trends in Neurosciences, 2018, 41, 198-210.	4.2	60
57	Localisation of glutamate receptor binding sites and mRNAS to the dorsal horn of the rat spinal cord. Neuropharmacology, 1993, 32, 37-41.	2.0	58
58	Regulation of mglu7 receptors by proteins that interact with the intracellular C-terminus. Trends in Pharmacological Sciences, 2001, 22, 355-361.	4.0	58
59	Interaction of Guanine Nucleotides with [3H]Kainate and 6-[3H]Cyano-7-Nitroquinoxaline-2,3-dione Binding in Goldfish Brain. Journal of Neurochemistry, 1993, 61, 1685-1691.	2.1	57
60	Dynamin-dependent Membrane Drift Recruits AMPA Receptors to Dendritic Spines. Journal of Biological Chemistry, 2009, 284, 12491-12503.	1.6	56
61	RIM1α SUMOylation Is Required for Fast Synaptic Vesicle Exocytosis. Cell Reports, 2013, 5, 1294-1301.	2.9	56
62	Clathrin-Independent Trafficking of AMPA Receptors. Journal of Neuroscience, 2015, 35, 4830-4836.	1.7	56
63	SUMOylation of Syntaxin1A regulates presynaptic endocytosis. Scientific Reports, 2016, 5, 17669.	1.6	55
64	SENP3-mediated deSUMOylation of Drp1 facilitates interaction with Mff to promote cell death. Scientific Reports, 2017, 7, 43811.	1.6	54
65	Proteins interactions implicated in AMPA receptor trafficking: a clear destination and an improving route map. Neuroscience Research, 2003, 45, 243-254.	1.0	50
66	Presynaptic mGlu1 and mGlu5 autoreceptors facilitate glutamate exocytosis from mouse cortical nerve endings. Neuropharmacology, 2008, 55, 474-482.	2.0	49
67	Oxygen/Glucose Deprivation Induces a Reduction in Synaptic AMPA Receptors on Hippocampal CA3 Neurons Mediated by mGluR1 and Adenosine A ₃ Receptors. Journal of Neuroscience, 2011, 31, 11941-11952.	1.7	49
68	Metabotropic action of postsynaptic kainate receptors triggers hippocampal long-term potentiation. Nature Neuroscience, 2017, 20, 529-539.	7.1	48
69	Profiles of SUMO and ubiquitin conjugation in an Alzheimer's disease model. Neuroscience Letters, 2011, 502, 201-208.	1.0	47
70	Regulation of kainate receptors by protein kinase C and metabotropic glutamate receptors. Journal of Physiology, 2003, 548, 723-730.	1.3	47
71	Kainate-binding proteins: phytogeny, structures and possible functions. Trends in Pharmacological Sciences, 1994, 15, 182-190.	4.0	46
72	SUMOylation of FOXP1 regulates transcriptional repression via CtBP1 to drive dendritic morphogenesis. Scientific Reports, 2017, 7, 877.	1.6	46

#	Article	IF	CITATIONS
7 3	Syntenin is involved in the developmental regulation of neuronal membrane architecture. Molecular and Cellular Neurosciences, 2005, 28, 737-746.	1.0	45
74	Targeting of tetracycline-regulatable transgene expression specifically to neuronal and glial cell populations using adenoviral vectors. NeuroReport, 2000, 11, 2051-2055.	0.6	44
7 5	The schizophrenic faces of PICK1. Trends in Pharmacological Sciences, 2006, 27, 574-579.	4.0	44
76	Investigating the Mechanisms Underlying Neuronal Death in Ischemia Using In Vitro Oxygen-Glucose Deprivation: Potential Involvement of Protein SUMOylation. Neuroscientist, 2008, 14, 626-636.	2.6	44
77	Sumoylation: Implications for Neurodegenerative Diseases. Advances in Experimental Medicine and Biology, 2017, 963, 261-281.	0.8	44
78	Calcium as an extracellular signalling molecule: perspectives on the Calcium Sensing Receptor in the brain. Comptes Rendus - Biologies, 2005, 328, 691-700.	0.1	43
79	Ultrastructural localisation and differential agonist-induced regulation of AMPA and kainate receptors present at the presynaptic active zone and postsynaptic density. Journal of Neurochemistry, 2006, 99, 549-560.	2.1	43
80	Assembly, Secretory Pathway Trafficking, and Surface Delivery of Kainate Receptors Is Regulated by Neuronal Activity. Cell Reports, 2017, 19, 2613-2626.	2.9	43
81	Acetylcholinesterase promotes neurite elongation, synapse formation, and surface expression of AMPA receptors in hippocampal neurones. Molecular and Cellular Neurosciences, 2003, 23, 96-106.	1.0	42
82	Characterization of the Intracellular Transport of GluR1 and GluR2 α-Amino-3-hydroxy-5-methyl-4-isoxazole Propionic Acid Receptor Subunits in Hippocampal Neurons. Journal of Biological Chemistry, 2003, 278, 43525-43532.	1.6	42
83	Localization and Quantitative Autoradiography of Glutamatergic Ligand Binding Sites in Chick Brain. European Journal of Neuroscience, 1989, 1, 516-523.	1.2	41
84	The calcium-sensing receptor changes cell shape via a β-arrestin-1–ARNO–ARF6–ELMO protein network. Journal of Cell Science, 2007, 120, 2489-2497.	1.2	41
85	Rapid internalization and surface expression of a functional, fluorescently tagged G-protein-coupled glutamate receptor. Biochemical Journal, 1999, 341, 415-422.	1.7	40
86	Analysis of SUMO-1 modification of neuronal proteins containing consensus SUMOylation motifs. Neuroscience Letters, 2008, 436, 239-244.	1.0	40
87	Synaptic receptor trafficking: The lateral point of view. Neuroscience, 2009, 158, 19-24.	1.1	39
88	SUMOylation of synapsin la maintains synaptic vesicle availability and is reduced in an autism mutation. Nature Communications, 2015, 6, 7728.	5.8	39
89	Bidirectional Regulation of Kainate Receptor Surface Expression in Hippocampal Neurons. Journal of Biological Chemistry, 2008, 283, 36435-36440.	1.6	37
90	Exciting Times: New Advances Towards Understanding the Regulation and Roles of Kainate Receptors. Neurochemical Research, 2019, 44, 572-584.	1.6	36

#	Article	IF	CITATIONS
91	Protein SUMOylation in neuropathological conditions. Drug News and Perspectives, 2009, 22, 255.	1.9	36
92	Ischaemia differentially regulates GABAB receptor subunits in organotypic hippocampal slice cultures. Neuropharmacology, 2009, 56, 1088-1096.	2.0	35
93	Transcriptional and post-translational regulation of Arc in synaptic plasticity. Seminars in Cell and Developmental Biology, 2018, 77, 3-9.	2.3	35
94	The PDZ Domain of PICK1 Differentially Accepts Protein Kinase C- \hat{l}_{\pm} and GluR2 as Interacting Ligands. Journal of Biological Chemistry, 2004, 279, 41393-41397.	1.6	34
95	Receptor Trafficking and the Regulation of Synaptic Plasticity by SUMO. NeuroMolecular Medicine, 2013, 15, 692-706.	1.8	33
96	The Ubiquitin C-Terminal Hydrolase L1 (UCH-L1) C Terminus Plays a Key Role in Protein Stability, but Its Farnesylation Is Not Required for Membrane Association in Primary Neurons. Journal of Biological Chemistry, 2014, 289, 36140-36149.	1.6	33
97	PICK1 interacts with $\hat{1}\pm7$ neuronal nicotinic acetylcholine receptors and controls their clustering. Molecular and Cellular Neurosciences, 2007, 35, 339-355.	1.0	32
98	Solubilisation and Characterisation of a Putative Quisqualate-Type Glutamate Receptor from Chick Brain. Journal of Neurochemistry, 1989, 53, 140-148.	2.1	31
99	Subcellular localization and molecular pharmacology of distinct populations of [³ H]â€AMPA binding sites in rat hippocampus. British Journal of Pharmacology, 1995, 115, 295-301.	2.7	31
100	Characterization of a Metabotropic Glutamate Receptor Type 5-Green Fluorescent Protein Chimera (mGluR5–GFP): Pharmacology, Surface Expression, and Differential Effects of Homer-1a and Homer-1c. Molecular and Cellular Neurosciences, 2001, 18, 296-306.	1.0	31
101	GISP binding to TSG101 increases GABA _B receptor stability by downâ€regulating ESCRTâ€mediated lysosomal degradation. Journal of Neurochemistry, 2008, 107, 86-95.	2.1	31
102	Regulation of calcium-sensing-receptor trafficking and cell-surface expression by GPCRs and RAMPs. Trends in Pharmacological Sciences, 2008, 29, 633-639.	4.0	31
103	GISP: a novel brain-specific protein that promotes surface expression and function of GABABreceptors. Journal of Neurochemistry, 2007, 100, 1003-1017.	2.1	30
104	Ginkgolic acid promotes autophagy-dependent clearance of intracellular alpha-synuclein aggregates. Molecular and Cellular Neurosciences, 2019, 101, 103416.	1.0	30
105	Protein SUMOylation in spine structure and function. Current Opinion in Neurobiology, 2012, 22, 480-487.	2.0	29
106	Profile of changes in gene expression in cultured hippocampal neurones evoked by the GABAB receptor agonist baclofen. Physiological Genomics, 2005, 22, 93-98.	1.0	27
107	A novel method for monitoring the cell surface expression of heteromeric protein complexes in dispersed neurons and acute hippocampal slices. Journal of Neuroscience Methods, 2007, 160, 302-308.	1.3	27
108	Pharmacology and Regional Distribution of the Binding of 6â€[⟨sup⟩3⟨ sup⟩H]Nitroâ€7â€Sulphamoylbenzo[⟨i⟩f⟨ i⟩]â€Quinoxalineâ€2,3â€Dione to Rat Brain. Journal of Neurochemistry, 1996, 67, 2609-2612.	2.1	25

#	Article	IF	CITATIONS
109	Differential redistribution of native AMPA receptor complexes following LTD induction in acute hippocampal slices. Neuropharmacology, 2007, 52, 92-99.	2.0	25
110	Differential Regulation of GABAB Receptor Trafficking by Different Modes of N-methyl-d-aspartate (NMDA) Receptor Signaling. Journal of Biological Chemistry, 2014, 289, 6681-6694.	1.6	24
111	Kainate Receptors in Xenopus Central Nervous System: Solubilisation with n-Octyl-?-d-Glucopyranoside. Journal of Neurochemistry, 1989, 52, 31-37.	2.1	23
112	SUMOylation of synaptic and synapseâ€associated proteins: An update. Journal of Neurochemistry, 2021, 156, 145-161.	2.1	23
113	Development of GABAB subunits and functional GABAB receptors in rat cultured hippocampal neurons. Neuropharmacology, 2004, 47, 475-484.	2.0	22
114	Protein Interactors and Trafficking Pathways That Regulate the Cannabinoid Type 1 Receptor (CB1R). Frontiers in Molecular Neuroscience, 2020, 13, 108.	1.4	22
115	Kainate receptors and synaptic plasticity. Neuropharmacology, 2021, 196, 108540.	2.0	22
116	The C-terminal helix 9 motif in rat cannabinoid receptor type 1 regulates axonal trafficking and surface expression. ELife, 2019, 8, .	2.8	22
117	Interaction of monoclonal antibodies to electroplaque acetylcholine receptors with the α-bungarotoxin binding site of goldfish brain. Brain Research, 1986, 364, 405-408.	1.1	21
118	Autoradiographic distribution of binding sites for the non-NMDA receptor antagonist CNQX in chick brain. Neuroscience Letters, 1990, 116, 17-22.	1.0	21
119	Measuring Membrane Protein Dynamics in Neurons Using Fluorescence Recovery after Photobleach. Methods in Enzymology, 2012, 504, 127-146.	0.4	21
120	Postsynaptic Kainate Receptor Recycling and Surface Expression Are Regulated by Metabotropic Autoreceptor Signalling. Traffic, 2013, 14, 810-822.	1.3	21
121	Sorting nexin 27 rescues neuroligin 2 from lysosomal degradation to control inhibitory synapse number. Biochemical Journal, 2019, 476, 293-306.	1.7	21
122	The regulation of AMPA receptor-binding sites. Molecular Neurobiology, 1998, 17, 33-58.	1.9	20
123	Differential roles of GRIP1a and GRIP1b in AMPA receptor trafficking. Neuroscience Letters, 2010, 485, 167-172.	1.0	20
124	The transcription factor MEF2A plays a key role in the differentiation/maturation of rat neural stem cells into neurons. Biochemical and Biophysical Research Communications, 2018, 500, 645-649.	1.0	20
125	Commentary: Analysis of SUMO1-conjugation at synapses. Frontiers in Cellular Neuroscience, 2017, 11, 345.	1.8	19
126	Solubilization and characterization of kainate receptors from goldfish brain. Biochimica Et Biophysica Acta - Biomembranes, 1988, 937, 103-111.	1.4	18

#	Article	IF	CITATIONS
127	Characterisation of the interaction between guanyl nucleotides and AMPA receptors in rat brain. Neuropharmacology, 1996, 35, 1583-1593.	2.0	18
128	Activity-dependent SUMOylation of the brain-specific scaffolding protein GISP. Biochemical and Biophysical Research Communications, 2011, 409, 657-662.	1.0	18
129	Phosphorylation of Syntaxinâ€1a by casein kinase 2α regulates preâ€synaptic vesicle exocytosis from the reserve pool. Journal of Neurochemistry, 2021, 156, 614-623.	2.1	18
130	Rapid internalization and surface expression of a functional, fluorescently tagged G-protein-coupled glutamate receptor. Biochemical Journal, 1999, 341, 415.	1.7	17
131	Analysis of metabotropic glutamate receptor 7 as a potential substrate for SUMOylation. Neuroscience Letters, 2011, 491, 181-186.	1.0	17
132	Characterisation and partial purification of the GABAB receptor from the rat cerebellum using the novel antagonist []CGP 62349. Molecular Brain Research, 1999, 71, 279-289.	2.5	16
133	Novel putative targets of N-ethylmaleimide sensitive fusion protein (NSF) and $\hat{l}\pm\hat{l}^2$ soluble NSF attachment proteins (SNAPs) include the Pak-binding nucleotide exchange factor \hat{l}^2 PIX. Journal of Cellular Biochemistry, 2006, 99, 1203-1215.	1.2	16
134	GISP increases neurotransmitter receptor stability by down-regulating ESCRT-mediated lysosomal degradation. Neuroscience Letters, 2009, 452, 106-110.	1.0	16
135	Kainate and AMPA receptors in epilepsy: Cell biology, signalling pathways and possible crosstalk. Neuropharmacology, 2021, 195, 108569.	2.0	16
136	Modification and movement. Communicative and Integrative Biology, 2012, 5, 223-226.	0.6	15
137	The F238L Point Mutation in the Cannabinoid Type 1 Receptor Enhances Basal Endocytosis via Lipid Rafts. Frontiers in Molecular Neuroscience, 2018, 11, 230.	1.4	15
138	Protective role of the deSUMOylating enzyme SENP3 in myocardial ischemia-reperfusion injury. PLoS ONE, 2019, 14, e0213331.	1.1	15
139	Comparison of Solubilised Kainate and ?-Amino-3-Hydroxy-5-Methylisoxazolepropionate Binding Sites in Chick Cerebellum. Journal of Neurochemistry, 1991, 56, 702-705.	2.1	14
140	SUMOylation of Argonaute-2 regulates RNA interference activity. Biochemical and Biophysical Research Communications, 2015, 464, 1066-1071.	1.0	14
141	ADAR2-mediated Q/R editing of GluK2 regulates kainate receptor upscaling in response to suppression of synaptic activity. Journal of Cell Science, 2018, 131 , .	1.2	14
142	Changes in excitatory and inhibitory receptor expression and network activity during induction and establishment of epilepsy in the rat Reduced Intensity Status Epilepticus (RISE) model. Neuropharmacology, 2019, 158, 107728.	2.0	14
143	Interplay between Mitochondrial Protein Import and Respiratory Complexes Assembly in Neuronal Health and Degeneration. Life, 2021, 11, 432.	1.1	14
144	Quantitative analysis of the distributions of glutamatergic ligand binding sites in goldfish brain. Brain Research, 1994, 637, 323-327.	1.1	13

#	Article	IF	CITATIONS
145	Kainate receptor trafficking. Environmental Sciences Europe, 2012, 1, 31-44.	2.6	13
146	Neuroprotective effects of mGluR5 activation through the PI3K/Akt pathway and the molecular switch of AMPA receptors. Neuropharmacology, 2020, 162, 107810.	2.0	13
147	Guanosine modulates SUMO2/3-ylation in neurons and astrocytes via adenosine receptors. Purinergic Signalling, 2020, 16, 439-450.	1.1	13
148	Phospholipase A2 Down-Regulates the Affinity of [3H]AMPA Binding to Rat Cortical Membranes. Journal of Neurochemistry, 2002, 65, 184-191.	2.1	12
149	Lateral Diffusion and Exocytosis of Membrane Proteins in Cultured Neurons Assessed using Fluorescence Recovery and Fluorescence-loss Photobleaching. Journal of Visualized Experiments, 2012, , .	0.2	12
150	Small GTPase Rab17 Regulates the Surface Expression of Kainate Receptors but Not α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors in Hippocampal Neurons via Dendritic Trafficking of Syntaxin-4 Protein. Journal of Biological Chemistry, 2014, 289, 20773-20787.	1.6	12
151	Increased SUMO-2/3-ylation mediated by SENP3 degradation is protective against cadmium-induced caspase 3–dependent cytotoxicity. Journal of Toxicological Sciences, 2017, 42, 529-538.	0.7	12
152	Sorting nexin-27 regulates AMPA receptor trafficking through the synaptic adhesion protein LRFN2. ELife, 2021, 10, .	2.8	12
153	Detection of protein-protein interactions in the nervous system using the two-hybrid system. Trends in Neurosciences, 1996, 19, 261-266.	4.2	11
154	High-affinity binding sites for 125I-labelled pancreatic secretory phospholipase A2 in rat brain. Molecular Brain Research, 1997, 49, 120-126.	2.5	11
155	Differential changes in the subcellular distribution of \hat{l} ±-amino-3-hydroxy-5-methyl-4-isoxazole propionate and N-methyl-d-aspartate receptors in neonate and adult rat cortex. Neuroscience Letters, 1999, 270, 49-52.	1.0	11
156	SUMOylation, Arc and the regulation homeostatic synaptic scaling. Communicative and Integrative Biology, 2012, 5, 634-636.	0.6	11
157	Erythropoietin Induces Homeostatic Plasticity at Hippocampal Synapses. Cerebral Cortex, 2018, 28, 2795-2809.	1.6	11
158	Parkin-mediated ubiquitination contributes to the constitutive turnover of mitochondrial fission factor (Mff). PLoS ONE, 2019, 14, e0213116.	1.1	11
159	Regulation of Calcium Sensing Receptor Trafficking by RAMPs. Advances in Experimental Medicine and Biology, 2012, 744, 39-48.	0.8	11
160	Proteins Involved in the Trafficking and Functional Synaptic Expression of AMPA and KA Receptors. Scientific World Journal, The, 2002, 2, 461-482.	0.8	10
161	Characterisation of an Allosteric Modulatory Protein Associated with ?-[3H]Amino-3-Hydroxy-5-Methylisoxazolepropionate Binding Sites in Chick Telencephalon: Effects of High-Energy Radiation and Detergent Solubilisation. Journal of Neurochemistry, 1992, 58, 2030-2036.	2.1	9
162	Localization of AMPA receptor subunits in rat CNS using anti-peptide antibodies. NeuroReport, 1993, 4, 334.	0.6	9

#	Article	IF	CITATIONS
163	Phospholipase A2 enhances [3 H]AMPA binding to a putative homomeric GluR-B receptor in the rat spinal cord. FEBS Letters, 1994, 339, 168-170.	1.3	9
164	Ubiquitin regulation of neuronal excitability. Nature Neuroscience, 2011, 14, 126-128.	7.1	9
165	Validity of pHluorin-tagged GluA2 as a reporter for AMPA receptor surface expression and endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E304-E304.	3.3	9
166	MEF2A regulates mGluR-dependent AMPA receptor trafficking independently of Arc/Arg3.1. Scientific Reports, 2018, 8, 5263.	1.6	9
167	Endocytosis, trafficking and exocytosis of intact full-length botulinum neurotoxin type a in cultured rat neurons. NeuroToxicology, 2020, 78, 80-87.	1.4	9
168	Binding of the AMPA receptor antagonist [3H]GYKI 53405 to Xenopus brain membranes. NeuroReport, 1993, 5, 93.	0.6	8
169	CAKβ/Pyk2 Activates Src. Neuron, 2001, 29, 312-314.	3.8	8
170	AMPA receptor potentiation by acetylcholinesterase is ageâ€dependently upregulated at synaptogenesis sites of the rat brain. International Journal of Developmental Neuroscience, 2003, 21, 49-61.	0.7	8
171	Regulation of Neuronal Protein Trafficking and Translocation by SUMOylation. Biomolecules, 2012, 2, 256-268.	1.8	8
172	Retaining Synaptic AMPARs. Neuron, 2007, 55, 825-827.	3.8	7
173	Autoradiographic localisations of glutamatergic ligand binding sites in Xenopus brain. Neuroscience Letters, 1991, 129, 35-38.	1.0	6
174	Hexokinase II dissociation alone cannot account for changes in heart mitochondrial function, morphology and sensitivity to permeability transition pore opening following ischemia. PLoS ONE, 2020, 15, e0234653.	1.1	6
175	Sustained postsynaptic kainate receptor activation downregulates AMPA receptor surface expression and induces hippocampal LTD. IScience, 2021, 24, 103029.	1.9	6
176	Autoradiographic distribution of glutamatergic ligand binding sites inXenopus brain: evidence for intracellular [3H]AMPA binding sites. Brain Research, 1993, 626, 259-264.	1.1	5
177	Characterization of the allosteric modulatory protein associated with non-NMDA receptors. Biochemical Society Transactions, 1993, 21, 89-93.	1.6	5
178	Regional localization and developmental profile of acetylcholinesterase-evoked increases in [3 H]-5-fluorowillardiine binding to AMPA receptors in rat brain. British Journal of Pharmacology, 2001, 133, 1055-1062.	2.7	5
179	<i>InÂvivo</i> characterization of the properties of SUMO1-specific monobodies. Biochemical Journal, 2013, 456, 385-395.	1.7	5
180	Developmental profiles of SUMOylation pathway proteins in rat cerebrum and cerebellum. PLoS ONE, 2019, 14, e0212857.	1.1	5

#	Article	IF	CITATIONS
181	Phosphorylation on Ser-359 of the $\hat{l}\pm 2$ subunit in GABA type A receptors down-regulates their density at inhibitory synapses. Journal of Biological Chemistry, 2020, 295, 12330-12342.	1.6	5
182	Surface biotinylation of primary neurons to monitor changes in AMPA receptor surface expression in response to kainate receptor stimulation. STAR Protocols, 2021, 2, 100992.	0.5	5
183	GFP Fusion proteins and AMPA receptor trafficking. Biochemical Society Transactions, 1997, 25, 540S-540S.	1.6	4
184	Different effects of phospholipase A2 on agonist binding to hippocampal, cortical and recombinant homomeric α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors. Neuroscience Letters, 1998, 246, 25-28.	1.0	4
185	Picking out the Details of Cerebellar LTD. Neuron, 2006, 49, 778-780.	3.8	4
186	Fighting polyglutamine disease by wrestling with SUMO. Journal of Clinical Investigation, 2015, 125, 498-500.	3.9	4
187	SENP3 Promotes an Mff-Primed Bcl-xL-Drp1 Interaction Involved in Cell Death Following Ischemia. Frontiers in Cell and Developmental Biology, 2021, 9, 752260.	1.8	4
188	Modulation of [3H]glutamate release from rat hippocampal synaptosomes by kainate. Biochemical Society Transactions, 1994, 22, 155S-155S.	1.6	3
189	Effects of phospholipase A2 on α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor subunits. Biochemical Society Transactions, 1997, 25, 537S-537S.	1.6	3
190	Half life analysis of the \hat{l}_{\pm} -amino-3-hydroxy-5-methyl-4-isoazolepropionate receptor subunit gluR1 in primary cultured rat cerebellar granule cells. Biochemical Society Transactions, 1997, 25, 539S-539S.	1.6	3
191	Characterization of adenylyl cyclase in goldfish brain. Biochemical Pharmacology, 1993, 46, 1559-1563.	2.0	2
192	Developmental changes in the properties of the chicken brain kainate-binding protein. Biochemical Society Transactions, 1993, 21, 15S-15S.	1.6	2
193	Effect of thiol group modification on 3[H]-NBQX binding in rat cortical membranes. Biochemical Society Transactions, 1997, 25, 538S-538S.	1.6	2
194	Wrestling with epilepsy; potential roles for kainate receptor SUMOylation in regulating neuronal excitability. Future Neurology, 2007, 2, 591-595.	0.9	2
195	AMPAr GluA1 Phosphorylation at Serine 845 in Limbic System Is Associated with Cardiac Autonomic Tone. Molecular Neurobiology, 2021, 58, 1859-1870.	1.9	2
196	Effects of amyloid- \hat{l}^2 on protein SUMOylation and levels of mitochondrial proteins in primary cortical neurons. IBRO Neuroscience Reports, 2022, 12, 142-148.	0.7	2
197	Interaction of ionophore A23187 with a "masked―Ca2+ binding site in pig and pigeon red cells. Biochemical Pharmacology, 1986, 35, 3401-3403.	2.0	1
198	Molecular size of the kainate binding protein in goldfish brain determined by radiation inactivation. Biochemical Pharmacology, 1993, 46, 539-541.	2.0	1

#	Article	IF	Citations
199	Subcellular localisations of AMPA receptors in rat hippocampus. Biochemical Society Transactions, 1994, 22, 154S-154S.	1.6	1
200	Characteristics of the goldfish brain adenylyl cyclase system. Biochemical Society Transactions, 1994, 22, 227S-227S.	1.6	1
201	Subcellular localization of $\hat{l}\pm$ -amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor subunits in rat cortex. Biochemical Society Transactions, 1997, 25, 541S-541S.	1.6	1
202	(35) Acetylcholinesterase effects on glutamate receptors. Chemico-Biological Interactions, 2005, 157-158, 410-411.	1.7	1
203	Activity-dependent recruitment of AMPA receptors to the postsynaptic compartment by facilitated diffusion in the plasma membrane. Communicative and Integrative Biology, 2009, 2, 474-476.	0.6	1
204	Editorial: Ionotropic Glutamate Receptors Trafficking in Health and Disease. Frontiers in Cellular Neuroscience, 2016, 10, 242.	1.8	1
205	Neurotrophic effects of Botulinum neurotoxin type A in hippocampal neurons involve activation of Rac1 by the non-catalytic heavy chain (HCC/A). IBRO Neuroscience Reports, 2021, 10, 196-207.	0.7	1
206	Visualization of AMPAR Trafficking and Surface Expression. Frontiers in Neuroscience, 2006, , 119-141.	0.0	1
207	Glutamate receptor trafficking. Pharmaceutical Science Series, 2001, , 56-68.	0.0	1
208	The Role of Sumoylation in Neurodegenerative Diseases. , 2009, , 233-251.		1
209	Interaction of guanyl nucleotides with [3H]kainate binding in goldfish brain. Biochemical Society Transactions, 1993, 21, 17S-17S.	1.6	0
210	Stereoselective antagonism of the metabotropic glutamate receptor mGluR1 \hat{i}_{\pm} by \hat{i}_{\pm} -methyl-4-carboxyphenylglycine. Biochemical Society Transactions, 1994, 22, 138S-138S.	1.6	0
211	Mercuric chloride modulates [3H] AMPA binding to Xenopus brain membranes. Biochemical Society Transactions, 1995, 23, 118S-118S.	1.6	0
212	Solubilization and Purification of a Functional Ionotropic Excitatory Amino Acid Receptor., 1995, 41, 17-24.		0
213	Construction and Expression of Human Metabotropic Glutamate Receptor 5a-GFP Fusion Protein (hmGluR5-GFP). Biochemical Society Transactions, 1999, 27, A119-A119.	1.6	0
214	The Role of Protein SUMOylation in Neuronal Function., 2011,, 177-199.		0
215	Homeostatic synaptic scaling is regulated by protein SUMOylation Journal of Biological Chemistry, 2013, 288, 4208.	1.6	0
216	Title is missing!. , 2020, 15, e0234653.		O

#	Article	IF	CITATIONS
217	Title is missing!. , 2020, 15, e0234653.		O
218	Title is missing!. , 2020, 15, e0234653.		0
219	Title is missing!. , 2020, 15, e0234653.		O
220	Title is missing!. , 2020, 15, e0234653.		0
221	Title is missing!. , 2020, 15, e0234653.		O
222	Title is missing!. , 2020, 15, e0234653.		0
223	Title is missing!. , 2020, 15, e0234653.		O