
Philip B Prangnell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8899174/publications.pdf Version: 2024-02-01

PHILID R PRANCHELL

#	Article	IF	CITATIONS
1	Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti6Al4V by selective electron beam melting. Materials Characterization, 2013, 84, 153-168.	1.9	578
2	Tensile-compressive yield asymmetries in high strength wrought magnesium alloys. Scripta Metallurgica Et Materialia, 1994, 31, 111-116.	1.0	471
3	XCT analysis of the influence of melt strategies on defect population in Ti–6Al–4V components manufactured by Selective Electron Beam Melting. Materials Characterization, 2015, 102, 47-61.	1.9	442
4	Grain structure formation during friction stir welding observed by the †stop action technique'. Acta Materialia, 2005, 53, 3179-3192.	3.8	436
5	The effect of strain path on the development of deformation structures in severely deformed aluminium alloys processed by ECAE. Acta Materialia, 2000, 48, 1115-1130.	3.8	384
6	Developing stable fine–grain microstructures by large strain deformation. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 1999, 357, 1663-1681.	1.6	337
7	The solidification behaviour of dilute aluminium–scandium alloys. Acta Materialia, 1998, 46, 5715-5732.	3.8	300
8	Dispersoid precipitation and process modelling in zirconium containing commercial aluminium alloys. Acta Materialia, 2001, 49, 599-613.	3.8	282
9	Quantification of the influence of increased pre-stretching on microstructure-strength relationships in the Alâ \in "Cuâ \in "Li alloy AA2195. Acta Materialia, 2016, 108, 55-67.	3.8	265
10	Stability of nugget zone grain structures in high strength Al-alloy friction stir welds during solution treatment. Acta Materialia, 2003, 51, 1923-1936.	3.8	249
11	The effectiveness of combining rolling deformation with Wire–Arc Additive Manufacture on β-grain refinement and texture modification in Ti–6Al–4V. Materials Characterization, 2016, 114, 103-114.	1.9	245
12	Mechanisms of joint and microstructure formation in high power ultrasonic spot welding 6111 aluminium automotive sheet. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 6320-6334.	2.6	227
13	The effect of coarse second-phase particles on the rate of grain refinement during severe deformation processing. Acta Materialia, 2003, 51, 2811-2822.	3.8	221
14	Analysis of the billet deformation behaviour in equal channel angular extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 287, 87-99.	2.6	217
15	Porosity regrowth during heat treatment of hot isostatically pressed additively manufactured titanium components. Scripta Materialia, 2016, 122, 72-76.	2.6	207
16	Production of ultra-fine grain microstructures in Al–Mg alloys by coventional rolling. Acta Materialia, 2002, 50, 4461-4476.	3.8	205
17	The Effectiveness of Hot Isostatic Pressing for Closing Porosity in Titanium Parts Manufactured by Selective Electron Beam Melting. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 1939-1946.	1.1	203
18	Effect of welding parameters on nugget zone microstructure and properties in high strength aluminium alloy friction stir welds. Science and Technology of Welding and Joining, 2003, 8, 257-268.	1.5	196

#	Article	IF	CITATIONS
19	Finite element modelling of equal channel angular extrusion. Scripta Materialia, 1997, 37, 983-989.	2.6	186
20	On the origin of microstructural banding in Ti-6Al4V wire-arc based high deposition rate additive manufacturing. Acta Materialia, 2019, 166, 306-323.	3.8	181
21	Ultra-fine grain structures in aluminium alloys by severe deformation processing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 178-185.	2.6	172
22	The effect of high strain rate deformation on intermetallic reaction during ultrasonic welding aluminium to magnesium. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 556, 31-42.	2.6	167
23	The effect of cooling rate on the morphology of primary Al3Sc intermetallic particles in Al–Sc alloys. Acta Materialia, 2001, 49, 1327-1337.	3.8	163
24	The effect of dispersoids on the grain refinement mechanisms during deformation of aluminium alloys to ultra-high strains. Acta Materialia, 2005, 53, 499-511.	3.8	149
25	Modelling texture development during equal channel angular extrusion of aluminium. Acta Materialia, 2002, 50, 2121-2136.	3.8	147
26	The formation of nanograin structures and accelerated room-temperature theta precipitation in a severely deformed Al–4 wt.% Cu alloy. Acta Materialia, 2010, 58, 1643-1657.	3.8	143
27	Application of bulk deformation methods for microstructural and material property improvement and residual stress and distortion control in additively manufactured components. Scripta Materialia, 2017, 135, 111-118.	2.6	141
28	Making sustainable aluminum by recycling scrap: The science of "dirty―alloys. Progress in Materials Science, 2022, 128, 100947.	16.0	134
29	Extension of the N-model to predict competing homogeneous and heterogeneous precipitation in Al-Sc alloys. Acta Materialia, 2003, 51, 1453-1468.	3.8	127
30	The effect of silver on microstructural evolution in two 2xxx series Al-alloys with a high Cu:Mg ratio during ageing to a T8 temper. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 491, 214-223.	2.6	124
31	Effect of grain size on tensile behaviour of a submicron grained Al–3 wt-%Mg alloy produced by severe deformation. Materials Science and Technology, 2000, 16, 1259-1263.	0.8	122
32	Modelling Al3Zr dispersoid precipitation in multicomponent aluminium alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 352, 240-250.	2.6	116
33	A combined approach to microstructure mapping of an Al–Li AA2199 friction stir weld. Acta Materialia, 2011, 59, 3002-3011.	3.8	115
34	Microstructure refinement and mechanical properties of severely deformed Al–Mg–Li alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 328, 87-97.	2.6	114
35	The effect of Mn and Zr dispersoid-forming additions on recrystallization resistance in Al–Cu–Li AA2198 sheet. Acta Materialia, 2014, 77, 1-16.	3.8	112
36	The effect of cryogenic temperature and change in deformation mode on the limiting grain size in a severely deformed dilute aluminium alloy. Acta Materialia, 2008, 56, 1619-1632.	3.8	108

#	Article	IF	CITATIONS
37	Ultrasonic spot welding of aluminium to steel for automotive applications—microstructure and optimisation. Materials Science and Technology, 2011, 27, 617-624.	0.8	107
38	HAZ development and accelerated post-weld natural ageing in ultrasonic spot welding aluminium 6111-T4 automotive sheet. Acta Materialia, 2012, 60, 2816-2828.	3.8	104
39	Fine-grained alloys by thermomechanical processing. Current Opinion in Solid State and Materials Science, 2001, 5, 15-21.	5.6	103
40	Material Interactions in a Novel Pinless Tool Approach to Friction Stir Spot Welding Thin Aluminum Sheet. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 1266-1282.	1.1	101
41	Continuous recrystallisation of lamellar deformation structures produced by severe deformation. Acta Materialia, 2004, 52, 3193-3206.	3.8	98
42	Examination of the effect of Sc on 2000 and 7000 series aluminium alloy castings: for improvements in fusion welding. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 354, 188-198.	2.6	96
43	Microstructure and texture evolution during annealing a cryogenic-SPD processed Al-alloy with a nanoscale lamellar HAGB grain structure. Acta Materialia, 2009, 57, 3509-3521.	3.8	93
44	Dissimilar ultrasonic spot welding of aerospace aluminum alloy AA2139 to titanium alloy TiAl6V4. Journal of Materials Processing Technology, 2016, 231, 382-388.	3.1	90
45	The effect of particle distribution on damage formation in particulate reinforced metal matrix composites deformed in compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 220, 41-56.	2.6	87
46	Global mechanical tensioning for the management of residual stresses in welds. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 489, 351-362.	2.6	85
47	Effect of reduced or zero pin length and anvil insulation on friction stir spot welding thin gauge 6111 automotive sheet. Science and Technology of Welding and Joining, 2009, 14, 443-456.	1.5	85
48	Stationary shoulder FSW for joining high strength aluminum alloys. Journal of Materials Processing Technology, 2015, 221, 187-196.	3.1	80
49	Effect of processing parameters on the densification, microstructure and crystallographic texture during the laser powder bed fusion of pure tungsten. International Journal of Refractory Metals and Hard Materials, 2019, 78, 254-263.	1.7	78
50	Comparison of residual stress distributions in conventional and stationary shoulder high-strength aluminum alloy friction stir welds. Journal of Materials Processing Technology, 2017, 242, 92-100.	3.1	77
51	Interactions between zirconium and manganese dispersoid-forming elements on their combined addition in Al–Cu–Li alloys. Acta Materialia, 2012, 60, 5245-5259.	3.8	74
52	Microstructural characterization and mechanical properties of high power ultrasonic spot welded aluminum alloy AA6111–TiAl6V4 dissimilar joints. Materials Characterization, 2014, 97, 83-91.	1.9	70
53	Interface structure and bonding in abrasion circle friction stir spot welding: A novel approach for rapid welding aluminium alloy to steel automotive sheet. Materials Chemistry and Physics, 2012, 134, 459-463.	2.0	64
54	High Resolution EBSD Analysis of the Grain Structure in an AA2024 Friction Stir Weld. Materials Science Forum, 2000, 331-337, 1713-1718.	0.3	63

#	Article	IF	CITATIONS
55	The deformation of discontinuously reinforced MMCs—I. The initial yielding behaviour. Acta Metallurgica Et Materialia, 1994, 42, 3425-3436.	1.9	62
56	Effect of Interfacial Reaction on the Mechanical Performance of Steel to Aluminum Dissimilar Ultrasonic Spot Welds. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 334-346.	1.1	61
57	Microstructural evolution during formation of ultrafine grain structures by severe deformation. Materials Science and Technology, 2000, 16, 1246-1250.	0.8	60
58	Microstructural parameters and flow stress in Al–0.13% Mg deformed by ECAE processing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 387-389, 235-239.	2.6	60
59	Continuous frictional angular extrusion and its application in the production of ultrafine-grained sheet metals. Scripta Materialia, 2007, 56, 333-336.	2.6	58
60	Predicting recrystallised volume fraction in aluminium alloy 7050 hot rolled plate. Materials Science and Technology, 2002, 18, 607-614.	0.8	57
61	Modelling intermetallic phase formation in dissimilar metal ultrasonic welding of aluminium and magnesium alloys. Science and Technology of Welding and Joining, 2012, 17, 447-453.	1.5	55
62	Efficacy of active cooling for controlling residual stresses in friction stir welds. Science and Technology of Welding and Joining, 2010, 15, 156-165.	1.5	53
63	Material interactions in laser polishing powder bed additive manufactured Ti6Al4V components. Additive Manufacturing, 2018, 20, 11-22.	1.7	51
64	Effect of Zinc Coatings on Joint Properties and Interfacial Reactions in Aluminum to Steel Ultrasonic Spot Welding. Jom, 2012, 64, 407-413.	0.9	48
65	The Effectiveness of Surface Coatings on Preventing Interfacial Reaction During Ultrasonic Welding of Aluminum to Magnesium. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 5773-5781.	1.1	47
66	Interfacial Segregation of Alloying Elements During Dissimilar Ultrasonic Welding of AA6111 Aluminum and Ti6Al4V Titanium. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 5143-5152.	1.1	46
67	Modelling and visualisation of material flow in friction stir spot welding. Journal of Materials Processing Technology, 2015, 225, 473-484.	3.1	45
68	Texture Evolution and Grain Refinement in Al Deformed to Ultra-High Strains by Accumulative Roll Bonding (ARB). Materials Science Forum, 2002, 408-412, 733-738.	0.3	39
69	Orientation correlations in aluminium deformed by ECAE. Scripta Materialia, 2002, 47, 289-294.	2.6	38
70	Modeling of Intermetallic Compounds Growth Between Dissimilar Metals. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 4106-4114.	1.1	37
71	Effect of processing route and second phase particles on grain refinement during equal-channel angular extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 410-411, 381-385.	2.6	35
72	Novel Approaches to Friction Spot Welding Thin Aluminium Automotive Sheet. Materials Science Forum, 0, 638-642, 1237-1242.	0.3	35

#	Article	IF	CITATIONS
73	Microstructure and performance of a biodegradable Mg–1Ca–2Zn–1TCP composite fabricated by combined solidification and deformation processing. Materials Letters, 2012, 82, 7-9.	1.3	35
74	The effect of shoulder coupling on the residual stress and hardness distribution in AA7050 friction stir butt welds. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 735, 218-227.	2.6	35
75	Hydrogen-assisted stable crack growth in iron-3 wt% silicon steel. Acta Materialia, 1996, 44, 3125-3140.	3.8	34
76	The significance of intermetallic compounds formed during interdiffusion in aluminum and magnesium dissimilar welds. Materials Characterization, 2017, 134, 84-95.	1.9	33
77	Investigation of residual stress distribution and texture evolution in AA7050 stationary shoulder friction stir welded joints. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 712, 531-538.	2.6	33
78	On the observation of annealing twins during simulating β-grain refinement in Ti–6Al–4V high deposition rate AM with in-process deformation. Acta Materialia, 2020, 186, 229-241.	3.8	33
79	Effect of deposition strategies on fatigue crack growth behaviour of wire + arc additive manufactured titanium alloy Ti–6Al–4V. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 814, 141194.	2.6	33
80	Comparison of the Effect of Individual and Combined Zr and Mn Additions on the Fracture Behavior of Al-Cu-Li Alloy AA2198 Rolled Sheet. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 1338-1351.	1.1	32
81	Microstructure simulation and ballistic behaviour of weld zones in friction stir welds in high strength aluminium 7xxx plate. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 3409-3422.	2.6	30
82	Thermal Modeling of Al-Al and Al-Steel Friction Stir Spot Welding. Journal of Materials Engineering and Performance, 2016, 25, 4089-4098.	1.2	30
83	Weld zone and residual stress development in AA7050 stationary shoulder friction stir T-joint weld. Journal of Materials Processing Technology, 2019, 263, 256-265.	3.1	30
84	Dissimilar metal laser spot joining of steel to aluminium in conduction mode. International Journal of Advanced Manufacturing Technology, 2014, 73, 365-373.	1.5	29
85	Processing to ultrafine grain structures by conventional routes. Materials Science and Technology, 2000, 16, 1251-1255.	0.8	28
86	Automated image mapping and quantification of microstructure heterogeneity in additive manufactured Ti6Al4V. Materials Characterization, 2019, 147, 131-145.	1.9	28
87	The deformation of discontinuously reinforced MMCs—II. The elastic response. Acta Metallurgica Et Materialia, 1994, 42, 3437-3442.	1.9	26
88	The Effect of Small Scandium Additions to AA7050 on the As-Cast and Homogenized Microstructure. Materials Science Forum, 2002, 396-402, 757-762.	0.3	26
89	Mechanical performance and microstructural characterisation of titanium alloy-alloy composites built by wire-arc additive manufacture. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 765, 138289.	2.6	26
90	In-situ observation of single variant $\hat{I}\pm$ colony formation in Ti-6Al-4V. Acta Materialia, 2021, 220, 117315.	3.8	26

#	Article	IF	CITATIONS
91	Development of new high strength Al – Sc filler wires for fusion welding 7000 series aluminium aerospace alloys. Science and Technology of Welding and Joining, 2003, 8, 235-245.	1.5	25
92	Grain refinement response during twist extrusion of an Al-0.13% Mg alloy. International Journal of Materials Research, 2007, 98, 200-204.	0.1	25
93	Structure and mechanical behaviour of an Al-Mg alloy after equal channel angular extrusion. Scripta Materialia, 1999, 12, 839-842.	0.5	24
94	Grain structure and homogeneity of pulsed laser treated surfaces on Al-aerospace alloys and FSWs. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 479, 65-75.	2.6	24
95	The effect of a paint bake treatment on joint performance in friction stir spot welding AA6111-T4 sheet using a pinless tool. Materials Chemistry and Physics, 2013, 141, 768-775.	2.0	24
96	The Influence of Grain Structure on Intermetallic Compound Layer Growth Rates in Fe-Al Dissimilar Welds. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 515-526.	1.1	24
97	Effect of Wall Thickness Transitions on Texture and Grain Structure in Additive Layer Manufacture (ALM) of Ti-6Al-4V. Materials Science Forum, 0, 706-709, 205-210.	0.3	23
98	An examination of the mean stress contribution to the Bauschinger effect by neutron diffraction. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1995, 197, 215-221.	2.6	22
99	The influence of temperature on microstructural damage during uniaxial compression of aluminium matrix composites. Scripta Metallurgica Et Materialia, 1995, 33, 323-329.	1.0	22
100	Modeling of the Thermal Field in Dissimilar Alloy Ultrasonic Welding. Journal of Materials Engineering and Performance, 2015, 24, 799-807.	1.2	22
101	Evaluation of Zn-rich coatings for IMC reaction control in aluminum-magnesium dissimilar welds. Materials Characterization, 2018, 139, 100-110.	1.9	21
102	The effect of processing parameters on rapid-heating β recrystallization in inter-pass deformed Ti-6Al-4V wire-arc additive manufacturing. Materials Characterization, 2020, 163, 110298.	1.9	20
103	The effect of loading direction on strain localisation in wire arc additively manufactured Ti–6Al–4V. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 788, 139608.	2.6	20
104	Quantification of strain fields and grain refinement in Ti-6Al-4V inter-pass rolled wire-arc AM by EBSD misorientation analysis. Materials Characterization, 2020, 170, 110673.	1.9	18
105	The Effectiveness of Al-Si Coatings for Preventing Interfacial Reaction in Al-Mg Dissimilar Metal Welding. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 162-176.	1.1	17
106	Understanding the environmentally assisted cracking (EAC) initiation and propagation of new generation 7xxx alloys using slow strain rate testing. Corrosion Science, 2022, 199, 110161.	3.0	17
107	Discontinuous precipitation in high Li content Alî—,Liî—,Zr alloys. Acta Metallurgica Et Materialia, 1994, 42, 419-433.	1.9	16
108	Through Thickness Microstructural Gradients in 7475 and 2022 Creep - Ageformed Bend Coupons. Materials Science Forum, 2006, 519-521, 407-412.	0.3	16

#	Article	IF	CITATIONS
109	Effect of microstructure on the tensile strength of Ti6Al4V specimens manufactured using additive manufacturing electron beam process. Powder Metallurgy, 2016, 59, 41-50.	0.9	16
110	Tailoring equiaxed β-grain structures in Ti-6Al-4V coaxial electron beam wire additive manufacturing. Materialia, 2021, 20, 101202.	1.3	16
111	Characterisation of thin silica films deposited on carbon fibre by an atmospheric pressure non-equilibrium plasma (APNEP). Composites Part A: Applied Science and Manufacturing, 2002, 33, 1403-1408.	3.8	15
112	Mechanisms of Formation of Submicron Grain Structures by Severe Deformation. Materials Science Forum, 2007, 550, 159-168.	0.3	15
113	Control of weld composition when welding high strength aluminium alloy using the tandem process. Science and Technology of Welding and Joining, 2009, 14, 734-739.	1.5	15
114	Control of weld composition when arc welding high strength aluminium alloys using multiple filler wires. Science and Technology of Welding and Joining, 2010, 15, 491-496.	1.5	15
115	Grain Refinement and Texture Evolution during the Deformation of Al to Ultra-High Strains by Accumulative Roll Bonding (ARB). Materials Science Forum, 2002, 396-402, 429-434.	0.3	13
116	Effects of Combined Zr and Mn Additions on Dispersoid Formation and Recrystallisation Behaviour of AA2198 Sheet. Advanced Materials Research, 0, 89-91, 568-573.	0.3	13
117	The potential for grain refinement of Wire-Arc Additive Manufactured (WAAM) Ti-6Al-4V by ZrN and TiN inoculation. Additive Manufacturing, 2021, 40, 101928.	1.7	13
118	Mechanical and Microstructural Characterization of Percussive Arc Welded Hyper-Pins for Titanium to Composite Metal Joining. Materials Science Forum, 2013, 765, 771-775.	0.3	11
119	Microstructural Evolution of the Deformed State during Severe Deformation of an ECAE Processed Al-0.13%Mg Alloy. Materials Science Forum, 2000, 331-337, 545-550.	0.3	10
120	Novel processing routes to ultrafine grained steel. Ironmaking and Steelmaking, 2001, 28, 203-208.	1.1	10
121	Stability of Ultra-Fine â€~Grain Structures' Produced by Severe Deformation. Materials Science Forum, 2004, 467-470, 1261-1270.	0.3	10
122	β Grain refinement by yttrium addition in Ti-6Al-4V Wire-Arc Additive Manufacturing. Journal of Alloys and Compounds, 2022, 895, 162735.	2.8	10
123	Cast microstructure and dispersoid formation in spray deposited Al–Li alloys. Materials Science and Technology, 1999, 15, 328-336.	0.8	9
124	The effect of cryogenic deformation on the limiting grain size in an SMG Al-alloy. Journal of Materials Science, 2008, 43, 7280-7285.	1.7	9
125	Microstructure transition gradients in titanium dissimilar alloy (Ti-5Al-5V-5Mo-3Cr/Ti-6Al-4V) tailored wire-arc additively manufactured components. Materials Characterization, 2021, 182, 111577.	1.9	9
126	Confirmation of rapid-heating β recrystallization in wire-arc additively manufactured Ti-6Al-4V. Materialia, 2020, 13, 100857.	1.3	8

#	Article	IF	CITATIONS
127	Ultrafine grain structures formed by thermomechanical processing of spray cast Al–Li alloys. Materials Science and Technology, 1999, 15, 605-615.	0.8	6
128	Forging of â€~H' sections from aluminium metal matrix composite bars, modelled using the finite element method. Journal of Materials Processing Technology, 1994, 45, 421-428.	3.1	5
129	Ultrafine-Grain Structures Produced by Severe Deformation Processing. Materials Science Forum, 2004, 447-448, 423-428.	0.3	5
130	The Effect of Dispersoids and Processing Variables on Grain Refinement of Aluminium Alloys Deformed by ECAE. Solid State Phenomena, 2006, 114, 151-158.	0.3	4
131	Room temperature instability of an Al-4%Cu super saturated solid solution in a nano-crystalline alloy produced by SPD. Journal of Materials Science, 2010, 45, 4851-4857.	1.7	4
132	Controlling Interfacial Reaction during Dissimilar Metal Welding of Aluminium Alloys. Materials Science Forum, 0, 794-796, 416-421.	0.3	4
133	Systematic Evaluation of the Advantages of Static Shoulder FSW for Joining Aluminium. Materials Science Forum, 0, 794-796, 407-412.	0.3	4
134	Precipitation Behaviors in MMCs. , 2000, , 61-90.		3
135	Analysis of the Homogeneity of Particle Refinement in Friction Stir Processing Al-Si Alloys. Advanced Materials Research, 0, 89-91, 85-90.	0.3	3
136	The evolution of abnormally coarse grain structures in beta-annealed Ti-6Al%-4V% rolled plates, observed by in-situ investigation. Acta Materialia, 2021, 221, 117362.	3.8	3
137	Deformation Processing of Sheet Metals by Continuous Frictional Angular Extrusion. Materials Science Forum, 2007, 550, 241-246.	0.3	2
138	Ultra-Fine Grained High Carbon Steel by Innovative Deformation. Materials Science Forum, 0, 550, 301-306.	0.3	2
139	Decomposition of the supersaturated solid solution in a rapidly solidified hypereutectic Alî—,Cu alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 179-180, 327-333.	2.6	1
140	3D inspection of fabrication and degradation processes from X-ray (micro) tomography images using a hole closing algorithm. , 2010, , .		1
141	Loss of High Angle Boundary Area during Annealing a Cryo-SPD Processed Al-Alloy with a Nano-Scale Lamellar Grain Structure. Materials Science Forum, 2012, 715-716, 219-226.	0.3	1
142	Influence of Galvanized Coatings on Abrasion Circle Friction Stir Spot Welding Aluminium to Steel for Automotive Applications. Materials Science Forum, 0, 783-786, 1741-1746.	0.3	1
143	lsomorphic grain inoculation in Ti-6Al-4V during additive manufacturing. Materials Letters: X, 2020, 8, 100057.	0.3	1
144	Modelling of friction stir welded AA2139 aluminium alloy panels in tension and blast. International Journal of Impact Engineering, 2022, 163, 104163.	2.4	1

#	Article	IF	CITATIONS
145	Modelling the Precipitation of Al ₃ X Dispersoids in Aluminium Alloys and their Effect on Recrystallization. Materials Science Forum, 2007, 550, 45-54.	0.3	0
146	Assessment of the Advantages of Static Shoulder FSW for Joining Aluminium Aerospace Alloys. Materials Science Forum, 0, 783-786, 1770-1775.	0.3	0
147	Coating Design for Controlling \hat{I}^2 Phase IMC Formation in Dissimilar Al-Mg Metal Welding. , 2015, , 171-179.		Ο