Bing-Yang Cao

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8899055/bing-yang-cao-publications-by-year.pdf

Version: 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

178
papers3,376
citations31
h-index49
g-index202
ext. papers3,940
ext. citations3.4
avg, IF6.18
L-index

#	Paper	IF	Citations
178	Thermal smart materials and their applications in space thermal control system. <i>Wuli Xuebao/Acta Physica Sinica</i> , 2022 , 71, 014401	0.6	O
177	Interfacial thermal resistance in phonon hydrodynamic heat conduction. <i>Journal of Applied Physics</i> , 2022 , 131, 064302	2.5	1
176	Mesoscopic simulation of thermal conductivities of 3D carbon nanotubes, graphene and their epoxy resin based composites. <i>International Journal of Thermal Sciences</i> , 2022 , 172, 107273	4.1	1
175	Spectral Thermal Spreading Resistance of Wide-Bandgap Semiconductors in Ballistic-Diffusive Regime. <i>IEEE Transactions on Electron Devices</i> , 2022 , 1-8	2.9	0
174	A performance evaluation method based on the Pareto frontier for enhanced microchannel heat sinks. <i>Applied Thermal Engineering</i> , 2022 , 212, 118550	5.8	O
173	Molecular dynamics simulation of thermophysical properties of binary RP-3 surrogate fuel mixtures containing trimethylbenzene, n-decane, and n-dodecane. <i>Journal of Molecular Liquids</i> , 2022 , 359, 1192	58 ⁶	О
172	A two-sensor 3EDImethod for thermal boundary resistance measurement. <i>Journal of Applied Physics</i> , 2021 , 129, 125107	2.5	2
171	Non-Fourier heat transport across 1D nano film between thermal reservoirs with different boundary resistances. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2021 , 128, 114610	3	1
170	C4+ Surrogate Models for Thermophysical Properties of Aviation Kerosene RP-3 at Supercritical Pressures. <i>Energy & Energy & Energ</i>	4.1	1
169	Generalized Boltzmann transport theory for relaxational heat conduction. <i>International Journal of Heat and Mass Transfer</i> , 2021 , 173, 121225	4.9	2
168	Anomalies of Luy-based thermal transport from the Luy-Fokker-Planck equation. <i>AIMS Mathematics</i> , 2021 , 6, 6868-6881	2.2	2
167	Topological effects of phonons in GaN and AlGaN: A potential perspective for tuning phonon transport. <i>Journal of Applied Physics</i> , 2021 , 129, 085102	2.5	4
166	Molecular dynamics study on viscosities of sub/supercritical n-decane, n-undecane and n-dodecane. <i>Journal of Molecular Liquids</i> , 2021 , 335, 116180	6	5
165	Thermal transport of amorphous phase change memory materials using population-coherence theory: a first-principles study. <i>Journal Physics D: Applied Physics</i> , 2021 , 54, 505302	3	3
164	Comparison of atomic simulation methods for computing thermal conductivity of n-decane at sub/supercritical pressure. <i>Journal of Molecular Liquids</i> , 2021 , 342, 117478	6	1
163	Phonon thermal transport properties of GaN with symmetry-breaking and lattice deformation induced by the electric field. <i>International Journal of Heat and Mass Transfer</i> , 2021 , 179, 121659	4.9	3
162	Fractional-order heat conduction models from generalized Boltzmann transport equation. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 201902	28₿	9

(2020-2020)

161	Thermal Wave in Phonon Hydrodynamic Regime by Phonon Monte Carlo Simulations. <i>Nanoscale and Microscale Thermophysical Engineering</i> , 2020 , 24, 94-122	3.7	10
160	Study of phononic thermal transport across nanostructured interfaces using phonon Monte Carlo method. <i>International Journal of Heat and Mass Transfer</i> , 2020 , 154, 119762	4.9	7
159	Multi-objective optimization of a hybrid microchannel heat sink combining manifold concept with secondary channels. <i>Applied Thermal Engineering</i> , 2020 , 181, 115592	5.8	12
158	Thermomass Theory in the Framework of GENERIC. <i>Entropy</i> , 2020 , 22,	2.8	3
157	Effects and correction of angular momentum non-conservation in RNEMD for calculating thermal conductivity. <i>Computational Materials Science</i> , 2020 , 183, 109753	3.2	2
156	Thermodynamic models for H2OLO2H2 mixtures in near-critical and supercritical regions of water. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 4297-4304	6.7	12
155	Thermal transport properties of GaN with biaxial strain and electron-phonon coupling. <i>Journal of Applied Physics</i> , 2020 , 127, 035102	2.5	29
154	Molecular dynamic simulation of thermal transport in monolayer CB N alloy. <i>Nanotechnology</i> , 2020 , 31, 185404	3.4	0
153	Molecular Dynamics Investigation on Thermal Conductivity and Phonon Transmission of Folded Graphene. <i>ECS Journal of Solid State Science and Technology</i> , 2020 , 9, 093005	2	2
152	Two Temperature Extension of Phonon Hydrodynamics. <i>Journal of Non-Equilibrium Thermodynamics</i> , 2020 , 45, 291-304	3.8	2
151	Ballistic-Diffusive Heat Conduction in Thin Films by Phonon Monte Carlo Method: Gray Medium Approximation Versus Phonon Dispersion. <i>Journal of Heat Transfer</i> , 2020 , 142,	1.8	2
150	Tuning the thermal conductivity of nanoparticle suspensions by electric field. <i>Nanotechnology</i> , 2020 , 31, 465403	3.4	5
149	A superstatistical model for anomalous heat conduction and diffusion. <i>Applied Mathematical Modelling</i> , 2020 , 79, 392-401	4.5	1
148	Molecular dynamics simulation and theoretical study on heat capacities of supercritical H2O/CO2 mixtures. <i>Journal of Molecular Liquids</i> , 2020 , 299, 112133	6	12
147	Machine learning interatomic potential developed for molecular simulations on thermal properties of EGaO. <i>Journal of Chemical Physics</i> , 2020 , 153, 144501	3.9	22
146	Beyond phonon hydrodynamics: Nonlocal phonon heat transport from spatial fractional-order Boltzmann transport equation. <i>AIP Advances</i> , 2020 , 10, 105004	1.5	1
145	Thermal and flow characterization in nanochannels with tunable surface wettability: A comprehensive molecular dynamics study. <i>Numerical Heat Transfer; Part A: Applications</i> , 2020 , 78, 231-2	25 ² 1 ³	10
144	Experimental study on single-phase hybrid microchannel cooling using HFE-7100 for liquid-cooled chips. <i>International Journal of Heat and Mass Transfer</i> , 2020 , 160, 120230	4.9	23

143	Anomalous heat diffusion from fractional FokkerPlanck equation. <i>Applied Mathematics Letters</i> , 2020 , 99, 105992	3.5	13
142	Thermal Spreading Resistance in Ballistic-Diffusive Regime for GaN HEMTs. <i>IEEE Transactions on Electron Devices</i> , 2019 , 66, 3296-3301	2.9	18
141	Machine learning for predicting thermodynamic properties of pure fluids and their mixtures. <i>Energy</i> , 2019 , 188, 116091	7.9	22
140	An electrical thermometry platform for measuring cross-plane thermal conductivity of 2D flakes on substrate. <i>Applied Physics Letters</i> , 2019 , 115, 123102	3.4	2
139	Size-dependent mode contributions to the thermal transport of suspended and supported graphene. <i>Applied Physics Letters</i> , 2019 , 115, 123105	3.4	10
138	Numerical study on flow and heat transfer of a hybrid microchannel cooling scheme using manifold arrangement and secondary channels. <i>Applied Thermal Engineering</i> , 2019 , 159, 113896	5.8	23
137	Anomalous heat equations based on non-Brownian descriptions. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2019 , 526, 121141	3.3	
136	The Effect of Thermal Contact Number on the Tube?Tube Contact Conductance of Single-Walled Carbon Nanotubes. <i>Nanomaterials</i> , 2019 , 9,	5.4	4
135	Influence of the composition gradient on the propagation of heat pulses in functionally graded nanomaterials. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2019 , 475, 20180499	2.4	1
134	On Entropic Framework Based on Standard and Fractional Phonon Boltzmann Transport Equations. <i>Entropy</i> , 2019 , 21,	2.8	5
133	Fractional Boltzmann transport equation for anomalous heat transport and divergent thermal conductivity. <i>International Journal of Heat and Mass Transfer</i> , 2019 , 137, 84-89	4.9	12
132	Three mathematical representations and an improved ADI method for hyperbolic heat conduction. <i>International Journal of Heat and Mass Transfer</i> , 2019 , 135, 974-984	4.9	15
131	A numerical study on the thermal conductivity of H2O/CO2/H2 mixtures in supercritical regions of water for coal supercritical water gasification system. <i>International Journal of Heat and Mass Transfer</i> , 2019 , 135, 413-424	4.9	22
130	Numerical study on transport properties of the working mixtures for coal supercritical water gasification based power generation systems. <i>Applied Thermal Engineering</i> , 2019 , 162, 114228	5.8	13
129	Entropy and Entropy Production in Multiscale Dynamics. <i>Journal of Non-Equilibrium Thermodynamics</i> , 2019 , 44, 217-233	3.8	10
128	Extracting optical constants of solid materials with micro-rough surfaces from ellipsometry without using effective medium approximation. <i>Optics Express</i> , 2019 , 27, 17667-17680	3.3	5
127	Diffusion Tensors of Arbitrary-Shaped Nanoparticles in Fluid by Molecular Dynamics Simulation. <i>Scientific Reports</i> , 2019 , 9, 18943	4.9	5
126	Radial ballistic-diffusive heat conduction in nanoscale. <i>Nanoscale and Microscale Thermophysical Engineering</i> , 2019 , 23, 10-24	3.7	10

(2017-2019)

125	Molecular dynamics simulation of double-layered graphene-carbon nanotube junctions for thermal rectification. <i>Materials Letters</i> , 2019 , 234, 357-360	3.3	4
124	A comprehensive analysis about thermal conductivity of multi-layer graphene with N-doping, -CH3 group, and single vacancy. <i>Journal of Applied Physics</i> , 2018 , 123, 135101	2.5	10
123	Enhanced thermal transport across multilayer graphene and water by interlayer functionalization. <i>Applied Physics Letters</i> , 2018 , 112, 041603	3.4	47
122	Interface-based two-way tuning of the in-plane thermal transport in nanofilms. <i>Journal of Applied Physics</i> , 2018 , 123, 114304	2.5	11
121	Reflection and refraction of a thermal wave at an ideal interface. <i>International Journal of Heat and Mass Transfer</i> , 2018 , 116, 314-328	4.9	10
120	Influence of travelling surface waves on nanofluidic viscosity. <i>Computers and Fluids</i> , 2018 , 160, 42-50	2.8	O
119	Memory behaviors of entropy production rates in heat conduction. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2018 , 492, 105-112	3.3	3
118	Spurious heat conduction behavior of finite-size graphene nanoribbon under extreme uniaxial strain caused by the AIREBO potential. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2018 , 96, 46-53	3	10
117	A hybrid phonon Monte Carlo-diffusion method for ballistic-diffusive heat conduction in nano- and micro- structures. <i>International Journal of Heat and Mass Transfer</i> , 2018 , 127, 1014-1022	4.9	18
116	A Review of Simulation Methods in Micro/Nanoscale Heat Conduction. <i>ES Energy & Environments</i> , 2018 ,	2.9	50
115	The effect of structural asymmetry on thermal rectification in nanostructures. <i>Journal of Physics Condensed Matter</i> , 2018 , 30, 435305	1.8	3
114	Enhancing thermal rectification in graphene-carbon nanotube junctions by tuning the chirality of pillar. <i>Europhysics Letters</i> , 2018 , 123, 44004	1.6	0
113	Phonon branch-resolved electron-phonon coupling and the multitemperature model. <i>Physical Review B</i> , 2018 , 98,	3.3	20
112	A molecular dynamics simulation study of PVT properties for H2O/H2/CO2 mixtures in near-critical and supercritical regions of water. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 10980-10990	6.7	22
111	Anisotropic Heat Conduction in Two-Dimensional Periodic Silicon Nanoporous Films. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 5293-5301	3.8	20
110	Phonon thermal properties of graphene on h-BN from molecular dynamics simulations. <i>Applied Physics Letters</i> , 2017 , 110, 103106	3.4	28
109	Vortex characteristics in Fourier and non-Fourier heat conduction based on heat flux rotation. <i>International Journal of Heat and Mass Transfer</i> , 2017 , 108, 2403-2407	4.9	
108	Ballistic thermal wave propagation along nanowires modeled using phonon Monte Carlo simulations. <i>Applied Thermal Engineering</i> , 2017 , 117, 609-616	5.8	26

107	An efficient two-step Monte Carlo method for heat conduction in nanostructures. <i>Journal of Computational Physics</i> , 2017 , 342, 253-266	4.1	19
106	Giant Thermal Rectification from Single-Carbon Nanotube-Graphene Junction. <i>ACS Applied Materials & Discrete Amplied &</i>	9.5	24
105	Length and temperature dependence of the mechanical properties of finite-size carbyne. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2017 , 93, 124-131	3	9
104	Effects of torsion on the thermal conductivity of multi-layer graphene. <i>Journal of Applied Physics</i> , 2017 , 121, 205102	2.5	9
103	Impacts of potential models on calculating the thermal conductivity of graphene using non-equilibrium molecular dynamics simulations. <i>International Journal of Heat and Mass Transfer</i> , 2017 , 107, 450-460	4.9	49
102	Ultrahigh Thermal Rectification in Pillared Graphene Structure with Carbon Nanotube-Graphene Intramolecular Junctions. <i>ACS Applied Materials & District Materials & Materials & District Materials & </i>	9.5	29
101	Size effects in non-linear heat conduction with flux-limited behaviors. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2017 , 381, 3621-3626	2.3	3
100	Mathematical and information-geometrical entropy for phenomenological Fourier and non-Fourier heat conduction. <i>Physical Review E</i> , 2017 , 96, 032131	2.4	1
99	Superballistic characteristics in transient phonon ballistic-diffusive transport. <i>Applied Physics Letters</i> , 2017 , 111, 113109	3.4	3
98	Thermal rectification at the bimaterial nanocontact interface. <i>Nanoscale</i> , 2017 , 9, 11480-11487	7.7	18
97	Natural convection of power-law fluids under wall vibrations: A lattice Boltzmann study. <i>Numerical Heat Transfer; Part A: Applications</i> , 2017 , 72, 600-627	2.3	6
96	Fast nanofluidics by travelling surface waves. <i>Microfluidics and Nanofluidics</i> , 2017 , 21, 1	2.8	8
95	Slip Boundary Conditions in Ballistic Diffusive Heat Transport in Nanostructures. <i>Nanoscale and Microscale Thermophysical Engineering</i> , 2017 , 21, 159-176	3.7	34
94	Approximate analyses of Fourier and non-Fourier heat conduction models by the variational principles based on Laplace transforms. <i>Numerical Heat Transfer; Part A: Applications</i> , 2017 , 71, 962-977	2.3	1
93	Spectral analysis of nonequilibrium molecular dynamics: Spectral phonon temperature and local nonequilibrium in thin films and across interfaces. <i>Physical Review B</i> , 2017 , 95,	3.3	52
92	Extended social force model with a dynamic navigation field for bidirectional pedestrian flow. <i>Frontiers of Physics</i> , 2017 , 12, 1	3.7	15
91	Cross-plane heat conduction in nanoporous silicon thin films by phonon Boltzmann transport equation and Monte Carlo simulations. <i>Applied Thermal Engineering</i> , 2017 , 111, 1401-1408	5.8	32
90	Effect of various surface conditions on nanochannel flows past permeable walls. <i>Molecular Simulation</i> , 2017 , 43, 65-75	2	10

(2016-2017)

89	Thermomass Theory: A Mechanical Pathway to Analyze Anomalous Heat Conduction in Nanomaterials 2017 ,		1
88	Entropic Constitutive Relation and Modeling for Fourier and Hyperbolic Heat Conductions. <i>Entropy</i> , 2017 , 19, 644	2.8	2
87	Networked nanoconstrictions: An effective route to tuning the thermal transport properties of graphene. <i>Carbon</i> , 2016 , 96, 711-719	10.4	44
86	Generalized variational principles for heat conduction models based on Laplace transforms. International Journal of Heat and Mass Transfer, 2016, 103, 1176-1180	4.9	7
85	Nanoscale thermal cloaking in graphene via chemical functionalization. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 32952-32961	3.6	22
84	On defects of Taylor series approximation in heat conduction models. <i>International Journal of Heat and Mass Transfer</i> , 2016 , 98, 824-832	4.9	9
83	Thermal wave propagation through nanofilms in ballistic-diffusive regime by Monte Carlo simulations. <i>International Journal of Thermal Sciences</i> , 2016 , 109, 81-89	4.1	25
82	Capillary filling dynamics of polymer melts in nanopores: experiments and rheological modelling. <i>RSC Advances</i> , 2016 , 6, 7553-7559	3.7	18
81	Lorentz covariance of heat conduction laws and a Lorentz-covariant heat conduction model. <i>Applied Mathematical Modelling</i> , 2016 , 40, 5532-5541	4.5	4
80	Ballistic-diffusive heat conduction in multiply-constrained nanostructures. <i>International Journal of Thermal Sciences</i> , 2016 , 101, 126-132	4.1	42
79	Formation of single carbon chain bridging two SWCNTs via tensile deformation of nanobud junction. <i>Materials and Design</i> , 2016 , 97, 86-92	8.1	3
78	The effective thermal conductivity of ballistic diffusive heat conduction in nanostructures with internal heat source. <i>International Journal of Heat and Mass Transfer</i> , 2016 , 92, 995-1003	4.9	29
77	On Thermodynamics Problems in the Single-Phase-Lagging Heat Conduction Model. <i>Entropy</i> , 2016 , 18, 391	2.8	2
76	Study on Non-Newtonian Behaviors of Lennard-Jones Fluids via Molecular Dynamics Simulations. <i>Chinese Journal of Chemical Physics</i> , 2016 , 29, 754-760	0.9	1
75	Nanochannel flow past permeable walls via molecular dynamics. AIP Advances, 2016, 6, 075307	1.5	5
74	Phonon wave propagation in ballistic-diffusive regime. <i>Journal of Applied Physics</i> , 2016 , 119, 124301	2.5	17
73	Phonon thermal properties of graphene from molecular dynamics using different potentials. <i>Journal of Chemical Physics</i> , 2016 , 145, 134705	3.9	37
72	Triggering wave-domain heat conduction in graphene. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2016 , 380, 2105-2110	2.3	13

71	Transient in-plane thermal transport in nanofilms with internal heating. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2016 , 472, 20150811	2.4	5
70	Experimental study on capillary filling in nanochannels. <i>Chemical Physics Letters</i> , 2016 , 662, 137-140	2.5	24
69	Effects of nanobuds and heat welded nanobuds chains on mechanical behavior of carbon nanotubes. <i>Computational Materials Science</i> , 2015 , 109, 49-55	3.2	9
68	Spectral phonon thermal properties in graphene nanoribbons. <i>Carbon</i> , 2015 , 93, 915-923	10.4	37
67	Numerical Investigation of Nanofluid Flow and Heat Transfer Around a Calabash-Shaped Body. Numerical Heat Transfer; Part A: Applications, 2015, 68, 548-565	2.3	3
66	Molecular Dynamics Studies on Ballistic Thermal Resistance of Graphene Nano-Junctions. <i>Communications in Theoretical Physics</i> , 2015 , 63, 619-624	2.4	2
65	Superhigh-speed unidirectional rotation of a carbon nanotube in a sheared fluid and its decoupled dynamics. <i>RSC Advances</i> , 2015 , 5, 88719-88724	3.7	12
64	Ballisticdiffusive phonon transport and size induced anisotropy of thermal conductivity of silicon nanofilms. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2015 , 66, 1-6	3	33
63	Spectral phonon mean free path and thermal conductivity accumulation in defected graphene: The effects of defect type and concentration. <i>Physical Review B</i> , 2015 , 91,	3.3	77
62	Investigation of Rotational Diffusion of a Carbon Nanotube by Molecular Dynamics. <i>Journal of Nanoscience and Nanotechnology</i> , 2015 , 15, 2984-8	1.3	2
61	Investigation on the thermophoretic tension force induced by particle rotation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 448, 2525-2529	4.3	1
60	Translational thermophoresis and rotational movement of peanut-like colloids under temperature gradient. <i>Microfluidics and Nanofluidics</i> , 2015 , 19, 805-811	2.8	16
59	Experimental study on thermophoresis of colloids in aqueous surfactant solutions. <i>Journal of Physics Condensed Matter</i> , 2015 , 27, 495102	1.8	7
58	A model for phonon thermal conductivity of multi-constrained nanostructures. <i>Wuli Xuebao/Acta Physica Sinica</i> , 2015 , 64, 146501	0.6	3
57	Anomalous orientations of a rigid carbon nanotube in a sheared fluid. Scientific Reports, 2014, 4, 6120	4.9	35
56	Molecular dynamics calculation of rotational diffusion coefficient of a carbon nanotube in fluid. Journal of Chemical Physics, 2014 , 140, 034703	3.9	30
55	High and anisotropic thermal conductivity of body-centered tetragonal C4 calculated using molecular dynamics. <i>Carbon</i> , 2014 , 66, 567-575	10.4	21
54	Thermal conductivity of multi-walled carbon nanotubes: Molecular dynamics simulations. <i>Chinese Physics B</i> , 2014 , 23, 096501	1.2	6

53	Thermal Conduction in a Single Polyethylene Chain Using Molecular Dynamics Simulations. <i>Chinese Physics Letters</i> , 2014 , 31, 086501	1.8	10
52	Phonon ballistic-diffusive heat conduction in silicon nanofilms by Monte Carlo simulations. <i>International Journal of Heat and Mass Transfer</i> , 2014 , 78, 755-759	4.9	56
51	Effects of nanosized constriction on thermal transport properties of graphene. <i>Nanoscale Research Letters</i> , 2014 , 9, 408	5	9
50	Thermal wave propagation in graphene studied by molecular dynamics simulations. <i>Science Bulletin</i> , 2014 , 59, 3495-3503		32
49	Size dependent thermal conductivity of Si nanosystems based on phonon gas dynamics. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2014 , 56, 256-262	3	46
48	Numerical studies on damping of thermal waves. <i>International Journal of Thermal Sciences</i> , 2014 , 84, 9-20	4.1	22
47	Study on thermal characteristics of phonons in graphene. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 154	1709	4
46	Temperature in nonequilibrium states and non-Fourier heat conduction. <i>Physical Review E</i> , 2013 , 87,	2.4	22
45	Thermal Conductivity of Single-Walled Carbon Nanotube with Internal Heat Source Studied by Molecular Dynamics Simulation. <i>International Journal of Thermophysics</i> , 2013 , 34, 2361-2370	2.1	5
44	Numerical studies on dispersion of thermal waves. <i>International Journal of Heat and Mass Transfer</i> , 2013 , 67, 1072-1082	4.9	27
43	Thermal resistance between crossed carbon nanotubes: Molecular dynamics simulations and analytical modeling. <i>Journal of Applied Physics</i> , 2013 , 114, 224308	2.5	42
42	Polymer Nanowire Arrays With High Thermal Conductivity and Superhydrophobicity Fabricated by a Nano-Molding Technique. <i>Heat Transfer Engineering</i> , 2013 , 34, 131-139	1.7	35
41	Flows of Polymer Melts through Nanopores: Experiments and Modelling. <i>Journal of Thermal Science and Technology</i> , 2013 , 8, 363-369	0.6	6
40	Monte Carlo simulation of phonon ballistic diffusive heat conduction in silicon nanofilm. <i>Wuli Xuebao/Acta Physica Sinica</i> , 2013 , 62, 244401	0.6	13
39	New Models for Droplet Heating and Evaporation. Asian Journal of Scientific Research, 2013, 6, 177-186	0.3	
38	Molecular Dynamics Study of Condensation/Evaporation and Velocity Distribution of N-Dodecane at Liquid-Vapour Phase Equilibria. <i>Journal of Thermal Science and Technology</i> , 2012 , 7, 288-300	0.6	23
37	Nonequilibrium molecular dynamics simulation of shear viscosity by a uniform momentum source-and-sink scheme. <i>Journal of Computational Physics</i> , 2012 , 231, 5306-5316	4.1	9
36	A Novel Thermal Driving Force for Nanodevices. <i>Journal of Heat Transfer</i> , 2012 , 134,	1.8	3

35	Non-Fourier Heat Conduction in Carbon Nanotubes. Journal of Heat Transfer, 2012, 134,	1.8	7
34	Application of the uniform source-and-sink scheme to molecular dynamics calculation of the self-diffusion coefficient of fluids. <i>International Journal for Numerical Methods in Engineering</i> , 2012 , 92, 229-237	2.4	4
33	Phonon relaxation and heat conduction in one-dimensional Fermi-Pasta-Ulam lattices by molecular dynamics simulations. <i>Chinese Physics B</i> , 2012 , 21, 014401	1.2	1
32	General expression for entropy production in transport processes based on the thermomass model. <i>Physical Review E</i> , 2012 , 85, 061107	2.4	23
31	Molecular dynamics simulations of heat conduction in multi-walled carbon nanotubes. <i>Molecular Simulation</i> , 2012 , 38, 823-829	2	12
30	Superhydrophobicity of Self-Organized Surfaces of Polymer Nanowire Arrays Fabricated by a Nano-Injection Moulding Technique. <i>Journal of Thermal Science and Technology</i> , 2011 , 6, 204-209	0.6	6
29	Entransy and entropy revisited. Science Bulletin, 2011, 56, 2974-2977		26
28	Temperature difference-powered carbon nanotube bearings. Frontiers in Energy, 2011, 5, 49-52	2.6	
27	High thermal conductivity of polyethylene nanowire arrays fabricated by an improved nanoporous template wetting technique. <i>Polymer</i> , 2011 , 52, 1711-1715	3.9	78
26	Generalized heat conduction laws based on thermomass theory and phonon hydrodynamics. <i>Journal of Applied Physics</i> , 2011 , 110, 063504	2.5	57
25	Molecular dynamics study on evaporation and condensation of n-dodecane at liquid-vapor phase equilibria. <i>Journal of Chemical Physics</i> , 2011 , 134, 164309	3.9	54
24	Molecular dynamics study of the processes in the vicinity of the n-dodecane vapour/liquid interface. <i>Physics of Fluids</i> , 2011 , 23, 112104	4.4	40
23	A uniform source-and-sink scheme for calculating thermal conductivity by nonequilibrium molecular dynamics. <i>Journal of Chemical Physics</i> , 2010 , 133, 024106	3.9	23
22	Heat flow choking in carbon nanotubes. International Journal of Heat and Mass Transfer, 2010 , 53, 1796	-14890	31
21	Thermal gradient induced actuation in double-walled carbon nanotubes. <i>Nanotechnology</i> , 2009 , 20, 495	5504	33
20	Study on thermal wave based on the thermal mass theory. <i>Science in China Series D: Earth Sciences</i> , 2009 , 52, 1786-1792		17
19	Molecular momentum transport at fluid-solid interfaces in MEMS/NEMS: a review. <i>International Journal of Molecular Sciences</i> , 2009 , 10, 4638-706	6.3	216
18	Nonequilibrium molecular dynamics calculation of the thermal conductivity based on an improved relaxation scheme. <i>Journal of Chemical Physics</i> , 2008 , 129, 074106	3.9	16

Thermal Conductivity of Carbon Nanotubes Embedded in Solids. Chinese Physics Letters, 2008, 25, 1392-1395 18 17 Thermal conductivity of dielectric nanowires with different cross-section shapes. Chinese Physics B, 16 11 **2007**, 16, 3777-3782 Motion of Electron Gas and the Induced Nanofilm Electromigration 2007, 379 15 Equation of motion of a phonon gas and non-Fourier heat conduction. Journal of Applied Physics, 2.5 130 14 2007, 102, 053503 Non-Maxwell slippage induced by surface roughness for microscale gas flow: a molecular dynamics 1.7 13 25 simulation. Molecular Physics, 2007, 105, 1403-1410 Experimental study on the in-plane thermal conductivity of Au nanofilms. Progress in Natural 3.6 12 2 Science: Materials International, 2007, 17, 212-216 Experimental Studies on Thermal and Electrical Properties of Platinum Nanofilms. Chinese Physics 1.8 24 11 Letters, 2006, 23, 936-938 Influence of grain boundary scattering on the electrical properties of platinum nanofilms. Applied 10 3.4 63 Physics Letters, 2006, 89, 114102 Size effects on the thermal conductivity of polycrystalline platinum nanofilms. Journal of Physics 1.8 58 9 Condensed Matter, **2006**, 18, 7937-7950 Influence of grain boundary scattering on the electrical and thermal conductivities of 106 3.3 polycrystalline gold nanofilms. Physical Review B, 2006, 74, Liquid flow in surface-nanostructured channels studied by molecular dynamics simulation. Physical 2.4 104 Review E, 2006, 74, 066311 Effect of surface roughness on gas flow in microchannels by molecular dynamics simulation. 5.7 120 International Journal of Engineering Science, 2006, 44, 927-937 Temperature dependence of the tangential momentum accommodation coefficient for gases. 5 3.4 75 Applied Physics Letters, 2005, 86, 091905 Rarefied Gas Flow in Rough Microchannels by Molecular Dynamics Simulation. Chinese Physics 1.8 27 Letters, 2004, 21, 1777-1779 Application of 2DMD to gaseous microflows. Science Bulletin, 2004, 49, 1101 3 10 Investigation of the Parameter-Dependence of Topology-Optimized Heat Sinks in Natural 1.7 1 Convection. Heat Transfer Engineering, 1-15 MolNet-3D: Deep Learning of Molecular Representations and Properties from 3D Topography. 1 3.5 1 Advanced Theory and Simulations, 2200037