Francisco J B Mendonça-Junior

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8898990/publications.pdf

Version: 2024-02-01

Francisco J B

#	Article	IF	CITATIONS
1	2-Amino-thiophene derivatives present antileishmanial activity mediated by apoptosis and immunomodulation inÂvitro. European Journal of Medicinal Chemistry, 2015, 106, 1-14.	2.6	62
2	Synthesis of 1,2,3-Triazole Derivatives and in Vitro Antifungal Evaluation on Candida Strains. Molecules, 2012, 17, 5882-5892.	1.7	56
3	Computational Studies Applied to Flavonoids against Alzheimer's and Parkinson's Diseases. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-21.	1.9	51
4	SAR, QSAR and Docking of Anticancer Flavonoids and Variants: A Review. Current Topics in Medicinal Chemistry, 2013, 12, 2785-2809.	1.0	51
5	Synthesis, Structure-Activity Relationships (SAR) and in Silico Studies of Coumarin Derivatives with Antifungal Activity. International Journal of Molecular Sciences, 2013, 14, 1293-1309.	1.8	46
6	Active Essential Oils and Their Components in Use against Neglected Diseases and Arboviruses. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-52.	1.9	41
7	Antileishmanial activity of new thiophene–indole hybrids: Design, synthesis, biological and cytotoxic evaluation, and chemometric studies. Bioorganic and Medicinal Chemistry, 2016, 24, 3972-3977.	1.4	40
8	Docking Studies for Multi-Target Drugs. Current Drug Targets, 2017, 18, 592-604.	1.0	39
9	Design, synthesis, molecular docking and biological evaluation of thiophen-2-iminothiazolidine derivatives for use against Trypanosoma cruzi. Bioorganic and Medicinal Chemistry, 2016, 24, 4228-4240.	1.4	38
10	An electrochemical biosensor based on Hairpin-DNA modified gold electrode for detection of DNA damage by a hybrid cancer drug intercalation. Biosensors and Bioelectronics, 2019, 133, 160-168.	5.3	37
11	Thiophene-Based Compounds with Potential Anti-Inflammatory Activity. Pharmaceuticals, 2021, 14, 692.	1.7	37
12	Preliminary antifungal and cytotoxic evaluation of synthetic cycloalkyl[b]thiophene derivatives with PLS-DA analysis. Acta Pharmaceutica, 2012, 62, 221-236.	0.9	36
13	Synthesis, cytotoxicity and antifungal activity of 5-nitro-thiophene-thiosemicarbazones derivatives. Chemico-Biological Interactions, 2017, 272, 172-181.	1.7	32
14	In-silico Analyses of Natural Products on Leishmania Enzyme Targets. Mini-Reviews in Medicinal Chemistry, 2015, 15, 253-269.	1.1	32
15	Molecular Docking Studies Applied to a Dataset of Cruzain Inhibitors. Current Computer-Aided Drug Design, 2018, 14, 68-78.	0.8	29
16	Evaluation of Antifungal Activity and Mode of Action of New Coumarin Derivative, 7-Hydroxy-6-nitro-2H-1-benzopyran-2-one, against <i>Aspergillus</i> spp Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-8.	0.5	28
17	Aminoguanidine hydrazones (AGH's) as modulators of norfloxacin resistance in Staphylococcus aureus that overexpress NorA efflux pump. Chemico-Biological Interactions, 2018, 280, 8-14.	1.7	28
18	Genetic Mechanisms of Antibiotic Resistance and the Role of Antibiotic Adjuvants. Current Topics in Medicinal Chemistry, 2018, 18, 42-74.	1.0	28

#	Article	IF	CITATIONS
19	Self-Organizing Maps of Molecular Descriptors for Sesquiterpene Lactones and Their Application to the Chemotaxonomy of the Asteraceae Family. Molecules, 2012, 17, 4684-4702.	1.7	27
20	Modulation of Drug Resistance inStaphylococcus aureuswith Coumarin Derivatives. Scientifica, 2016, 2016, 1-6.	0.6	26
21	Anticancer properties of thiophene derivatives in breast cancer MCF-7 cells. Anti-Cancer Drugs, 2018, 29, 157-166.	0.7	26
22	5-Nitro-Thiophene-Thiosemicarbazone Derivatives Present Antitumor Activity Mediated by Apoptosis and DNA Intercalation. Current Topics in Medicinal Chemistry, 2019, 19, 1075-1091.	1.0	26
23	Experimental Methodologies and Evaluations of Computer-Aided Drug Design Methodologies Applied to a Series of 2-Aminothiophene Derivatives with Antifungal Activities. Molecules, 2012, 17, 2298-2315.	1.7	25
24	Anxiolytic Properties of New Chemical Entity, 5TIO1. Neurochemical Research, 2013, 38, 726-731.	1.6	24
25	Molecular Modeling and Physicochemical Properties of Supramolecular Complexes of Limonene with α- and β-Cyclodextrins. AAPS PharmSciTech, 2017, 18, 49-57.	1.5	23
26	Correlation between DNA/HSA-interactions and antimalarial activity of acridine derivatives: Proposing a possible mechanism of action. Journal of Photochemistry and Photobiology B: Biology, 2018, 189, 165-175.	1.7	23
27	Chemometric Studies on Potential Larvicidal Compounds Against Aedes Aegypti. Medicinal Chemistry, 2014, 10, 201-210.	0.7	23
28	Natural Bioactive Products with Antioxidant Properties Useful in Neurodegenerative Diseases. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-2.	1.9	21
29	Recent Advancement in Natural Hyaluronidase Inhibitors. Current Topics in Medicinal Chemistry, 2016, 16, 2525-2531.	1.0	20
30	Antifungal activity of topical microemulsion containing a thiophene derivative. Brazilian Journal of Microbiology, 2014, 45, 545-550.	0.8	19
31	New thiophene–acridine compounds: Synthesis, antileishmanial activity, DNA binding, chemometric, and molecular docking studies. Chemical Biology and Drug Design, 2018, 91, 1141-1155.	1.5	19
32	Natural Product Inhibitors of Topoisomerases: Review and Docking Study. Current Protein and Peptide Science, 2018, 19, 275-291.	0.7	18
33	Docking and physico-chemical properties of α- and β-cyclodextrin complex containing isopulegol: a comparative study. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2016, 85, 341-354.	0.9	17
34	Virtual Screening and the In Vitro Assessment of the Antileishmanial Activity of Lignans. Molecules, 2020, 25, 2281.	1.7	17
35	Evaluation of anti-inflammatory activity and molecular docking study of new aza-bicyclic isoxazoline acylhydrazone derivatives. MedChemComm, 2019, 10, 1916-1925.	3.5	16
36	Synthesis and evaluation of the antibiotic and adjuvant antibiotic potential of organotin(IV) derivatives. Journal of Inorganic Biochemistry, 2018, 180, 80-88.	1.5	15

#	Article	IF	CITATIONS
37	Combined structure- and ligand-based virtual screening aiding discovery of selenoglycolicamides as potential multitarget agents against Leishmania species. Journal of Molecular Structure, 2019, 1198, 126872.	1.8	15
38	Synthesis and Evaluation of 2â€Aminothiophene Derivatives as <i>Staphylococcus aureus</i> Efflux Pump Inhibitors. ChemMedChem, 2020, 15, 716-725.	1.6	15
39	Docking of Natural Products against Neurodegenerative Diseases: General Concepts. Combinatorial Chemistry and High Throughput Screening, 2018, 21, 152-160.	0.6	15
40	Enzymatic Targets in Trypanosoma brucei. Current Protein and Peptide Science, 2016, 17, 243-259.	0.7	15
41	Dynamic Simulation, Docking and DFT Studies Applied to a Set of Anti-Acetylcholinesterase Inhibitors in the enzyme β-Secretase (BACE-1): An Important Therapeutic Target in Alzheimer's Disease. Current Computer-Aided Drug Design, 2017, 13, 266-274.	0.8	15
42	Comparative Computational Studies of 3,4-Dihydro-2,6-diaryl-4-oxo-pyrimidine-5-carbonitrile Derivatives as Potential Antinociceptive Agents. Molecules, 2012, 17, 809-819.	1.7	14
43	ldentification of New Targets and the Virtual Screening of Lignans against Alzheimer's Disease. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-19.	1.9	13
44	Computer-Aided Drug Design Applied to Secondary Metabolites as Anticancer Agents. Current Topics in Medicinal Chemistry, 2020, 20, 1677-1703.	1.0	13
45	EDITORIAL (Thematic Issue : Hybrid Compounds as Multitarget Agents in Medicinal Chemistry – Part I). Current Topics in Medicinal Chemistry, 2017, 17, 843-844.	1.0	12
46	A new coumarin derivative, 4-acetatecoumarin, with antifungal activity and association study against Aspergillus spp Brazilian Journal of Microbiology, 2018, 49, 407-413.	0.8	12
47	Thiophene-thiosemicarbazone derivative (L10) exerts antifungal activity mediated by oxidative stress and apoptosis in C. albicans. Chemico-Biological Interactions, 2020, 320, 109028.	1.7	12
48	Biochemical Changes Evidenced in Alzheimer's Disease: A Mini-Review. Letters in Drug Design and Discovery, 2013, 11, 240-248.	0.4	12
49	Multi-Target Drugs Against Metabolic Disorders. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2019, 19, 402-418.	0.6	12
50	Characterization and Antiproliferative Activity of a Novel 2-Aminothiophene Derivative-β-Cyclodextrin Binary System. Molecules, 2018, 23, 3130.	1.7	11
51	Design, synthesis and pharmacological evaluation of CVIB, a codrug of carvacrol and ibuprofen as a novel anti-inflammatory agent. International Immunopharmacology, 2019, 76, 105856.	1.7	11
52	Secondary Metabolites with Antioxidant Activities for the Putative Treatment of Amyotrophic Lateral Sclerosis (ALS): "Experimental Evidences― Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-22.	1.9	11
53	Identification of Kaurane-Type Diterpenes as Inhibitors of Leishmania Pteridine Reductase I. Molecules, 2021, 26, 3076.	1.7	11
54	Coumarin Derivatives Exert Anti-Lung Cancer Activity by Inhibition of Epithelial–Mesenchymal Transition and Migration in A549 Cells. Pharmaceuticals, 2022, 15, 104.	1.7	11

#	Article	IF	CITATIONS
55	Purificação e caracterização da beta-lapachona e estudo de estabilidade dos cristais em diferentes condições de armazenamento. Quimica Nova, 2008, 31, 413-416.	0.3	9
56	Docking and PLS Studies on a Set of Thiophenes RNA Polymerase Inhibitors Against Staphylococcus aureus. Current Topics in Medicinal Chemistry, 2013, 14, 64-80.	1.0	9
57	Improvement of Solubility and Antifungal Activity of a New Aminothiophene Derivative by Complexation with 2-Hydroxypropyl-β-cyclodextrin. Journal of the Brazilian Chemical Society, 2016, , .	0.6	9
58	Biological Evaluation of Arylsemicarbazone Derivatives as Potential Anticancer Agents. Pharmaceuticals, 2019, 12, 169.	1.7	9
59	Computational Studies in Drug Design Against Cancer. Anti-Cancer Agents in Medicinal Chemistry, 2019, 19, 587-591.	0.9	9
60	Chitosan-Based Films with 2-Aminothiophene Derivative: Formulation, Characterization and Potential Antifungal Activity. Marine Drugs, 2022, 20, 103.	2.2	9
61	Electrochemical investigation of the toxicity of a new nitrocompound and its interaction with \hat{l}^2 -cyclodextrin and polyamidoamine third-generation. Electrochimica Acta, 2017, 251, 442-451.	2.6	8
62	Sesquiterpene Lactones with Anti-Hepatitis C Virus Activity Using Molecular Descriptors. Letters in Drug Design and Discovery, 2012, 9, 881-890.	0.4	8
63	Editorial (Thematic Issue: Hybrid Compounds as Multitarget Agents in Medicinal Chemistry – Part II). Current Topics in Medicinal Chemistry, 2017, 17, 957-958.	1.0	7
64	Incorporation of 2-amino-thiophene derivative in nanoparticles: enhancement of antifungal activity. Brazilian Journal of Microbiology, 2020, 51, 647-655.	0.8	7
65	Natural Bioactive Products with Antioxidant Properties Useful in Neurodegenerative Diseases 2020. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-2.	1.9	7
66	ls Oxidative Stress in Mice Brain Regions Diminished by 2-[(2,6-Dichlorobenzylidene)amino]-5,6-dihydro-4 <i>H</i> -cyclopenta[<i>b</i>]thiophene-3-carbonitrile?. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-8.	1.9	6
67	RMD86, a thiophene derivative, promotes antinociceptive and antipyretic activities in mice. Heliyon, 2020, 6, e05520.	1.4	6
68	1,4-Dithiane-2,5-diol: A Versatile Synthon for the Synthesis of Sulfur-containing Heterocycles. Current Organic Synthesis, 2018, 15, 1026-1042.	0.7	6
69	5CN05 partitioning in an aqueous two-phase system: A new approach to the solubilization of hydrophobic drugs. Process Biochemistry, 2014, 49, 1555-1561.	1.8	5
70	Characterization and evaluation of nanoencapsulated diethylcarbamazine in model of acute hepatic inflammation. International Immunopharmacology, 2017, 50, 330-337.	1.7	5
71	SB-83, a 2-Amino-thiophene derivative orally bioavailable candidate for the leishmaniasis treatment. Biomedicine and Pharmacotherapy, 2018, 108, 1670-1678.	2.5	5
72	Design, Synthesis and Antifungal Activity of New Schiff Bases Bearing 2-Aminothiophene Derivatives Obtained by Molecular Simplification. Journal of the Brazilian Chemical Society, 0, , .	0.6	5

Francisco J B

#	Article	IF	CITATIONS
73	Antimitotic activity of the pyrimidinone derivative py-09 on sea urchin embryonic development. Toxicology in Vitro, 2016, 31, 72-85.	1.1	4
74	Chemical analysis of Brasilimeria Stach, 1949 (Hexapoda, Collembola, Neanuridae) hemolymphatic secretion, and description of a new species. PLoS ONE, 2019, 14, e0212451.	1.1	4
75	Secondary Metabolites from Cissampelos, A Possible Source for New Leads with Anti-Inflammatory Activity. Current Medicinal Chemistry, 2017, 24, 1629-1644.	1.2	4
76	Recent Theoretical Studies Concerning Important Tropical Infections. Current Medicinal Chemistry, 2020, 27, 795-834.	1.2	4
77	Computer-Assisted Design of Thiophene-Indole Hybrids as Leishmanial Agents. Current Topics in Medicinal Chemistry, 2020, 20, 1704-1719.	1.0	4
78	Synthesis and preliminary ex vivo evaluation of the spasmolytic activity of 1,3-thiazolium- and 1,3,4-thiadiazolium-5-methylthio- and 5-thioacetate derivatives. Acta Pharmaceutica, 2014, 64, 233-245.	0.9	3
79	Theoretical Study of Phosphoethanolamine: A Synthetic Anticancer Agent with Broad Antitumor Activity. Journal of Chemistry, 2016, 2016, 1-8.	0.9	3
80	A new diethylcarbamazine formulation (NANO-DEC) as a therapeutic tool for hepatic fibrosis. International Immunopharmacology, 2018, 64, 280-288.	1.7	3
81	Flavonoids as Multi-Target Compounds in Drug Discovery. Mini-Reviews in Organic Chemistry, 2017, 14,	0.6	2
82	In silico and In vivo Toxicological Evaluation of Cissampelos Sympodialis Secondary Metabolites in Rattus Norvegicus. Current Drug Metabolism, 2017, 18, 566-576.	0.7	2
83	Medicinal Chemistry of Inhibitors Targeting Resistant Bacteria. Current Topics in Medicinal Chemistry, 2022, 22, 1983-2028.	1.0	2
84	Palladium-Catalyzed Alkynylation (Sonogashira Coupling) at C-5 of the Uracil Moiety in Modified Unsaturated Pyranosyl Nucleosides. Synthesis, 2007, 2007, 1890-1897.	1.2	1
85	2-(2-Nitroanilino)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carbonitrile. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o2543-o2543.	0.2	1
86	Ethyl 2-(3-phenylthioureido)-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carboxylate. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o2360-o2360.	0.2	1
87	Dimethyl 2-[(acridin-9-yl)methylidene]malonate. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o224-o224.	0.2	1
88	Editorial (Thematic Issue: Medicinal Chemistry Applied to Natural Products in Neglected Drug) Tj ETQq0 0 0 rgBT	Overlock	2 10 Tf 50 142
89	Editorial: Polypharmacology of Natural Products. Mini-Reviews in Organic Chemistry, 2017, 14, .	0.6	1

⁹⁰Palladium(0)-Catalyzed Allylation of Heterocyclic Nucleophiles with Unsaturated Carbohydrates.1.0091Synlett, 2006, 2006, 3049-3052.1.00

#	Article	IF	CITATIONS
91	2-(2-Nitroanilino)-5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene-3-carbonitrile. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o1350-o1351.	0.2	0
92	Computational and Metabolic Studies on a Set of N-Myristoyltransferase Inhibitors Against Trypanosoma Brucei. International Journal of Quantitative Structure-Property Relationships, 2018, 3, 80-94.	1.1	0
93	Molecular Docking of Phytochemicals against Streptococcus mutans Virulence Targets: A Proteomic Insight into Drug Planning. Dentistry, 0, , .	0.0	0