
Bafang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8898974/publications.pdf

Version: 2024-02-01

DAFANCLI

#	Article	IF	CITATIONS
1	Physical properties and antioxidant activity of gelatin-sodium alginate edible films with tea polyphenols. International Journal of Biological Macromolecules, 2018, 118, 1377-1383.	3.6	241
2	Food protein-derived chelating peptides: Biofunctional ingredients for dietary mineral bioavailability enhancement. Trends in Food Science and Technology, 2014, 37, 92-105.	7.8	160
3	Characterization of acid- and pepsin-soluble collagen extracted from the skin of Nile tilapia () Tj ETQq1 1 0.7843	14 rgBT /C 3.6	Overlock 10 T
4	Characterization of acid-soluble collagen from the skin of walleye pollock (Theragra chalcogramma). Food Chemistry, 2008, 107, 1581-1586.	4.2	118
5	Antithrombotic activity of oral administered low molecular weight fucoidan from Laminaria Japonica. Thrombosis Research, 2016, 144, 46-52.	0.8	99
6	Preparation, isolation and identification of iron-chelating peptides derived from Alaska pollock skin. Process Biochemistry, 2013, 48, 988-993.	1.8	97
7	Effect of molecular weight on the antioxidant property of low molecular weight alginate from Laminaria japonica. Journal of Applied Phycology, 2012, 24, 295-300.	1.5	96
8	The effect of pacific cod (Gadus macrocephalus) skin gelatin polypeptides on UV radiation-induced skin photoaging in ICR mice. Food Chemistry, 2009, 115, 945-950.	4.2	89
9	Effect of calcium-binding peptide from Pacific cod (Gadus macrocephalus) bone on calcium bioavailability in rats. Food Chemistry, 2017, 221, 373-378.	4.2	87
10	A novel calcium-binding peptide from Antarctic krill protein hydrolysates and identification of binding sites of calcium-peptide complex. Food Chemistry, 2018, 243, 389-395.	4.2	87
11	Protective effect of gelatin peptides from pacific cod skin against photoaging by inhibiting the expression of MMPs via MAPK signaling pathway. Journal of Photochemistry and Photobiology B: Biology, 2016, 165, 34-41.	1.7	84
12	Fractionation and identification of Alaska pollock skin collagen-derived mineral chelating peptides. Food Chemistry, 2015, 173, 536-542.	4.2	81
13	Antioxidant and melanogenesisâ€inhibitory activities of collagen peptide from jellyfish (<i>Rhopilema) Tj ETQq1</i>	1 0.78431 1.7	l4 rgBT /Ove
14	Purification and identification of immunomodulating peptides from enzymatic hydrolysates of Alaska pollock frame. Food Chemistry, 2012, 134, 821-828.	4.2	77
15	Optimization of enzymatic hydrolysis of Alaska pollock frame for preparing protein hydrolysates with low-bitterness. LWT - Food Science and Technology, 2011, 44, 421-428.	2.5	73
16	Identification of iron-chelating peptides from Pacific cod skin gelatin and the possible binding mode. Journal of Functional Foods, 2017, 35, 418-427.	1.6	71
17	Characterization of Pacific cod (Gadus macrocephalus) skin collagen and fabrication of collagen sponge as a good biocompatible biomedical material. Process Biochemistry, 2017, 63, 229-235.	1.8	57
18	Anti-nociceptive and anti-inflammatory activity of sophocarpine. Journal of Ethnopharmacology, 2009, 125, 324-329.	2.0	52

Bafang Li

#	Article	IF	CITATIONS
19	Immunomodulatory activity of Alaska pollock hydrolysates obtained by glutamic acid biosensor – Artificial neural network and the identification of its active central fragment. Journal of Functional Foods, 2016, 24, 37-47.	1.6	50
20	<i>In vitro</i> assessment of the multifunctional bioactive potential of Alaska pollock skin collagen following simulated gastrointestinal digestion. Journal of the Science of Food and Agriculture, 2015, 95, 1514-1520.	1.7	49
21	Production of the Angiotensin-I-Converting Enzyme (ACE)-Inhibitory Peptide from Hydrolysates of Jellyfish (Rhopilema esculentum) Collagen. Food and Bioprocess Technology, 2012, 5, 1622-1629.	2.6	48
22	Collagen peptides ameliorate intestinal epithelial barrier dysfunction in immunostimulatory Caco-2 cell monolayers via enhancing tight junctions. Food and Function, 2017, 8, 1144-1151.	2.1	47
23	Identification of MMP-1 inhibitory peptides from cod skin gelatin hydrolysates and the inhibition mechanism by MAPK signaling pathway. Journal of Functional Foods, 2017, 33, 251-260.	1.6	47
24	The structure property and endothelial protective activity of fucoidan from Laminaria japonica. International Journal of Biological Macromolecules, 2017, 105, 1421-1429.	3.6	44
25	Nile tilapia skin collagen sponge modified with chemical cross-linkers as a biomedical hemostatic material. Colloids and Surfaces B: Biointerfaces, 2017, 159, 89-96.	2.5	44
26	Functional Calcium Binding Peptides from Pacific Cod (Gadus macrocephalus) Bone: Calcium Bioavailability Enhancing Activity and Anti-Osteoporosis Effects in the Ovariectomy-Induced Osteoporosis Rat Model. Nutrients, 2018, 10, 1325.	1.7	44
27	Structural feature and self-assembly properties of type II collagens from the cartilages of skate and sturgeon. Food Chemistry, 2020, 331, 127340.	4.2	43
28	Comprehensive assessment of Nile tilapia skin collagen sponges as hemostatic dressings. Materials Science and Engineering C, 2020, 109, 110532.	3.8	42
29	The chelating peptide (<scp>GPAGPHGPPG</scp>) derived from Alaska pollock skin enhances calcium, zinc and iron transport in Cacoâ€2 cells. International Journal of Food Science and Technology, 2017, 52, 1283-1290.	1.3	41
30	Discrimination of dried sea cucumber (Apostichopus japonicus) products from different geographical origins by sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS)-based proteomic analysis and chemometrics. Food Chemistry, 2019, 274, 592-602.	4.2	41
31	Novel hard capsule prepared by tilapia (Oreochromis niloticus) scale gelatin and konjac glucomannan: Characterization, and in vitro dissolution. Carbohydrate Polymers, 2019, 206, 254-261.	5.1	40
32	Interactions of quercetin, curcumin, epigallocatechin gallate and folic acid with gelatin. International Journal of Biological Macromolecules, 2018, 118, 124-131.	3.6	37
33	Effects of cross-linking on mechanical, biological properties and biodegradation behavior of Nile tilapia skin collagen sponge as a biomedical material. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 80, 51-58.	1.5	36
34	Purification and characterization of a novel calcium-biding decapeptide from Pacific cod (Gadus) Tj ETQq0 0 0 rg Foods, 2019, 52, 670-679.	BT /Overlo 1.6	ock 10 Tf 50 1 36
35	Isolation and identification of calcium-chelating peptides from Pacific cod skin gelatin and their binding properties with calcium. Food and Function, 2017, 8, 4441-4448.	2.1	32
36	Protective effect of gelatin and gelatin hydrolysate from salmon skin on UV irradiation-induced	0.6	31

Protective effect of gelatin and gelatin hydrolysate from salmon skin on UV irradiation-induced photoaging of mice skin. Journal of Ocean University of China, 2016, 15, 711-718. 0.6 36

#	Article	IF	CITATIONS
37	Preparation of immunomodulatory hydrolysates from Alaska pollock frame. Journal of the Science of Food and Agriculture, 2012, 92, 3029-3038.	1.7	30

38 Effects of oral administration of peptides with low molecular weight from Alaska Pollock (Theragra) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

39	Nonenzymatic Softening Mechanism of Collagen Gel of Sea Cucumber (<i>A postichopus) Tj ETQq1 1 0.7</i>	'84314 rgl 0.9	3T /Qverlock
40	Self-Degradation of Sea Cucumber Body Wall Under 4C Storage Condition. Journal of Food Processing and Preservation, 2016, 40, 715-723.	0.9	23
41	Isolation and characterization of collagen from squid (Ommastrephes bartrami) skin. Journal of Ocean University of China, 2009, 8, 191-196.	0.6	22

Effects of heat treatment on the gel properties of the body wall of sea cucumber (Apostichopus) Tj ETQq000 rgBT_{1.4} /Qverlock 10 Tf 50 5

43	The Protective Effect of Mycosporine-Like Amino Acids (MAAs) from Porphyra yezoensis in a Mouse Model of UV Irradiation-Induced Photoaging. Marine Drugs, 2019, 17, 470.	2.2	20
44	Enzymatic hydrolysis of defatted mackerel protein with low bitter taste. Journal of Ocean University of China, 2011, 10, 85-92.	0.6	18
45	Effects of early enteral nutrition supplemented with collagen peptides on post-burn inflammatory responses in a mouse model. Food and Function, 2017, 8, 1933-1941.	2.1	18
46	Characterization of Acid-Soluble Collagen From Bone of Pacific Cod (<i>Gadus macrocephalus</i>). Journal of Aquatic Food Product Technology, 2013, 22, 407-420.	0.6	17
47	Cross-linking effects of carbodiimide, oxidized chitosan oligosaccharide and glutaraldehyde on acellular dermal matrix of basa fish (Pangasius bocourti). International Journal of Biological Macromolecules, 2020, 164, 677-686.	3.6	16
48	Study on the free radical scavenging activity of sea cucumber (Paracaudina chinens var.) gelatin hydrolysate. Journal of Ocean University of China, 2007, 6, 255-258.	0.6	15
49	INHIBITION OF MELANOGENIC ACTIVITY BY GELATIN AND POLYPEPTIDES FROM PACIFIC COD SKIN IN B16 MELANOMA CELLS. Journal of Food Biochemistry, 2011, 35, 1099-1116.	1.2	13
50	Protective Effect of Cod (<i>Gadus macrocephalus</i>) Skin Collagen Peptides on Acetic Acidâ€Induced Gastric Ulcer in Rats. Journal of Food Science, 2016, 81, H1807-15.	1.5	11
51	Characterization of Acid- and Pepsin-Soluble Collagens from the Cuticle of Perinereis nuntia (Savigny). Food Biophysics, 2018, 13, 274-283.	1.4	11
52	Effectiveness of Carp Egg Phosphopeptide on Inhibiting the Formation of Insoluble Ca Salts in vitro and Enhancing Ca Bioavailability in vivo. Food Science and Technology Research, 2014, 20, 385-392.	0.3	10
53	Purification and Structural Aspects of Type I Collagen from Walleye Pollock (<i>Theragra) Tj ETQq1 1 0.784314 rg</i>	gBT /Overl 0.6	lock 10 Tf 5
54	Identification of volatile compounds in codfish (Gadus) by a combination of two extraction Methods coupled with GC-MS analysis. Journal of Ocean University of China, 2016, 15, 509-514.	0.6	9

Bafang Li

#	Article	IF	CITATIONS
55	Establishment of a sensitive and specific hyper-branched rolling circle amplification assay and test strip for TSV. Journal of Virological Methods, 2014, 209, 41-46.	1.0	8
56	The scavenging of free radical and oxygen species activities and hydration capacity of collagen hydrolysates from walleye pollock (Theragra chalcogramma) skin. Journal of Ocean University of China, 2009, 8, 171-176.	0.6	7
57	Solid-Phase Microextraction Method for the Determination of Volatile Compounds in Hydrolysates of Alaska Pollock Frame. International Journal of Food Properties, 2013, 16, 790-802.	1.3	7
58	Isolation and characterization of a fucoidan-degrading bacterium from Laminaria japonica. Journal of Ocean University of China, 2014, 13, 153-156.	0.6	7
59	The Effect of Hydrolysis with Neutrase on Molecular Weight, Functional Properties, and Antioxidant Activities of Alaska Pollock Protein Isolate. Journal of Ocean University of China, 2018, 17, 1423-1431.	0.6	7
60	Purification of a Novel Oligophosphopeptide with High Calcium Binding Activity from Carp Egg Hydrolysate. Food Science and Technology Research, 2014, 20, 799-807.	0.3	5
61	Collagen peptides administration in early enteral nutrition intervention attenuates burn-induced intestinal barrier disruption: Effects on tight junction structure. Journal of Functional Foods, 2019, 55, 167-174.	1.6	5
62	Effects of High Hydrostatic Pressure on the Solubilities and Structures of Alaska Pollock Protein. Journal of Ocean University of China, 2019, 18, 413-419.	0.6	4
63	Screening of extraction methods for glycoproteins from jellyfish (Rhopilema esculentum) oral-arms by high performance liquid chromatography. Journal of Ocean University of China, 2009, 8, 83-88.	0.6	2
64	Proteins characteristics and lipid profiles of silver sillago (sillago sihama). , 2011, , .		1
65	Enzymatic Hydrolysis of Alaska Pollock Proteins Based on Kinetics Model and Lysine Biosensor–Neural Network Model. Journal of Aquatic Food Product Technology, 2017, 26, 267-278.	0.6	0
66	Collagen peptides derived from Alaska pollock skin protect against TNFαâ€induced dysfunction of tight junctions in Cacoâ€2 cells. FASEB Journal, 2016, 30, 125.5.	0.2	0