List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8898683/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Net atomic charges and molecular dipole moments from spherical-atom X-ray refinements, and the relation between atomic charge and shape. The Acta Crystallographica Section A, Crystal Physics, Diffractionoretical and General Crystallography, 1979, 35, 63-72.	0.6	322
2	Asymmetric Synthesis and Organometallic Chemistry of Functionalized Phosphines Containing Stereogenic Phosphorus Centers. Accounts of Chemical Research, 2004, 37, 169-177.	7.6	139
3	Palladium(ii)-catalyzed asymmetric hydrophosphination of enones: efficient access to chiral tertiary phosphines. Chemical Communications, 2010, 46, 6950.	2.2	128
4	Asymmetric Synthesis of <i>P</i> -Stereogenic Diarylphosphinites by Palladium-Catalyzed Enantioselective Addition of Diarylphosphines to Benzoquinones. Journal of the American Chemical Society, 2014, 136, 4865-4868.	6.6	119
5	Direct Synthesis of Chiral Tertiary Diphosphines <i>via</i> Pd(II)-Catalyzed Asymmetric Hydrophosphination of Dienones. Organic Letters, 2011, 13, 5862-5865.	2.4	116
6	Palladacycle-Catalyzed Asymmetric Hydrophosphination of Enones for Synthesis of C*- and P*-Chiral Tertiary Phosphines. Inorganic Chemistry, 2012, 51, 2533-2540.	1.9	98
7	Versatile chiral palladium(II) complexes for enantiomeric purities of 1,2-diamines. Tetrahedron: Asymmetry, 1992, 3, 529-532.	1.8	87
8	Optical resolutions and chelating properties of (.+)-[2-(methylsulfinyl)ethyl]diphenylarsine and its phosphorus analog. Inorganic Chemistry, 1993, 32, 4812-4818.	1.9	80
9	Asymmetric Synthesis of Enaminophosphines via Palladacycle-Catalyzed Addition of Ph ₂ PH to α,β-Unsaturated Imines. Journal of Organic Chemistry, 2012, 77, 6849-6854.	1.7	71
10	Palladacycle-Catalyzed Asymmetric Intermolecular Construction of Chiral Tertiary P-Heterocycles by Stepwise Addition of H–P–H Bonds to Bis(enones). Organometallics, 2012, 31, 4871-4875.	1.1	67
11	NMR assignment of absolute configuration of a P-chiral diphosphine and mechanics of its stereoselective formation. Tetrahedron: Asymmetry, 1996, 7, 1753-1762.	1.8	63
12	Chiral Phosphapalladacycles as Efficient Catalysts for the Asymmetric Hydrophosphination of Substituted Methylidenemalonate Esters: Direct Access to Functionalized Tertiary Chiral Phosphines. Organometallics, 2012, 31, 3022-3026.	1.1	63
13	Resolutions involving metal complexation. Optical resolution and photochemical rearrangement of (.+)-(2-mercaptoethyl)methylphenylphosphine. Inorganic Chemistry, 1992, 31, 1406-1410.	1.9	62
14	Stereochemical Investigation of Bis(bidentate)-Palladium(II) Complexes. Transmission of Ring Chiralities between Chelating Amine Ligands via Their Prochiral N-Methyl Substituents. Inorganic Chemistry, 1994, 33, 3096-3103.	1.9	56
15	Asymmetric Synthesis of P-Chiral Diphosphines. Steric Effects on the Palladium-Complex-Promoted Asymmetric Dielsâ ^{~^} Alder Reaction between a Dimethylphenylphosphole and (E/Z)-Methyl-Substituted Diphenylvinylphosphines. Inorganic Chemistry, 1997, 36, 2138-2146.	1.9	56
16	Chiral Metal Complex-Promoted Asymmetric Hydrophosphinations. Topics in Organometallic Chemistry, 2011, , 145-166.	0.7	55
17	Enantioselective Addition of Diphenylphosphine to 3â€Methylâ€4â€nitroâ€5â€alkenylisoxazoles. Advanced Synthesis and Catalysis, 2013, 355, 1403-1408.	2.1	55
18	Optically active arsenic macrocycles. Stereospecific syntheses of enantiomers and diastereomers of 14-membered trans-As2S2 chelating macrocycles containing resolved asymmetric tertiary arsine donors. Journal of the American Chemical Society, 1987, 109, 4321-4328.	6.6	54

#	Article	IF	CITATIONS
19	Stereochemical investigations of coordinated sulfur stereocenters. X-ray structures of diastereomers of (-)589-[Pd{(R)-CH3CH(1-C10H6)NMe2-C2,N}(R/S)-{Ph2PCH2SMe-P,S}]PF6. Inorganic Chemistry, 1992, 31, 1494-1500.	1.9	54
20	Facile interconversions between diastereomers of chloro-bridged palladium(II) dimers of orthometallated (±)-dimethyl[1-(1-naphthyl)ethyl]amine. Tetrahedron, 1997, 53, 4083-4094.	1.0	54
21	Metal Template Promoted Hydroamination of Ethynylphosphines and Aniline. Asymmetric Synthesis, Coordination Chemistry, and the Imineâ`Enamine Tautomerism ofP-Chiral Iminophosphines. Organometallics, 2001, 20, 3918-3926.	1.1	54
22	Asymmetric 1,4-Conjugate Addition of Diarylphosphines to α,β,γ,δ-Unsaturated Ketones Catalyzed by Transition-Metal Pincer Complexes. Organometallics, 2015, 34, 5196-5201.	1.1	51
23	Palladium catalyzed asymmetric hydrophosphination of α,β- and α,β,γ,δ-unsaturated malonate esters – efficient control of reactivity, stereo- and regio-selectivity. Dalton Transactions, 2015, 44, 1258-1263.	1.6	49
24	Our Odyssey with Functionalized Chiral Phosphines: From Optical Resolution to Asymmetric Synthesis to Catalysis. Chemical Record, 2016, 16, 141-158.	2.9	49
25	Catalyst-free and Solvent-free Cyanosilylation and Knoevenagel Condensation of Aldehydes. ACS Sustainable Chemistry and Engineering, 2019, 7, 1718-1722.	3.2	49
26	Designer cyclopalladated-amine catalysts for the asymmetric Claisen rearrangement. Chemical Communications, 1999, , 2435-2436.	2.2	48
27	Optical Resolution and the Study of Ligand Effects on theOrtho-Metalation Reaction of Resolved (ű)-Diphenyl[1-(1-naphthyl)ethyl]phosphine and Its Arsenic Analogue. Inorganic Chemistry, 2003, 42, 7674-7682.	1.9	47
28	Enantioselective phospha-Michael addition of diarylphosphines to β,γ-unsaturated α-ketoesters and amides. Chemical Communications, 2014, 50, 8768-8770.	2.2	46
29	Chiral Palladium Template Promoted Asymmetric Hydrophosphination Reaction between Diphenylphosphine and Vinylphosphines. Inorganic Chemistry, 2004, 43, 8102-8109.	1.9	44
30	[Pt2(.muS)2(PPh3)4] as a Metalloligand toward Main-Group Lewis Acids. The First Square-Pyramidal Structure of an Indium(III) Complex Adduct in (PPh3)4Pt2(.mu.3-S)2InCl3 and Tetrahedral Gallium(III) in the Ion Pair [(PPh3)4Pt2(.mu.3-S)2GaCl2][GaCl4]. Inorganic Chemistry, 1994, 33, 1572-1574.	1.9	43
31	Isolation and structural characterisation of a reactive chiral palladium(II) complex containing a ClO4 ligand. Tetrahedron: Asymmetry, 1996, 7, 45-48.	1.8	43
32	Optical Resolution, Configurational Stability, and Coordination Chemistry of the P-Chiral Heterocyclic Diphosphine 1,1â€~-Diphenyl-3,3â€~,4,4â€~-tetramethyl- 2,2â€~-diphosphole-3,3â€~-diene. Organom 1999, 18, 4027-4031.	net alli cs,	43
33	[Pt2(dppf)2(.muS)2] as a Heterometallic Ligand. Simple Assembly of an Electroactive Interpolymetallic Complex [Pt2Tl(dppf)2(.mu.3-S)2]X (X = NO3, PF6) (dppf = 1,1'-bis(diphenylphosphino)ferrocene). Inorganic Chemistry, 1995, 34, 6425-6429.	1.9	42
34	A Novel Approach toward Asymmetric Synthesis of Alcohol Functionalized C-Chiral Diphosphines via Two-Stage Hydrophosphination of Terminal Alkynols. Inorganic Chemistry, 2006, 45, 7455-7463.	1.9	42
35	Asymmetric synthesis of dimethyl-1,2-bis-(diphenylphosphino)-1,2-ethanedicarboxylate by means of a chiral palladium template promoted hydrophosphination reaction. Tetrahedron Letters, 2007, 48, 33-35.	0.7	42
36	Catalyst-free and solvent-free hydroboration of ketones. New Journal of Chemistry, 2019, 43, 10744-10749.	1.4	42

#	Article	IF	CITATIONS
37	A simple route to a novel enantiomerically pure P-chiral phosphine ligand containing a tertiary amide functional group. Chemical Communications, 1996, , 591.	2.2	41
38	Palladium-Complex-Promoted Asymmetric Synthesis of Stereoisomeric P-Chiral Pyridylphosphines via an Unusual Exoâ^'Endo Stereochemically Controlled Asymmetric Dielsâ^'Alder Reaction between 2-Vinylpyridine and Coordinated 3,4-Dimethyl-1-phenylphosphole. Organometallics, 1998, 17, 3931-3936.	1.1	41
39	A Rational Approach to the Design and Synthesis of Chiral Organopalladium-Amine Complexes. Inorganic Chemistry, 2003, 42, 3229-3236.	1.9	41
40	A Novel Asymmetric Hydroarsination Reaction Promoted by a Chiral Organopalladium Complex. Inorganic Chemistry, 2007, 46, 4733-4736.	1.9	40
41	Highly Enantioselective Synthesis of (2-Pyridyl)phosphine Based C-Chiral Unsymmetrical P,N-Ligands Using a Chiral Palladium Complex. Organometallics, 2009, 28, 3941-3946.	1.1	40
42	Versatile Syntheses of Optically Pure PCE Pincer Ligands: Facile Modifications of the Pendant Arms and Ligand Backbones. Organometallics, 2015, 34, 1582-1588.	1.1	39
43	The synthesis and efficient one-pot catalytic "self-breeding―of asymmetrical NC(sp ³)E-hybridised pincer complexes. Chemical Communications, 2016, 52, 4211-4214.	2.2	38
44	Asymmetric Synthesis of a (P-Chiral) Asâ´'P Bidentate Ligandviaan Organopalladium Complex Promoted Asymmetric Dielsâ´'Alder Reaction between Ph2AsCHCH2and 1-Phenyl-3,4-dimethylphosphole. Organometallics, 1996, 15, 3640-3643.	1.1	37
45	Dimusulfidotetrakis(triphenylphosphine)diplatinum as a metalloligand towards main-group Lewis acids. Crystal structures of two complex adducts of lead nitrate, [(PPh3)4Pt2(.mu.3-S)2Pb(NO3)2] and [(PPh3)4Pt2(.mu.3-S)2Pb(NO3)]PF6. Inorganic Chemistry, 1993, 32, 4660-4662.	1.9	36
46	Dimusulfidotetrakis(triphenylphosphine) as a metalloligand toward main-group Lewis acids. A "Mexican-hat-like" structure for [Pt2Tl(.mu.3-S)2(PPh3)4]X (X = NO3, PF6) with a two-coordinate angular thallium(I). Inorganic Chemistry, 1993, 32, 1875-1876.	1.9	36
47	Synthesis and the Stereoelectronic Properties of Novel Cyclopalladated Complexes Derived from Enantiomerically Pure (R/S)-N,N-Dimethyl- 1-(9-phenanthryl)ethylamine. Organometallics, 2003, 22, 834-842.	1.1	36
48	A simple route to an enantiomerically pure diphosphine ligand containing a phosphorus stereogenic centre Tetrahedron: Asymmetry, 1994, 5, 1167-1170.	1.8	35
49	Metal Template Synthesis and Coordination Chemistry of Functionalized P-Chiral Phosphanorbornenes. Tetrahedron, 2000, 56, 7-15.	1.0	35
50	Pdâ€Catalyzed Enantiodivergent and Regiospecific <i>phospha</i> â€Michael Addition of Diphenylphosphine to 4â€ <i>oxo</i> â€Enamides: Efficient Access to Chiral Phosphinocarboxamides and Their Analogues. Chemistry - A European Journal, 2015, 21, 4800-4804.	1.7	35
51	Câ ^{°°} S Bond Cleavage and Câ ^{°°} C Coupling in Cyclopentadienylchromium Complexes To Give the First Dithiooxamide-Bridged and Doubly Dithiocarbamat <i>e</i> -Bridged Double Cubanes: [Cp6Cr8S8{(C(S)NEt2)2}] and [Cp6Cr8S8(S2CNEt2)2]. Angewandte Chemie - International Edition, 2001, 40, 3236-3239.	7.2	34
52	Novel Stereochemistry, Reactivity, and Stability of an Arsenic Heterocycle in a Metal-Promoted Asymmetric Cycloaddition Reaction. Inorganic Chemistry, 2007, 46, 9488-9494.	1.9	34
53	Palladacycle atalyzed Tandem Allylic Amination/Allylation Protocol for Oneâ€Pot Synthesis of 2â€Allylanilines from Allylic Alcohols. Advanced Synthesis and Catalysis, 2012, 354, 83-87.	2.1	34
54	Asymmetric Synthesis of Diphosphine Ligands Containing Phosphorus and Carbon Stereogenic Centers by Means of a Chiral Palladium Complex Promoted Hydrophosphination Reaction. Inorganic Chemistry, 2009, 48, 5535-5539.	1.9	33

#	Article	IF	CITATIONS
55	Resolutions involving metal complexation. Synthesis and resolution of (.+)-(2-mercaptoethyl)methylphenylarsine. Crystal and molecular structure of (-)589-bis[(R)-[1-(dimethylamino)ethyl]naphthyl-C2,N]chloro[.mu(S)-(2-mercaptoethyl)methylphenylarsine]dip Inorganic Chemistry, 1986, 25, 3392-3395.	palladium.o	31 cntdot.0.67di
56	Synthetic and Structural Study of Cyclopentadienylchromium Dithiocarbamate Complexes and Their Thermolytic Derivatives. Organometallics, 2002, 21, 4398-4407.	1.1	30
57	Chiral Metal Template Promoted Asymmetric Pyrrole Dielsâ	1.1	30
58	Asymmetric synthesis of keto-substituted P-chiral phosphines by means of an unusual exo/endo-stereochemically controlled Diels–Alder reaction. Chemical Communications, 1997, , 1987.	2.2	29
59	Asymmetric Synthesis of Functionalized 1,2-Diphosphine via the Chemoselective Hydrophosphination of Coordinated Allylic Phosphines. Organometallics, 2009, 28, 780-786.	1.1	29
60	Asymmetric Synthesis of New Diphosphines and Pyridylphosphines via a Kinetic Resolution Process Promoted and Controlled by a Chiral Palladacycle. Organometallics, 2010, 29, 3374-3386.	1.1	29
61	Diastereomerism in square-planar complexes of bivalent nickel, palladium, and platinum containing chiral 2-mercaptoethyl-substituted tertiary arsines and phosphines. Inorganic Chemistry, 1986, 25, 3396-3400.	1.9	28
62	A Simple and Efficient Approach to a Rigid Diphosphine Ligand Containing Two Phosphorus and Three Carbon Stereogenic Centers by Means of a Palladium Complex Promoted Asymmetric Dielsâ^'Alder Reaction. Inorganic Chemistry, 1996, 35, 4798-4800.	1.9	28
63	Cyclopalladation of the Prochiral (Di-tert-butyl)(diphenylmethyl)phosphine:Â Kinetic Lability of the Corresponding (+)-Phosphapalladacyclic Pdâ^C Bond and the Reluctance of the Phosphine to Bind in a Monodentate Fashion. Inorganic Chemistry, 2007, 46, 5100-5109.	1.9	28
64	N-Heterocyclic Carbene C,S Palladium(II) π-Allyl Complexes: Synthesis, Characterization, and Catalytic Application In Allylic Amination Reactions. Organometallics, 2013, 32, 2389-2397.	1.1	28
65	Desymmetrization of Achiral Heterobicyclic Alkenes through Catalytic Asymmetric Hydrophosphination. Chemistry - an Asian Journal, 2018, 13, 2829-2833.	1.7	28
66	Asymmetric synthesis of a rigid diphosphine ligand containing two phosphorus and four carbon stereogenic centres by means of a chiral palladium complex promoted Diels–Alder reaction. Chemical Communications, 1997, , 751-752.	2.2	27
67	A versatile and efficient approach to enantiomerically pure monodentate and bidentate P-chiral phosphines. Tetrahedron: Asymmetry, 1999, 10, 1309-1314.	1.8	27
68	Molecular Recognition in a Palladium Complex Promoted Asymmetric Synthesis of a P-Chiral Heterodifunctionalized Bidentate Phosphine Ligand. Organometallics, 1999, 18, 650-655.	1.1	27
69	Coordination chemistry, reactivities, and stereoelectronic properties of chelating phosphine ligands containing thioamide substituents. Dalton Transactions RSC, 2001, , 309-314.	2.3	27
70	Asymmetric Synthesis and Coordination Chemistry of Bidentate P-Stereogenic Phosphines Containing Ester and Thionoester Functionalities. Organometallics, 2003, 22, 3944-3950.	1.1	27
71	Palladacycle Catalyzed Asymmetric Pĩ£¿H Addition of Diarylphosphines to <i>N</i> â€Enoyl Phthalimides. Chemistry - A European Journal, 2014, 20, 14514-14517.	1.7	27
72	Stereoelectronic effects on the chelating properties of [2-(methylsulfinyl)ethyl]diphenylarsine and its phosphorus analogue Tetrahedron: Asymmetry, 1994, 5, 1805-1814.	1.8	26

#	Article	IF	CITATIONS
73	Asymmetric syntheses, structures and co-ordination chemistry of palladium(II) complexes containing a chiral P,S hybrid bidentate ligand. Journal of the Chemical Society Dalton Transactions, 1996, , 4443.	1.1	26
74	Asymmetric syntheses, structures and reactions of palladium(II) complexes containing thiolato- and sulfinyl-substituted P chiral phosphines. Journal of the Chemical Society Dalton Transactions, 1998, , 893-900.	1.1	26
75	Metal Template Effects on the Asymmetric Cycloaddition Reaction between Diphenylvinylphosphine and 2-Diphenylphosphinofuran. Organometallics, 2001, 20, 2167-2174.	1.1	26
76	Asymmetric Synthesis of Functionalized 1,3-Diphosphines via Chiral Palladium Complex Promoted Hydrophosphination of Activated Olefins. Inorganic Chemistry, 2010, 49, 989-996.	1.9	26
77	Palladium Template Promoted Asymmetric Synthesis of 1,2-Diphosphines by Hydrophosphination of Functionalized Allenes. Organometallics, 2010, 29, 536-542.	1.1	26
78	Metal Effects on the Asymmetric Cycloaddition Reaction between 3,4-Dimethyl-1-phenylarsole and Diphenylvinylphosphine Oxide. Organometallics, 2009, 28, 4886-4889.	1.1	25
79	Mechanistic insights into the role of PC- and PCP-type palladium catalysts in asymmetric hydrophosphination of activated alkenes incorporating potential coordinating heteroatoms. Dalton Transactions, 2016, 45, 13449-13455.	1.6	25
80	Palladium-complex-promoted asymmetric Diels–Alder reaction: stereoselective synthesis of a new sulfinyl-substituted phosphine ligand containing three carbon, one phosphorus and one sulfur stereogenic centres. Journal of the Chemical Society Chemical Communications, 1995, , 1747-1748.	2.0	24
81	Chemistry of cyclopentadienyl tricarbonylchromium dimer. Cleavage of bis(thiophosphinyl)disulfanes and bis(thiophosphoryl)disulfanes. Syntheses of CpCr(CO)2(S2PPh2) and CpCr(S2PPh2)2. X-ray crystal structure of CpCr(S2PPh2)2. Journal of Organometallic Chemistry, 2000, 607, 64-71.	0.8	24
82	Chiral cyclopalladated complex promoted asymmetric synthesis of diester-substituted P,N-ligands via stepwise hydrophosphination and hydroamination reactions. Dalton Transactions, 2012, 41, 5391.	1.6	24
83	Catalytic Asymmetric Diarylphosphine Addition to α-Diazoesters for the Synthesis of P-Stereogenic Phosphinates via P*—N Bond Formation. Journal of Organic Chemistry, 2020, 85, 14763-14771.	1.7	24
84	Optical resolution and the stereoelectronic properties of chelating (ű)-[(methylsulfinyl)methyl]diphenylphosphine. Journal of the Chemical Society Dalton Transactions, 1998, , 1639-1644.	1.1	23
85	Formation of Iminoâ^ Phosphine Bidentate Chelates by an Unprecedented Organopalladium Complex Promoted Oxidative Coupling Reaction between Diphenylvinylphosphine and Imines. Organometallics, 2000, 19, 3722-3729.	1.1	23
86	Chiral Metal Template Induced Asymmetric Synthesis of a Mixed Phosphineâ^'Phosphine Oxide Ligand. Organometallics, 2005, 24, 5581-5585.	1.1	23
87	Synthesis and structure of a biphenanthrol-palladium complex displaying an unusual bonding mode. Organometallics, 1990, 9, 2406-2408.	1.1	22
88	Metal-template synthesis and co-ordination properties of a palladium complex containing a novel and stable imidazole-substituted phosphine C–P bidentate chelate. Journal of the Chemical Society Dalton Transactions, 1998, , 2109-2110.	1.1	22
89	Enantioselective Dielsâ~'Alder Reaction of 3-Diphenylphosphinofuran with 1-Phenyl-3,4-dimethylphosphole and Subsequent Synthetic Manipulations of the Cycloadduct. Organometallics, 2009, 28, 6254-6259.	1.1	22
90	Steric effects on the control of endo/exo-selectivity in the asymmetric cycloaddition reaction of 3,4-dimethyl-1-phenylarsole. Dalton Transactions, 2010, 39, 5453.	1.6	22

#	Article	IF	CITATIONS
91	Stereoelectronic and Catalytic Properties of Chiral Cyclometalated Phospha-palladium and -platinum Complexes. Organometallics, 2014, 33, 6053-6058.	1.1	22
92	Palladium(II) and platinum(II) complexes with a novel P—S(O)—P tridentate ligand. Polyhedron, 1994, 13, 3253-3255.	1.0	21
93	Molecular recognition in the palladium complex promoted asymmetric synthesis of a keto-ester heterofunctionalized P-chiral phosphine. Tetrahedron: Asymmetry, 1998, 9, 2961-2964.	1.8	21
94	Synthesis and anti-cancer activities of a pair of enantiomeric gold(I) complexes containing sulfanyl-substituted P-stereogenic phosphines. Tetrahedron: Asymmetry, 1999, 10, 1433-1436.	1.8	21
95	Organopalladium Complex Promoted Asymmetric Hetero Dielsâ^'Alder Reactions between a Thiocarbonyl Dienophile and a Phospha-Substituted Cyclic Diene. Organometallics, 2002, 21, 171-174.	1.1	21
96	Base controlled (1,1)- and (1,2)-hydrophosphination of functionalized alkynes. Tetrahedron Letters, 2008, 49, 1762-1767.	0.7	21
97	Metal ion effects on the asymmetric dimerization of 1-phenyl-3,4-dimethylphosphole. Chemical Communications, 2000, , 167-168.	2.2	20
98	In vitro cytotoxic properties of gold(I) and platinum(II) compounds containing asymmetric [2-(methylsulfinyl) ethyl]diphenylarsine and its phosphorus analogue Tetrahedron: Asymmetry, 1994, 5, 49-56.	1.8	19
99	A Palladium Complex Promoted Asymmetric Synthesis of a Novel P-Chiral Diphosphine Containing an Ester Functional Group. Inorganic Chemistry, 1998, 37, 6399-6401.	1.9	19
100	Palladium(II) ion promoted hydroamination of di(phenylethynyl)phenylphosphine and aniline: a facile synthesis of a six-membered P–N heterocycle. Journal of Organometallic Chemistry, 2002, 643-644, 4-11.	0.8	19
101	Synthesis of P-chiral phosphines via chiral metal template promoted asymmetric furan Diels–Alder reaction. Journal of Organometallic Chemistry, 2007, 692, 2539-2547.	0.8	19
102	Asymmetric synthesis of a chiral hetero-bidentate As–P ligand containing both As and P-stereogenic centres. Journal of Organometallic Chemistry, 2008, 693, 3289-3294.	0.8	19
103	Asymmetric synthesis of 1,2-bis(diphenylphosphino)-1-phenylethane via a chiral palladium template promoted hydrophosphination reaction. Journal of Organometallic Chemistry, 2009, 694, 3500-3505.	0.8	19
104	Novel Synthesis of Chiral 1,3-Diphosphines via Palladium Template Promoted Hydrophosphination and Functional Group Transformation Reactions. Organometallics, 2010, 29, 3582-3588.	1.1	19
105	Asymmetric Catalytic 1,2â€Dihydrophosphination of Secondary 1,2â€Diphosphines – Direct Access to Free <i>P</i> *―and <i>P</i> *, <i>C</i> *â€Diphosphines. Advanced Synthesis and Catalysis, 2020, 362, 2373-2378.	2.1	19
106	Resolution and enantiomeric purities of [2-(methylsulfinyl)ethyl]amine. Tetrahedron: Asymmetry, 1994, 5, 1883-1886.	1.8	18
107	[Pt2(PPh3)4(μ-S)2] as a metalloligand towards main-group lewis acids. Evidence of a sulfide-linked {BiPt4} aggregate by 1/2 addition on BiCl3. Polyhedron, 1996, 15, 1737-1741.	1.0	18
108	Synthesis and absolute stereochemistry of an organo-palladium complex containing a P-chiral diphosphine ligand. Journal of Organometallic Chemistry, 1997, 542, 61-65.	0.8	18

#	Article	IF	CITATIONS
109	Design, Synthesis, and Stereochemical Evaluation of a Novel Chiral Amine–Palladacycle. European Journal of Inorganic Chemistry, 2008, 2008, 1880-1891.	1.0	18
110	An Approach to the Efficient Syntheses of Chiral Phosphino―Carboxylic Acid Esters. Advanced Synthesis and Catalysis, 2015, 357, 3297-3302.	2.1	18
111	Stereochemical Investigations of a Novel Class of Chiral Phosphapalladacycle Complexes Derived from 1-[(2,5-Dimethyl)phenyl]ethyldiphenylphosphine. Inorganic Chemistry, 2005, 44, 9874-9886.	1.9	17
112	Rational Design of a Novel Chiral Palladacycle: Synthesis, Optical Resolution, and Stereochemical Evaluation. European Journal of Inorganic Chemistry, 2009, 2009, 267-276.	1.0	17
113	Novel Enantioselective Synthesis of Functionalized Pyridylarsanes by a Chiral Palladium Template Promoted Asymmetric Hydroarsanation Reaction. European Journal of Inorganic Chemistry, 2009, 2009, 4134-4140.	1.0	17
114	Synthesis and Characterisation of a Novel Chiral Bidentate Pyridine-N-Heterocyclic Carbene-Based Palladacycle. European Journal of Inorganic Chemistry, 2010, 2010, 1413-1418.	1.0	17
115	Asymmetric hydroarsination reactions toward synthesis of alcohol functionalised C-chiral As–P ligands promoted by chiral cyclometallated complexes. Journal of Organometallic Chemistry, 2012, 696, 4215-4220.	0.8	17
116	Highly selective anti-cancer properties of ester functionalized enantiopure dinuclear gold(I)-diphosphine. European Journal of Medicinal Chemistry, 2015, 98, 250-255.	2.6	17
117	Efficient and stereoselective synthesis of monomeric and bimetallic pincer complexes containing Pd-bonded stereogenic carbons. RSC Advances, 2016, 6, 75951-75959.	1.7	17
118	Palladium(II) and platinum(II) complexes with chelating sulfinyl functions. Inorganica Chimica Acta, 1993, 205, 245-247.	1.2	16
119	Asymmetric synthesis of two diastereomeric P-chiral diphosphine ligands containing a pair of dissimilar asymmetric phosphorus donor atoms. Chemical Communications, 1997, , 2397-2398.	2.2	16
120	Asymmetric synthesis of a P-chiral heteroditopic ligand via chiral metal template promoted cycloaddition between 3,4-dimethyl-1-phenylphosphole and its sulfonated analog. Journal of Organometallic Chemistry, 2006, 691, 3083-3088.	0.8	16
121	Development of a novel chiral palladacycle and its application in asymmetric hydrophosphination reaction. Dalton Transactions, 2014, 43, 5777-5784.	1.6	16
122	Nickel catalyzed enantioselective hydroarsination of nitrostyrene. Chemical Communications, 2017, 53, 6307-6310.	2.2	16
123	Organometallic chemistry and application of palladacycles in asymmetric hydrophosphination reactions. Dalton Transactions, 2021, 50, 16909-16915.	1.6	16
124	1-Methyl-2-vinylpyrrole and 1-phenyl-3,4-dimethylphosphole: their coordination chemistries and reactivities in a chiral palladium complex promoted asymmetric Diels–Alder reaction. Tetrahedron: Asymmetry, 1998, 9, 423-428.	1.8	15
125	Organoplatinum Complex Promoted the Asymmetric <i>Endo</i> Stereochemically Controlled Dielsâ [~] Alder Reaction between 3-Diphenylphosphinofuran and Diphenylvinylphosphine. Inorganic Chemistry, 2009, 48, 11394-11398.	1.9	15
126	Synthesis of a Chiral Palladacycle and Its Application in Asymmetric Hydrophosphanation Reactions. European Journal of Inorganic Chemistry, 2010, 2010, 4427-4437.	1.0	15

#	Article	IF	CITATIONS
127	Synthesis, Structural Characterisation and Stereochemical Investigation of Chiral Sulfurâ€Functionalised Nâ€Heterocyclic Carbene Complexes of Palladium and Platinum. Chemistry - A European Journal, 2013, 19, 5468-5475.	1.7	15
128	Synthesis of Stereoprojecting, Chiral N-C(sp ³)-E Type Pincer Complexes. Organometallics, 2018, 37, 2272-2285.	1.1	15
129	Investigating palladium pincer complexes in catalytic asymmetric hydrophosphination and hydroarsination. Dalton Transactions, 2019, 48, 4602-4610.	1.6	15
130	A simple route to optically pure 2,3-diaminobutane. Tetrahedron: Asymmetry, 1991, 2, 981-982.	1.8	14
131	A Pî—,O chelation with palladium: Toward understanding of the stereochemistry of an optically active sulfinyl-substituted phosphine with five stereogenic centres. Tetrahedron: Asymmetry, 1996, 7, 357-360.	1.8	14
132	[Pt2(PPh3)4(μ-S)2] as a metalloligand toward main-group Lewis acids. Crystal structures and bonding analysis of two low-coordinate BiCl3 adducts—[Pt2(PPh3)4(μ3-S)2BiCl3] and [Pt2(PPh3)4(μ3-S)2BiCl2]PF6. Polyhedron, 1997, 16, 2381-2386.	1.0	14
133	Enantioselective, High‥ielding Synthesis of Alcoholâ€Functionalized Diphosphanes Utilizing Asymmetric Control with a Chiral Auxiliary. European Journal of Inorganic Chemistry, 2009, 2009, 2375-2382.	1.0	14
134	Controllable synthesis of P-chiral 1,2- and 1,3-diphosphines via asymmetric Diels–Alder reactions involving functionalized allylic phosphines as dienophiles. Dalton Transactions, 2009, , 3668.	1.6	14
135	Palladacycle promoted asymmetric hydrophosphination of α,β-unsaturated sulfonyl fluorides. Journal of Organometallic Chemistry, 2019, 899, 120912.	0.8	14
136	Catalytic Approach toward Chiral P,N-Chelate Complexes Utilizing the Asymmetric Hydrophosphination Protocol. Inorganic Chemistry, 2020, 59, 3874-3886.	1.9	14
137	Asymmetric synthesis and the novel retro Diels–Alder reaction of a P -chiral sulfonyl-substituted phosphanorbornene. Tetrahedron: Asymmetry, 2000, 11, 2661-2664.	1.8	13
138	Organopalladium Complex Promoted Asymmetric Cycloaddition Reactions Involving 3,4-Dimethyl-1-phenylphosphole 1-Sulfide as the Heterocyclic Diene. Organometallics, 2002, 21, 5301-5306.	1.1	13
139	Asymmetric synthesis of a chiral arsinophosphine via a metal template promoted asymmetric Diels–Alder reaction between diphenylvinylphosphine and 2-furyldiphenylarsine. Journal of Organometallic Chemistry, 2006, 691, 4753-4758.	0.8	13
140	Asymmetric synthesis and the coordination chemistry of a P-chiral diphosphine monoxide. Inorganica Chimica Acta, 2003, 352, 213-219.	1.2	12
141	Synthesis, Coordination Characteristics, Conformational Behavior, and Bond Reactivity Studies of a Novel Chiral Phosphapalladacycle Complex. Organometallics, 2009, 28, 4358-4370.	1.1	12
142	Stereogenic Lock in 1-Naphthylethanamine Complexes for Catalyst and Auxiliary Design: Structural and Reactivity Analysis for Cycloiridated Pseudotetrahedral Complexes. Organometallics, 2018, 37, 99-106.	1.1	12
143	Iron-Catalyzed Transfer Hydrogenation in Aged <i>N</i> -Methyl-2-pyrrolidone: Reductive Ring-Opening of 3,5-Disubstituted Isoxazoles and Isoxazolines. Journal of Organic Chemistry, 2019, 84, 16204-16213.	1.7	12
144	Asymmetric Synthesis of P-Stereogenic Homo- and Heterobimetallic Complexes via Selective Monoinsertion of Dialkynylphosphine into the Pdâ^'C Bond of a Palladacycle. Organometallics, 2011, 30, 1530-1550.	1.1	11

#	Article	IF	CITATIONS
145	Synthesis of Homo―and Heteroâ€Bimetallic Arsenic Complexes by Means of Regioselective Monoinsertion of Alkynylarsane into the Pd–C Bond of a Palladacycle. European Journal of Inorganic Chemistry, 2011, 2011, 3111-3121.	1.0	11
146	Synthesis, Optical Resolution, and Stereochemical Properties of a Rationally Designed Chiral C–N Palladacycle. Organometallics, 2014, 33, 930-940.	1.1	10
147	Efficient access to a designed phosphapalladacycle catalyst via enantioselective catalytic asymmetric hydrophosphination. Dalton Transactions, 2017, 46, 1311-1316.	1.6	10
148	Access to a Chiral Phosphine–NHC Palladium(II) Complex via the Asymmetric Hydrophosphination of Achiral Vinyl Azoles. Organometallics, 2021, 40, 2118-2122.	1.1	10
149	Organopalladium complex promoted asymmetric synthesis of a P-chiral phosphanorbornene in ionic liquids and in organic solvents. Journal of Organometallic Chemistry, 2005, 690, 4933-4938.	0.8	9
150	Asymmetric [2+2] Cycloaddition of (E)-2-(Diphenylphosphanyl)styrene Promoted by a Chiral Metal Template. European Journal of Inorganic Chemistry, 2005, 2005, 4723-4728.	1.0	9
151	Palladium-promoted asymmetric cycloaddition reaction of arsole via an unusual exo–endo stereochemically controlled method. Journal of Organometallic Chemistry, 2014, 756, 34-37.	0.8	9
152	Palladacycle promoted base controlled regio- and enantioselective hydrophosphination of 2-pyridylacrylate/amide and the cytotoxicity of their gold complexes. Dalton Transactions, 2015, 44, 17557-17564.	1.6	9
153	Synthesis and characterization of a nickel(II) complex with a tridentate hybrid ligand containing phosphoros and sulfur. Polyhedron, 1996, 15, 1401-1404.	1.0	8
154	Functionalization of Metal-Protected Chiral Phosphines via Simple Organic Transformations. Organometallics, 2006, 25, 1259-1269.	1.1	8
155	Conformational analyses of the five-membered palladacycles derived from 1-(1′-naphthyl)ethyldiphenylphosphine and its arsenic analogue. Tetrahedron: Asymmetry, 2007, 18, 1163-1169.	1.8	8
156	Template effects on the asymmetric cycloaddition reaction between 3,4-dimethyl-1-phenylarsole and diphenylvinylphosphine and their arsenic elimination reaction. Journal of Organometallic Chemistry, 2009, 694, 1929-1933.	0.8	8
157	Stepwise Functionalization of Two Alkyne Moieties in a Dialkynylphosphine Complex Leading to the Formation of a Bifunctionalized Phosphine Complex Bearing a Stereogenic Center at Phosphorus. Organometallics, 2009, 28, 6266-6274.	1.1	8
158	Reactivity of Cycloplatinated Amine Complexes: Intramolecular C–C Bond Formation, C–H Activation, and PPh ₂ Migration in Coordinated Alkynylphosphines. Organometallics, 2012, 31, 8407-8413.	1.1	8
159	Asymmetric synthesis of a chiral diarsine ligand via a cycloaddition reaction between 3,4-dimethyl-1-phenylarsole and diphenylvinylarsine. Tetrahedron: Asymmetry, 2014, 25, 1100-1103.	1.8	8
160	Computational and carbon-13 NMR studies of Pt–C bonds in P–C–P pincer complexes. Dalton Transactions, 2016, 45, 2095-2101.	1.6	8
161	Enantioselective <i>C,P</i> -Palladacycle-Catalyzed Arylation of Imines. ACS Omega, 2020, 5, 15936-15941.	1.6	8
162	Ironâ€Mediated Ringâ€Opening and Rearrangement Cascade Synthesis of Polysubstituted Pyrroles from 4â€Alkenylisoxazoles. Advanced Synthesis and Catalysis, 2020, 362, 1868-1876.	2.1	8

#	Article	IF	CITATIONS
163	Substituent Effects on the Stereoelectronic and Chemical Properties of a Novel Phosphapalladacycle. European Journal of Inorganic Chemistry, 2007, 2007, 3124-3134.	1.0	7
164	Metal Effects on the Asymmetric Synthesis of a New Heterobidentate As/P=S Ligand. European Journal of Inorganic Chemistry, 2010, 2010, 1865-1871.	1.0	7
165	Syntheses of Bimetallic Zwitterionic Complexes Containing Stereogenic Bifunctionalized Phosphine through Stepwise Insertion and Hydration Reactions. Organometallics, 2010, 29, 893-903.	1.1	7
166	Chiral palladacycle promoted asymmetric synthesis of functionalized bis-phosphine monoxide ligand. Journal of Organometallic Chemistry, 2011, 696, 709-714.	0.8	7
167	Access to <i>C</i> -Stereogenic PN(<i>sp</i> ²)P Pincer Ligands via Phosphapalladacycle Catalyzed Asymmetric Hydrophosphination. Organometallics, 2021, 40, 682-692.	1.1	7
168	Stereoelectronic properties of the sulfinyl-substituted phosphine ligands: synthesis and X-ray structure of the stable complex [PdCl2{Ph2PCH2S(O)Me}{MeOH}]. Inorganica Chimica Acta, 1995, 239, 185-188.	1.2	6
169	Mechanistic Insights into the PdII-Catalyzed ChemoselectiveN-Demethylation vs. Cyclometalation Reactivity Pathways in 1-Aryl-N,N-dimethylethanamines. European Journal of Inorganic Chemistry, 2014, 2014, 5046-5052.	1.0	6
170	Tandem double hydrophosphination of α,β,γ,Î′-unsaturated-1,3-indandiones: diphosphine synthesis, mechanistic investigations and coordination chemistry. Chemical Communications, 2019, 55, 10936-10939.	2.2	6
171	Syntheses and structures of palladium(II) and platinum(II) complexes with tridentate (Ph2PCH2CH2CH2)2S and its arsenic analogue. Inorganica Chimica Acta, 1997, 260, 137-143.	1.2	5
172	Stereochemical investigation of a kinetically labile chiral organopalladium complex in solution. Inorganica Chimica Acta, 1999, 284, 99-102.	1.2	5
173	Synthesis and coordination chemistry of a 14-membered macrocyclic ligand containing one phosphorus, two sulfur and one ambidentate sulfoxide donor sets. Journal of the Chemical Society Dalton Transactions, 1999, , 1277-1282.	1.1	5
174	Palladacycle mediated synthesis of cyano-functionalized chiral 1,2-diphosphine and subsequent functional group transformations. Journal of Organometallic Chemistry, 2011, 696, 905-912.	0.8	5
175	Catalytic asymmetric synthesis of Pt- and Pd-PCP pincer complexes bearing a para-N pyridinyl backbone. Journal of Organometallic Chemistry, 2018, 862, 22-27.	0.8	5
176	Efficient Synthesis of Malonate Functionalized Chiral Phosphapalladacycles and their Catalytic Evaluation in Asymmetric Hydrophosphination of Chalcone. European Journal of Inorganic Chemistry, 2018, 2018, 4385-4390.	1.0	5
177	Catalytic and Mechanistic Developments of the Nickel(II) Pincer Complexâ€Catalyzed Hydroarsination Reaction. Chemistry - A European Journal, 2019, 25, 11308-11317.	1.7	5
178	Chelating Phosphine–N-Heterocyclic Carbene Platinum Complexes via Catalytic Asymmetric Hydrophosphination and Their Cytotoxicity Toward MKN74 and MCF7 Cancer Cell Lines. Inorganic Chemistry, 2021, 60, 17276-17287.	1.9	5
179	Catalytic autooxidation ofp-anisaldehyde and styrene by a cobaltbis-schiff base complex. Transition Metal Chemistry, 1991, 16, 542-545.	0.7	4
180	Intermolecular Insertion of Dialkynylphosphanes into the M-C Bond of Cyclopalladated Rings through Activation by Cyclometallated Amines. European Journal of Inorganic Chemistry, 2012, 2012, 1823-1831.	1.0	4

#	Article	IF	CITATIONS
181	Stability and Reactivity of Cyclometallated Naphthylamine Complexes in Pd–C Bond Insertion Reactions with Coordinated Alkynylphosphanes. European Journal of Inorganic Chemistry, 2013, 2013, 5487-5494.	1.0	4
182	Palladacyclo-promoted asymmetric hydrophosphination reaction between diphenylphosphine and 2-ethynylpyridine. Journal of Organometallic Chemistry, 2016, 801, 1-5.	0.8	4
183	Challenges in cyclometalation: steric effects leading to competing pathways and η‹sup>1‹/sup>,η‹sup>2‹/sup>-cyclometalated iridium(‹scp>iii‹/scp>) complexes. Dalton Transactions, 2018, 47, 13046-13051.	1.6	4
184	Air-stable phosphine organocatalysts for the hydroarsination reaction. Journal of Organometallic Chemistry, 2020, 914, 121216.	0.8	4
185	Catalytic Asymmetric Hydrophosphination as a Valuable Tool to Access Dihydrophosphinated Curcumin and Its Derivatives. Organometallics, 2021, 40, 3454-3461.	1.1	4
186	Palladium(II) and platinum(II) complexes containing dimesyloxy-substituted chiral diamines. Tetrahedron: Asymmetry, 1997, 8, 2045-2050.	1.8	3
187	Investigation of Functional Group Effects on Palladium Catalysed Asymmetric P–H Addition. Australian Journal of Chemistry, 2016, 69, 499.	0.5	3
188	Divergent Reactivity of Phosphapalladacycles toward E–H (E = N, P, As) Bonds. Organometallics, 2020, 39, 182-188.	1.1	3
189	A rational synthetic approach to 2,3,4,5-tetraphenyl-1-monophosphole and its derivatives. Inorganic Chemistry Communication, 2021, 134, 108949.	1.8	3
190	Metal Effects on the Asymmetric Cycloaddition Reaction between 3,4-Dimethyl-1-phenylphosphole and Sulfoxide. Organometallics, 2015, 34, 5081-5087.	1.1	2
191	Asymmetric Diels–Alder reaction between 3,4-dimethyl-1-phenylphosphole and (Z/E)-diphenyl-1-styrylphosphine. Journal of Organometallic Chemistry, 2016, 806, 1-4.	0.8	2
192	Chemoselective Synthesis and Evaluation of β-Oxovinylarsines as an Arsenic Synthetic Precursor. Organometallics, 2020, 39, 271-278.	1.1	2
193	1H NMR studies of palladium complexes with tridentate chelates, Eî—, S(O)î—,E (E = P, As) and their novel asymmetric analogue. Polyhedron, 1996, 15, 3915-3918.	1.0	1
194	The naphthylamine palladium(II) template induced E–Z isomerism of exocyclic vinyl group in five-membered P–N chelates: detailed spectroscopic studies. Inorganica Chimica Acta, 2004, 357, 4279-4285.	1.2	1
195	Asymmetric Synthesis and Organometallic Chemistry of Functionalized Phosphines Containing Stereogenic Phosphorus Centers. ChemInform, 2004, 35, no.	0.1	0
196	Metal effects on the asymmetric syntheses of chiral Pâ^'N bidentate ligands. Journal of Organometallic Chemistry, 2016, 824, 99-103.	0.8	0