Ram I Mahato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8898633/publications.pdf Version: 2024-02-01

ΡΛΜΙΜΛΗΛΤΟ

#	Article	IF	CITATIONS
1	Effect of magnesium stearate surface coating method on the aerosol performance and permeability of micronized fluticasone propionate. International Journal of Pharmaceutics, 2022, 615, 121470.	5.2	4
2	Integrating geriatric assessment and genetic profiling to personalize therapy selection in older adults with acute myeloid leukemia. Journal of Geriatric Oncology, 2022, 13, 871-874.	1.0	9
3	Nanoformulation design and therapeutic potential of a novel tubulin inhibitor in pancreatic cancer. Journal of Controlled Release, 2021, 329, 585-597.	9.9	5
4	Activation of dsRNA-Dependent Protein Kinase R by MicroRNA-378 Sustains Metabolic Inflammation in Hepatic Insulin Resistance. Diabetes, 2021, , db200181.	0.6	5
5	Opportunities and challenges of fatty acid conjugated therapeutics. Chemistry and Physics of Lipids, 2021, 236, 105053.	3.2	14
6	Effect of geriatric assessment (GA) and genetic profiling on overall survival (OS) of older adults with acute myeloid leukemia (AML) Journal of Clinical Oncology, 2021, 39, 7021-7021.	1.6	1
7	Lipid based nanocarriers for effective drug delivery and treatment of diabetes associated liver fibrosis. Advanced Drug Delivery Reviews, 2021, 173, 394-415.	13.7	25
8	2,2-Bis(hydroxymethyl) propionic acid based cyclic carbonate monomers and their (co)polymers as advanced materials for biomedical applications. Biomaterials, 2021, 275, 120953.	11.4	12
9	Polymeric nanomedicine for overcoming resistance mechanisms in hedgehog and Myc-amplified medulloblastoma. Biomaterials, 2021, 278, 121138.	11.4	14
10	Therapeutic targets, novel drugs, and delivery systems for diabetes associated NAFLD and liver fibrosis. Advanced Drug Delivery Reviews, 2021, 176, 113888.	13.7	62
11	Diabetes associated fibrosis and drug delivery. Advanced Drug Delivery Reviews, 2021, 178, 113968.	13.7	2
12	Activation of dsRNA-Dependent Protein Kinase R by miR-378 Sustains Metabolic Inflammation in Hepatic Insulin Resistance. Diabetes, 2021, 70, 710-719.	0.6	11
13	Redox-responsive nanoplatform for codelivery of miR-519c and gemcitabine for pancreatic cancer therapy. Science Advances, 2020, 6, .	10.3	42
14	ApoE mimetic peptide targeted nanoparticles carrying a BRD4 inhibitor for treating Medulloblastoma in mice. Journal of Controlled Release, 2020, 323, 463-474.	9.9	30
15	Functional similarity of modified cascade impactor to deposit drug particles on cells. International Journal of Pharmaceutics, 2020, 583, 119404.	5.2	5
16	Organic Nanocarriers for Delivery and Targeting of Therapeutic Agents for Cancer Treatment. Advanced Therapeutics, 2020, 3, 1900136.	3.2	23
17	Nanoparticulate delivery of potent microtubule inhibitor for metastatic melanoma treatment. Journal of Controlled Release, 2019, 309, 231-243.	9.9	15
18	The use of micelles to deliver potential hedgehog pathway inhibitor for the treatment of liver fibrosis. Theranostics, 2019, 9, 7537-7555.	10.0	17

RAM Ι ΜΑΗΑΤΟ

#	Article	IF	CITATIONS
19	Polymeric Micellar Delivery of Novel Microtubule Destabilizer and Hedgehog Signaling Inhibitor for Treating Chemoresistant Prostate Cancer. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 864-875.	2.5	10
20	ROS-Responsive Polymeric Micelles for Triggered Simultaneous Delivery of PLK1 Inhibitor/miR-34a and Effective Synergistic Therapy in Pancreatic Cancer. ACS Applied Materials & Interfaces, 2019, 11, 14647-14659.	8.0	49
21	Roles of microRNAs in T cell immunity: Implications for strategy development against infectious diseases. Medicinal Research Reviews, 2019, 39, 706-732.	10.5	16
22	Nano-carriers for delivery and targeting of active ingredients of Chinese medicine for hepatocellular carcinoma therapy. Materials Today, 2019, 25, 66-87.	14.2	22
23	Dual responsive micelles capable of modulating miRNA-34a to combat taxane resistance in prostate cancer. Biomaterials, 2019, 192, 95-108.	11.4	52
24	Design of Hedgehog pathway inhibitors for cancer treatment. Medicinal Research Reviews, 2019, 39, 1137-1204.	10.5	33
25	Self-assembling lisofylline-fatty acid conjugate for effective treatment of diabetes mellitus. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 15, 175-187.	3.3	13
26	Coadministration of Polymeric Conjugates of Docetaxel and Cyclopamine Synergistically Inhibits Orthotopic Pancreatic Cancer Growth and Metastasis. Pharmaceutical Research, 2018, 35, 17.	3.5	10
27	MicroRNAs in the pathogenesis and treatment of progressive liver injury in NAFLD and liver fibrosis. Advanced Drug Delivery Reviews, 2018, 129, 54-63.	13.7	98
28	Lipid-polymer hybrid nanocarriers for delivering cancer therapeutics. Journal of Controlled Release, 2018, 271, 60-73.	9.9	103
29	Therapeutic Potential of OMe-PS-miR-29b1 for Treating Liver Fibrosis. Molecular Therapy, 2018, 26, 2798-2811.	8.2	21
30	Co-delivery of siAlox15 and sunitinib for reversing the new-onset of type 1 diabetes in non-obese diabetic mice. Journal of Controlled Release, 2018, 292, 1-12.	9.9	11
31	Cholesterol and Morpholine Grafted Cationic Amphiphilic Copolymers for miRNA-34a Delivery. Molecular Pharmaceutics, 2018, 15, 2391-2402.	4.6	30
32	Impact of miRNA-mRNA Profiling and Their Correlation on Medulloblastoma Tumorigenesis. Molecular Therapy - Nucleic Acids, 2018, 12, 490-503.	5.1	36
33	Pharmacokinetics and biodistribution of polymeric micelles containing miRNA and small-molecule drug in orthotopic pancreatic tumor-bearing mice. Theranostics, 2018, 8, 4033-4049.	10.0	35
34	Polymer conjugate of a microtubule destabilizer inhibits lung metastatic melanoma. Journal of Controlled Release, 2017, 249, 32-41.	9.9	9
35	Recent advances in hepatocellular carcinoma therapy. , 2017, 173, 106-117.		216
36	Nanomedicines for the Treatment of CNS Diseases. Journal of NeuroImmune Pharmacology, 2017, 12, 1-5.	4.1	38

#	Article	IF	CITATIONS
37	Micellar Delivery of miR-34a Modulator Rubone and Paclitaxel in Resistant Prostate Cancer. Cancer Research, 2017, 77, 3244-3254.	0.9	60
38	Design, Synthesis and Biological Evaluation of novel Hedgehog Inhibitors for treating Pancreatic Cancer. Scientific Reports, 2017, 7, 1665.	3.3	31
39	Bioconjugate Therapeutics: Current Progress and Future Perspective. Molecular Pharmaceutics, 2017, 14, 1321-1324.	4.6	28
40	Chemosensitization and inhibition of pancreatic cancer stem cellÂproliferation by overexpression of microRNA-205. Cancer Letters, 2017, 402, 1-8.	7.2	88
41	Pharmacokinetics and Biodistribution of GDC-0449 Loaded Micelles in Normal and Liver Fibrotic Mice. Pharmaceutical Research, 2017, 34, 564-578.	3.5	16
42	Challenges and Recent Advances in Medulloblastoma Therapy. Trends in Pharmacological Sciences, 2017, 38, 1061-1084.	8.7	66
43	EGFR-Targeted Cationic Polymeric Mixed Micelles for Codelivery of Gemcitabine and miR-205 for Treating Advanced Pancreatic Cancer. Molecular Pharmaceutics, 2017, 14, 3121-3133.	4.6	43
44	Biodistribution of Self-Assembling Polymer–Gemcitabine Conjugate after Systemic Administration into Orthotopic Pancreatic Tumor Bearing Mice. Molecular Pharmaceutics, 2017, 14, 1365-1372.	4.6	25
45	Combination therapy of paclitaxel and cyclopamine polymer-drug conjugates to treat advanced prostate cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 391-401.	3.3	56
46	Mesenchymal stem cell and derived exosome as small RNA carrier and Immunomodulator to improve islet transplantation. Journal of Controlled Release, 2016, 238, 166-175.	9.9	140
47	EGFR-Targeted Polymeric Mixed Micelles Carrying Gemcitabine for Treating Pancreatic Cancer. Biomacromolecules, 2016, 17, 301-313.	5.4	41
48	Micelle Mixtures for Coadministration of Gemcitabine and GDC-0449 To Treat Pancreatic Cancer. Molecular Pharmaceutics, 2016, 13, 1822-1832.	4.6	21
49	Co-delivery of small molecule hedgehog inhibitor and miRNA for treating liver fibrosis. Biomaterials, 2016, 76, 144-156.	11.4	60
50	Impact of CYP2C19 polymorphism on the pharmacokinetics of nelfinavir in patients with pancreatic cancer. British Journal of Clinical Pharmacology, 2015, 80, 267-275.	2.4	19
51	Synthesis and Characterization of a Novel Mycophenolic Acid–Quinic Acid Conjugate Serving as Immunosuppressant with Decreased Toxicity. Molecular Pharmaceutics, 2015, 12, 4445-4453.	4.6	7
52	Codelivery of Small Molecule Hedgehog Inhibitor and miRNA for Treating Pancreatic Cancer. Molecular Pharmaceutics, 2015, 12, 1289-1298.	4.6	74
53	Small molecules targeting microRNA for cancer therapy: Promises and obstacles. Journal of Controlled Release, 2015, 219, 237-247.	9.9	80
54	Systemic delivery of nanoparticle formulation of novel tubulin inhibitor for treating metastatic melanoma. Drug Delivery and Translational Research, 2015, 5, 199-208.	5.8	13

#	Article	IF	CITATIONS
55	Micellar formulation of indocyanine green for phototherapy of melanoma. Journal of Controlled Release, 2015, 220, 130-140.	9.9	49
56	Nanoparticle-mediated drug delivery for treating melanoma. Nanomedicine, 2015, 10, 2613-2633.	3.3	46
57	Delivery and Targeting of miRNAs for Treating Liver Fibrosis. Pharmaceutical Research, 2015, 32, 341-361.	3.5	43
58	miRNAs as targets for cancer treatment: Therapeutics design and delivery. Advanced Drug Delivery Reviews, 2015, 81, v-vi.	13.7	11
59	miRNAs in pancreatic cancer: Therapeutic potential, delivery challenges and strategies. Advanced Drug Delivery Reviews, 2015, 81, 34-52.	13.7	77
60	Design of nanocarriers for efficient cellular uptake and endosomal release of small molecule and nucleic acid drugs: learning from virus. Frontiers of Chemical Science and Engineering, 2014, 8, 387-404.	4.4	17
61	Core-shell nanoparticulate formulation of gemcitabine: lyophilization, stability studies, and in vivo evaluation. Drug Delivery and Translational Research, 2014, 4, 439-451.	5.8	7
62	Nanomedicines of Hedgehog Inhibitor and PPAR-Î ³ Agonist for Treating Liver Fibrosis. Pharmaceutical Research, 2014, 31, 1158-1169.	3.5	41
63	Doxorubicin and Lapatinib Combination Nanomedicine for Treating Resistant Breast Cancer. Molecular Pharmaceutics, 2014, 11, 2600-2611.	4.6	72
64	MicroRNAs and Drug Resistance in Prostate Cancers. Molecular Pharmaceutics, 2014, 11, 2539-2552.	4.6	63
65	A Preface for Engineered Biomimetic Tissue Platforms for in Vitro Drug Evaluation. Molecular Pharmaceutics, 2014, 11, 1931-1932.	4.6	0
66	LHRH-Conjugated Micelles for Targeted Delivery of Antiandrogen to Treat Advanced Prostate Cancer. Pharmaceutical Research, 2014, 31, 2784-2795.	3.5	17
67	Efficacy of gemcitabine conjugated and miRNA-205 complexed micelles for treatment of advanced pancreatic cancer. Biomaterials, 2014, 35, 7077-7087.	11.4	137
68	Mesenchymal stem cell-based therapy for type 1 diabetes. Discovery Medicine, 2014, 17, 139-43.	0.5	45
69	Mesenchymal Stem Cell-Based Therapy. Molecular Pharmaceutics, 2013, 10, 77-89.	4.6	101
70	Effect of PEGylation on Biodistribution and Gene Silencing of siRNA/Lipid Nanoparticle Complexes. Pharmaceutical Research, 2013, 30, 342-351.	3.5	81
71	Lactic acid―and carbonateâ€based crosslinked polymeric micelles for drug delivery. Journal of Polymer Science Part A, 2013, 51, 347-362.	2.3	24
72	miRNA profiling in pancreatic cancer and restoration of chemosensitivity. Cancer Letters, 2013, 334, 211-220.	7.2	83

#	Article	IF	CITATIONS
73	Third-party Mesenchymal Stem Cells Improved Human Islet Transplantation in a Humanized Diabetic Mouse Model. Molecular Therapy, 2013, 21, 1778-1786.	8.2	45
74	Self-Assembling, Amphiphilic Polymer–Gemcitabine Conjugate Shows Enhanced Antitumor Efficacy Against Human Pancreatic Adenocarcinoma. Bioconjugate Chemistry, 2013, 24, 1161-1173.	3.6	84
75	Synthesis and Characterization of an Anti-Apoptotic Immunosuppressive Compound for Improving the Outcome of Islet Transplantation. Bioconjugate Chemistry, 2013, 24, 2036-2044.	3.6	7
76	Genetically Modified Human Bone Marrow Derived Mesenchymal Stem Cells for Improving the Outcome of Human Islet Transplantation. PLoS ONE, 2013, 8, e77591.	2.5	14
77	Formulation and Characterization of Polyester/Polycarbonate Nanoparticles for Delivery of a Novel Microtubule Destabilizing Agent. Pharmaceutical Research, 2012, 29, 3064-3074.	3.5	18
78	Attenuation of early liver fibrosis by pharmacological inhibition of smoothened receptor signaling. Journal of Drug Targeting, 2012, 20, 770-782.	4.4	38
79	Role of miRNA and cancer stem cells in chemoresistance and pancreatic cancer treatment. Expert Opinion on Drug Delivery, 2012, 9, 1443-1447.	5.0	12
80	Chemoresistance in Prostate Cancer Cells Is Regulated by miRNAs and Hedgehog Pathway. PLoS ONE, 2012, 7, e40021.	2.5	99
81	Micellar Delivery of Cyclopamine and Gefitinib for Treating Pancreatic Cancer. Molecular Pharmaceutics, 2012, 9, 2350-2357.	4.6	47
82	Combination Therapy of Antiandrogen and XIAP Inhibitor for Treating Advanced Prostate Cancer. Pharmaceutical Research, 2012, 29, 2079-2091.	3.5	30
83	Cyclopamine Attenuates Acute Warm Ischemia Reperfusion Injury in Cholestatic Rat Liver: Hope for Marginal Livers. Molecular Pharmaceutics, 2011, 8, 958-968.	4.6	33
84	Combining Stem Cells and Genes for Effective Therapeutics. Molecular Pharmaceutics, 2011, 8, 1443-1445.	4.6	0
85	Targeted TFO delivery to hepatic stellate cells. Journal of Controlled Release, 2011, 155, 326-330.	9.9	23
86	Genetically Modified Mesenchymal Stem Cells for Improved Islet Transplantation. Molecular Pharmaceutics, 2011, 8, 1458-1470.	4.6	18
87	RNA interference for improving the outcome of islet transplantation. Advanced Drug Delivery Reviews, 2011, 63, 47-68.	13.7	29
88	Extravasation of polymeric nanomedicines across tumor vasculature. Advanced Drug Delivery Reviews, 2011, 63, 623-639.	13.7	172
89	Target cell movement in cardiovascular and malignant diseases. Advanced Drug Delivery Reviews, 2011, 63, 555-557.	13.7	0
90	GFAP Promoter-Driven RNA Interference on TGF-β1 to Treat Liver Fibrosis. Pharmaceutical Research, 2011, 28, 752-761.	3.5	18

RAM Ι ΜΑΗΑΤΟ

#	Article	IF	CITATIONS
91	Mesenchymal Stem Cells as a Gene Delivery Vehicle for Successful Islet Transplantation. Pharmaceutical Research, 2011, 28, 2098-2109.	3.5	25
92	Subcellular Fate and Off-Target Effects of siRNA, shRNA, and miRNA. Pharmaceutical Research, 2011, 28, 2996-3015.	3.5	169
93	Biological and Therapeutic Applications of Small RNAs. Pharmaceutical Research, 2011, 28, 2961-2965.	3.5	9
94	Paclitaxel- and lapatinib-loaded lipopolymer micelles overcome multidrug resistance in prostate cancer. Drug Delivery and Translational Research, 2011, 1, 420-428.	5.8	39
95	Poly(ethylene glycol)-Block-Poly(2-methyl-2-benzoxycarbonyl-propylene Carbonate) Micelles for Rapamycin Delivery: In Vitro Characterization and Biodistribution. Journal of Pharmaceutical Sciences, 2011, 100, 2418-2429.	3.3	37
96	RGD peptideâ€modified adenovirus expressing hepatocyte growth factor and Xâ€linked inhibitor of apoptosis improves islet transplantation. Journal of Gene Medicine, 2011, 13, 658-669.	2.8	17
97	Inhibition of Endogenous Hedgehog Signaling Protects Against Acute Liver Injury After Ischemia Reperfusion. Pharmaceutical Research, 2010, 27, 2492-2504.	3.5	26
98	Synthesis, formulation and in vitro evaluation of a novel microtubule destabilizer, SMART-100. Journal of Controlled Release, 2010, 143, 151-158.	9.9	30
99	Triplex forming oligonucleotides against type α1(I) collagen attenuates liver fibrosis induced by bile duct ligation. Biochemical Pharmacology, 2010, 80, 1718-1726.	4.4	16
100	Self-assembling methoxypoly(ethylene glycol)-b-poly(carbonate-co-l-lactide) block copolymers for drug delivery. Biomaterials, 2010, 31, 2358-2370.	11.4	90
101	Lipid and polymeric carrier-mediated nucleic acid delivery. Expert Opinion on Drug Delivery, 2010, 7, 1209-1226.	5.0	120
102	XIAP Gene Expression Protects \hat{l}^2 -Cells and Human Islets from Apoptotic Cell Death. Molecular Pharmaceutics, 2010, 7, 1655-1666.	4.6	25
103	Synthesis and Characterization of Amphiphilic Lipopolymers for Micellar Drug Delivery. Biomacromolecules, 2010, 11, 2610-2620.	5.4	112
104	Targeted Delivery of siRNA to Hepatocytes and Hepatic Stellate Cells by Bioconjugation. Bioconjugate Chemistry, 2010, 21, 2119-2127.	3.6	82
105	Gene expression and silencing for improved islet transplantation. Journal of Controlled Release, 2009, 140, 262-267.	9.9	17
106	Bipartite Adenoviral Vector Encoding hHGF and hIL-1Ra for Improved Human Islet Transplantation. Pharmaceutical Research, 2009, 26, 587-596.	3.5	23
107	Micellar Delivery of Bicalutamide and Embelin for Treating Prostate Cancer. Pharmaceutical Research, 2009, 26, 2081-92.	3.5	73
108	Hypoxia-specific gene expression for ischemic disease gene therapy. Advanced Drug Delivery Reviews, 2009, 61, 614-622.	13.7	47

RAM Ι ΜΑΗΑΤΟ

#	Article	IF	CITATIONS
109	HPMA Polymer-Based Site-Specific Delivery of Oligonucleotides to Hepatic Stellate Cells. Bioconjugate Chemistry, 2009, 20, 213-221.	3.6	35
110	siRNA Delivery and Targeting. Molecular Pharmaceutics, 2009, 6, 649-650.	4.6	11
111	Bipartite Vector Encoding hVEGF and hIL-1Ra for ex Vivo Transduction into Human Islets. Molecular Pharmaceutics, 2009, 6, 274-284.	4.6	20
112	TGF-β1 Gene Silencing for Treating Liver Fibrosis. Molecular Pharmaceutics, 2009, 6, 772-779.	4.6	92
113	RNAi for Treating Hepatitis B Viral Infection. Pharmaceutical Research, 2008, 25, 72-86.	3.5	112
114	Structural and Formulation Factors Influencing Pyridinium Lipid-Based Gene Transfer. Bioconjugate Chemistry, 2008, 19, 2499-2512.	3.6	41
115	Site-Specific Delivery of Oligonucleotides to Hepatocytes after Systemic Administration. Bioconjugate Chemistry, 2008, 19, 290-298.	3.6	39
116	Caspase-3 Gene Silencing for Inhibiting Apoptosis in Insulinoma Cells and Human Islets. Molecular Pharmaceutics, 2008, 5, 1093-1102.	4.6	36
117	iNOS Gene Silencing Prevents Inflammatory Cytokine-Induced β-Cell Apoptosis. Molecular Pharmaceutics, 2008, 5, 407-417.	4.6	30
118	siRNA pool targeting different sites of human hepatitis B surface antigen efficiently inhibits HBV infection. Journal of Drug Targeting, 2008, 16, 140-148.	4.4	21
119	Hydrophobization and bioconjugation for enhanced siRNA delivery and targeting. Rna, 2007, 13, 431-456.	3.5	193
120	Coexpression of Vascular Endothelial Growth Factor and Interleukin-1 Receptor Antagonist for Improved Human Islet Survival and Function. Molecular Pharmaceutics, 2007, 4, 199-207.	4.6	17
121	Effect of iNOS and NF-lºB gene silencing on l²-cell survival and function. Journal of Drug Targeting, 2007, 15, 358-369.	4.4	15
122	Gene Modulation for Treating Liver Fibrosis. Critical Reviews in Therapeutic Drug Carrier Systems, 2007, 24, 93-146.	2.2	41
123	Receptor-Mediated Hepatic Uptake of M6Pâ^'BSA-Conjugated Triplex-Forming Oligonucleotides in Rats. Bioconjugate Chemistry, 2006, 17, 823-830.	3.6	23
124	Biological and Biomaterial Approaches for Improved Islet Transplantation. Pharmacological Reviews, 2006, 58, 194-243.	16.0	171
125	Co-Expression of Vascular Endothelial Growth Factor and Interleukin-1 Receptor Antagonist Improves Human Islet Survival and Function. Pharmaceutical Research, 2006, 23, 1970-1982.	3.5	41
126	Enhanced Hepatic Uptake and Bioactivity of Type α1(I) Collagen Gene Promoter-Specific Triplex-Forming Oligonucleotides after Conjugation with Cholesterol. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 797-805.	2.5	60

#	Article	IF	CITATIONS
127	Water insoluble and soluble lipids for gene delivery. Advanced Drug Delivery Reviews, 2005, 57, 699-712.	13.7	90
128	Modulation of gene expression by antisense and antigene oligodeoxynucleotides and small interfering RNA. Expert Opinion on Drug Delivery, 2005, 2, 3-28.	5.0	71
129	Biodistribution and Hepatic Uptake of Triplex-Forming Oligonucleotides against Type α1(I) Collagen Gene Promoter in Normal and Fibrotic Rats. Molecular Pharmaceutics, 2005, 2, 206-217.	4.6	41
130	Cationic Lipids with Increased DNA Binding Affinity for Nonviral Gene Transfer in Dividing and Nondividing Cells. Bioconjugate Chemistry, 2005, 16, 156-168.	3.6	45
131	Targeted Delivery of a Triplex-Forming Oligonucleotide to Hepatic Stellate Cellsâ€. Biochemistry, 2005, 44, 4466-4476.	2.5	45
132	Vascular Endothelial Growth Factor Gene Delivery for Revascularization in Transplanted Human Islets. Pharmaceutical Research, 2004, 21, 15-25.	3.5	72
133	Cationic lipid and polymer-based gene delivery to human pancreatic islets. Molecular Therapy, 2003, 7, 89-100.	8.2	64
134	Novel Branched Poly(Ethylenimine)â^'Cholesterol Water-Soluble Lipopolymers for Gene Delivery. Biomacromolecules, 2002, 3, 1197-1207.	5.4	236
135	Optimization of factors influencing the transfection efficiency of folate–PEG–folate-graft-polyethylenimine. Journal of Controlled Release, 2002, 79, 255-269.	9.9	131
136	Novel water insoluble lipoparticulates for gene delivery. Pharmaceutical Research, 2002, 19, 382-390.	3.5	30
137	Water-Soluble Lipopolymer for Gene Delivery. Bioconjugate Chemistry, 2001, 12, 337-345.	3.6	205
138	Intratumoral Delivery of p2CMVmIL-12 Using Water-Soluble Lipopolymers. Molecular Therapy, 2001, 4, 130-138.	8.2	90
139	Folate-PEG-Folate-Graft-Polyethylenimine-Based Gene Delivery. Journal of Drug Targeting, 2001, 9, 123-139.	4.4	98
140	Soluble Biodegradable Polymer-Based Cytokine Gene Delivery for Cancer Treatment. Molecular Therapy, 2000, 2, 121-130.	8.2	94
141	pH-Sensitive Cationic Polymer Gene Delivery Vehicle:  N-Ac-poly(l-histidine)-graft-poly(l-lysine) Comb Shaped Polymer. Bioconjugate Chemistry, 2000, 11, 637-645.	3.6	363
142	Development of Biomaterials for Gene Therapy. Molecular Therapy, 2000, 2, 302-317.	8.2	373
143	Pharmaceutical Perspectives of Nonviral Gene Therapy. Advances in Genetics, 1999, 41, 95-156.	1.8	126
144	Plasmid-Based Gene Therapy: Opportunities and Challenges Knock at the Millennium. Journal of Drug Targeting, 1999, 7, 241-243.	4.4	2

RAM I МАНАТО

#	Article	IF	CITATIONS
145	Non-Viral Peptide-Based Approaches to Gene Delivery. Journal of Drug Targeting, 1999, 7, 249-268.	4.4	84
146	Extravasation of macromolecules. Advanced Drug Delivery Reviews, 1998, 34, 93-108.	13.7	122
147	Biodistribution and Gene Expression of Lipid/Plasmid Complexes after Systemic Administration. Human Gene Therapy, 1998, 9, 2083-2099.	2.7	160
148	Involvement of Specific Mechanism in Plasmid DNA Uptake by Mouse Peritoneal Macrophages. Biochemical and Biophysical Research Communications, 1998, 245, 729-733.	2.1	70
149	Development of Targeted Delivery Systems for Nucleic Acid Drugs. Journal of Drug Targeting, 1997, 4, 337-357.	4.4	53
150	Physicochemical and disposition characteristics of antisense oligonucleotides complexed with glycosylated poly(l-lysine). Biochemical Pharmacology, 1997, 53, 887-895.	4.4	91
151	Cationic lipid-based gene delivery systems: pharmaceutical perspectives. Pharmaceutical Research, 1997, 14, 853-859.	3.5	200
152	Nonviral Vectors for In Vivo Gene Delivery: Physicochemical and Pharmacokinetic Considerations. Critical Reviews in Therapeutic Drug Carrier Systems, 1997, 14, 40.	2.2	101
153	Pharmacokinetics and targeted delivery of proteins and genes. Journal of Controlled Release, 1996, 41, 91-97.	9.9	51
154	Control of pharmacokinetic profiles of drug—macromolecule conjugates. Advanced Drug Delivery Reviews, 1996, 19, 377-399.	13.7	49
155	Disposition characteristics of plasmid DNA in the single-pass rat liver perfusion system. Pharmaceutical Research, 1996, 13, 599-603.	3.5	60
156	Uptake Characteristics of Oligonucleotides in the Isolated Rat Liver Perfusion System. Oligonucleotides, 1996, 6, 177-183.	4.3	32
157	Physicochemical and Pharmacokinetic Characteristics of Plasmici DNA/ Cationic Liposome Complexes. Journal of Pharmaceutical Sciences, 1995, 84, 1267-1271.	3.3	152
158	In Vivo Disposition Characteristics of Plasmid DNA Complexed with Cationic Liposomes. Journal of Drug Targeting, 1995, 3, 149-157.	4.4	108
159	Biopharmaceutical Challenges: Pulmonary Delivery of Proteins and Peptides. , 0, , 209-242.		1