Jesus Perez-Gil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8898468/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Compositional, structural and functional properties of discrete coexisting complexes within bronchoalveolar pulmonary surfactant. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183808.	1.4	1
2	The highly packed and dehydrated structure of preformed unexposed human pulmonary surfactant isolated from amniotic fluid. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L191-L203.	1.3	1
3	Amniotic fluid surfactant: a new approach to the study of structure and function of pulmonary surfactant. Biophysical Journal, 2022, 121, 489a.	0.2	0
4	A recipe for a good clinical pulmonary surfactant. Biomedical Journal, 2022, 45, 615-628.	1.4	16
5	Dimerization of the pulmonary surfactant protein C in a membrane environment. PLoS ONE, 2022, 17, e0267155.	1.1	5
6	Pulmonary surfactant and drug delivery: Vehiculization, release and targeting of surfactant/tacrolimus formulations. Journal of Controlled Release, 2021, 329, 205-222.	4.8	34
7	Pulmonary glycogen deficiency as a new potential cause of respiratory distress syndrome. Human Molecular Genetics, 2021, 29, 3554-3565.	1.4	3
8	Towards the Molecular Mechanism of Pulmonary Surfactant Protein SP-B: At the Crossroad of Membrane Permeability and Interfacial Lipid Transfer. Journal of Molecular Biology, 2021, 433, 166749.	2.0	8
9	Molecular and biophysical basis for the disruption of lung surfactant function by chemicals. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183499.	1.4	12
10	An adverse outcome pathway for lung surfactant function inhibition leading to decreased lung function. Current Research in Toxicology, 2021, 2, 225-236.	1.3	23
11	Surfactant therapies for pediatric and neonatal ARDS: ESPNIC expert consensus opinion for future research steps. Critical Care, 2021, 25, 75.	2.5	26
12	Dietary Carbohydrates and Fat Induce Distinct Surfactant Alterations in Mice. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 379-390.	1.4	12
13	Surfactant Protein B Promotes Cytosolic SiRNA Delivery by Adopting a Virus-like Mechanism of Action. ACS Nano, 2021, 15, 8095-8109.	7.3	24
14	Increased Alveolar Heparan Sulphate and Reduced Pulmonary Surfactant Amount and Function in the Mucopolysaccharidosis IIIA Mouse. Cells, 2021, 10, 849.	1.8	5
15	Structural hallmarks of lung surfactant: Lipid-protein interactions, membrane structure and future challenges. Archives of Biochemistry and Biophysics, 2021, 703, 108850.	1.4	33
16	Polyhydroxyalkanoate Nanoparticles for Pulmonary Drug Delivery: Interaction with Lung Surfactant. Nanomaterials, 2021, 11, 1482.	1.9	20
17	Role of pulmonary surfactant protein Sp-C dimerization on membrane fragmentation: An emergent mechanism involved in lung defense and homeostasis. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183572.	1.4	8
18	Systematic Analysis of Composition, Interfacial Performance and Effects of Pulmonary Surfactant Preparations on Cellular Uptake and Cytotoxicity of Aerosolized Nanomaterials. Small Science, 2021, 1, 2100067.	5.8	6

#	Article	IF	CITATIONS
19	Translational Biophysics – 20th IUPAB Congress Session Commentary. Biophysical Reviews, 2021, 13, 875-877.	1.5	1
20	Effect of Whole Body Hypothermia on Surfactant Function When Amniotic Fluid Is Meconium Stained. Therapeutic Hypothermia and Temperature Management, 2020, 10, 186-189.	0.3	10
21	Per- and polyfluoroalkyl substances (PFASs) modify lung surfactant function and pro-inflammatory responses in human bronchial epithelial cells. Toxicology in Vitro, 2020, 62, 104656.	1.1	47
22	Functional characterization of the different oligomeric forms of human surfactant protein SP-D. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140436.	1.1	10
23	Aging impairs alveolar epithelial type II cell function in acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L755-L769.	1.3	23
24	Surfactant Injury in the Early Phase of Severe Meconium Aspiration Syndrome. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 327-337.	1.4	30
25	Surfactant-secreted phospholipase A2interplay and respiratory outcome in preterm neonates. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L95-L104.	1.3	11
26	Structure and activity of human surfactant protein D from different natural sources. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L148-L158.	1.3	8
27	Lipid–Protein and Protein–Protein Interactions in the Pulmonary Surfactant System and Their Role in Lung Homeostasis. International Journal of Molecular Sciences, 2020, 21, 3708.	1.8	72
28	Biophysical and biological impact on the structure and IgE-binding of the interaction of the olive pollen allergen Ole e 7 with lipids. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183258.	1.4	9
29	Pulmonary Surfactant Lipid Reorganization Induced by the Adsorption of the Oligomeric Surfactant Protein B Complex. Journal of Molecular Biology, 2020, 432, 3251-3268.	2.0	29
30	Pulmonary surfactant protein SP-B nanorings induce the multilamellar organization of surfactant complexes. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183216.	1.4	18
31	Mechanistic Insights in the Interaction of Chemicals with Surfactant Membrane Models in vitro. Biophysical Journal, 2020, 118, 86a.	0.2	0
32	Structure of Lung Surfactant from Different Sources: A Small-Angle-X-Ray Scattering (SAXS) Study. Biophysical Journal, 2020, 118, 385a.	0.2	0
33	Air Space Distension Precedes Spontaneous Fibrotic Remodeling and Impaired Cholesterol Metabolism in the Absence of Surfactant Protein C. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 466-478.	1.4	22
34	In Vitro Functional and Structural Characterization of A Synthetic Clinical Pulmonary Surfactant with Enhanced Resistance to Inhibition. Scientific Reports, 2020, 10, 1385.	1.6	19
35	Dissecting the Polyhydroxyalkanoate-Binding Domain of the PhaF Phasin: Rational Design of a Minimized Affinity Tag. Applied and Environmental Microbiology, 2020, 86, .	1.4	7
36	Pulmonary Surfactant and Drug Delivery: An Interface-Assisted Carrier to Deliver Surfactant Protein SP-D Into the Airways. Frontiers in Bioengineering and Biotechnology, 2020, 8, 613276.	2.0	10

#	Article	IF	CITATIONS
37	Telomerase treatment prevents lung profibrotic pathologies associated with physiological aging. Journal of Cell Biology, 2020, 219, .	2.3	36
38	Understanding the principle biophysics concepts of pulmonary surfactant in health and disease. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2019, 104, fetalneonatal-2018-315413.	1.4	58
39	Native supramolecular protein complexes in pulmonary surfactant: Evidences for SP-A/SP-B interactions. Journal of Proteomics, 2019, 207, 103466.	1.2	5
40	Nanocarrier Lipid Composition Modulates the Impact of Pulmonary Surfactant Protein B (SP-B) on Cellular Delivery of siRNA. Pharmaceutics, 2019, 11, 431.	2.0	12
41	The Lord of the Lungs: The essential role of pulmonary surfactant upon inhalation of nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 144, 230-243.	2.0	78
42	Human Picobirnavirus Capsids as Potential Nanocarriers for Drug Delivery Within Pulmonary Surfactant Contexts. Biophysical Journal, 2019, 116, 370a.	0.2	0
43	Oligomerization State of SP-C Involved in Membrane Fragmentation and Innate Defense. Biophysical Journal, 2019, 116, 370a.	0.2	0
44	SP-D attenuates LPS-induced formation of human neutrophil extracellular traps (NETs), protecting pulmonary surfactant inactivation by NETs. Communications Biology, 2019, 2, 470.	2.0	33
45	Interfacial Activity of Phasin PhaF fromPseudomonas putidaKT2440 at Hydrophobic–Hydrophilic Biointerfaces. Langmuir, 2019, 35, 678-686.	1.6	12
46	Protein and lipid fingerprinting of native-like membrane complexes by combining TLC and protein electrophoresis. Journal of Lipid Research, 2019, 60, 430-435.	2.0	4
47	Supramolecular Assembly of Human Pulmonary Surfactant Protein SP-D. Journal of Molecular Biology, 2018, 430, 1495-1509.	2.0	26
48	Looking for Groundbreaking Structural and Functional Features in the Lung Surfactant System using a Surface-Active Agent Purified from Human Amniotic Fluid. Biophysical Journal, 2018, 114, 103a.	0.2	0
49	Homo- and hetero-oligomerization of hydrophobic pulmonary surfactant proteins SP-B and SP-C in surfactant phospholipid membranes. Journal of Biological Chemistry, 2018, 293, 9399-9411.	1.6	30
50	Effect of Hypothermia on the Biophysical Performance of Pulmonary Surfactant from Neonates with and without Lung Injury. Biophysical Journal, 2018, 114, 97a.	0.2	0
51	Pulmonary surfactant and drug delivery: Focusing on the role of surfactant proteins. Journal of Controlled Release, 2018, 291, 116-126.	4.8	97
52	Inhibition and counterinhibition of Surfacen, a clinical lung surfactant of natural origin. PLoS ONE, 2018, 13, e0204050.	1.1	12
53	Pulmonary surfactant protein SPâ€B promotes exocytosis of lamellar bodies in alveolar type II cells. FASEB Journal, 2018, 32, 4600-4611.	0.2	26
54	Metabolism of a synthetic compared with a natural therapeutic pulmonary surfactant in adult mice. Journal of Lipid Research, 2018, 59, 1880-1892.	2.0	13

#	Article	IF	CITATIONS
55	Surfactant protein B (SP-B) enhances the cellular siRNA delivery of proteolipid coated nanogels for inhalation therapy. Acta Biomaterialia, 2018, 78, 236-246.	4.1	60
56	Controlled hypothermia may improve surfactant function in asphyxiated neonates with or without meconium aspiration syndrome. PLoS ONE, 2018, 13, e0192295.	1.1	28
57	Pulmonary surfactant and nanocarriers: Toxicity versus combined nanomedical applications. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1740-1748.	1.4	82
58	Human SP-A1 Enhances Interfacial Properties of Lung Surfactant and Restores a Proper Behavior in the Presence of Inhibitory Agents. Biophysical Journal, 2017, 112, 228a.	0.2	0
59	Delivery of Lung Surfactant SP-C Based Nanostructures to Respiratory Air-Liquid Interfacial Films. Biophysical Journal, 2017, 112, 389a-390a.	0.2	1
60	Structural Characterization of Human Pulmonary Surfactant Protein SP-D by Atomic Force Microscopy. Biophysical Journal, 2017, 112, 503a.	0.2	0
61	Permeability of Pulmonary Surfactant Membranes is Modulated by Proteins SP-B and SP-C. Biophysical Journal, 2017, 112, 503a.	0.2	1
62	Functional and Structural Characterization of Pulmonary Surfactant Fractions Obtained from Bronchoalveolar Lavages. Biophysical Journal, 2017, 112, 83a.	0.2	0
63	Restoring pulmonary surfactant membranes and films at the respiratory surface. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1725-1739.	1.4	83
64	A Noninvasive Surfactant Adsorption Test Predicting the Need for Surfactant Therapy in Preterm Infants Treated with Continuous Positive Airway Pressure. Journal of Pediatrics, 2017, 182, 66-73.e1.	0.9	42
65	Divide & Conquer: Surfactant Protein SP-C and Cholesterol Modulate Phase Segregation in Lung Surfactant. Biophysical Journal, 2017, 113, 847-859.	0.2	24
66	Efficient Interfacially Driven Vehiculization of Corticosteroids by Pulmonary Surfactant. Langmuir, 2017, 33, 7929-7939.	1.6	35
67	Human amniotic membrane as newly identified source of amniotic fluid pulmonary surfactant. Scientific Reports, 2017, 7, 6406.	1.6	16
68	Effects of HIV-1 gp41-Derived Virucidal Peptides on Virus-like Lipid Membranes. Biophysical Journal, 2017, 113, 1301-1310.	0.2	12
69	Pulmonary surfactant metabolism in the alveolar airspace: Biogenesis, extracellular conversions, recycling. Annals of Anatomy, 2017, 209, 78-92.	1.0	90
70	A small key unlocks a heavy door: The essential function of the small hydrophobic proteins SP-B and SP-C to trigger adsorption of pulmonary surfactant lamellar bodies. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2124-2134.	1.9	38
71	Surface Activity as a Crucial Factor of the Biological Actions of Ole e 1, the Main Aeroallergen of Olive Tree (<i>Olea europaea</i>) Pollen. Langmuir, 2016, 32, 11055-11062.	1.6	9
72	Human Pulmonary Surfactant Protein SP-A1 Provides Maximal Efficiency of Lung Interfacial Films. Biophysical Journal, 2016, 111, 524-536.	0.2	58

#	Article	IF	CITATIONS
73	Functional organization of the HIV lipid envelope. Scientific Reports, 2016, 6, 34190.	1.6	38
74	Effect of Lung Surfactant Protein SP-C and SP-C-Promoted Membrane Fragmentation on Cholesterol Dynamics. Biophysical Journal, 2016, 111, 1703-1713.	0.2	30
75	Surfactant dysfunction during overexpression of TGF-β1 precedes profibrotic lung remodeling in vivo. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L1260-L1271.	1.3	49
76	Conformational Stability of the NH2-Terminal Propeptide of the Precursor of Pulmonary Surfactant Protein SP-B. PLoS ONE, 2016, 11, e0158430.	1.1	3
77	Biophisical Evaluation of Drug Impact on Pulmonary Surfactant Performance. Biophysical Journal, 2015, 108, 245a.	0.2	0
78	Pneumocytes Assemble Lung Surfactant as Highly Packed/Dehydrated States with Optimal Surface Activity. Biophysical Journal, 2015, 109, 2295-2306.	0.2	21
79	Surfing the continuous and walking amongst molecules to unravel the mechanical properties of biomembranes. Chemistry and Physics of Lipids, 2015, 185, 1-2.	1.5	0
80	A model for the structure and mechanism of action of pulmonary surfactant protein B. FASEB Journal, 2015, 29, 4236-4247.	0.2	50
81	Barrier or carrier? Pulmonary surfactant and drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 95, 117-127.	2.0	136
82	A Combined Effect of Proteins SP-B and SP-C and Membrane Curvature on Cholesterol Partition in Lung Surfactant Membranes: Answers from Fluorescence. Biophysical Journal, 2015, 108, 557a.	0.2	0
83	Bio-inspired materials in drug delivery: Exploring the role of pulmonary surfactant in siRNA inhalation therapy. Journal of Controlled Release, 2015, 220, 642-650.	4.8	44
84	Proteomic and Lipidomic Analysis of Nanoparticle Corona upon Contact with Lung Surfactant Reveals Differences in Protein, but Not Lipid Composition. ACS Nano, 2015, 9, 11872-11885.	7.3	164
85	Palmitoylation as a key factor to modulate SP-C–lipid interactions in lung surfactant membrane multilayers. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 184-191.	1.4	21
86	Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films. Chemistry and Physics of Lipids, 2015, 185, 153-175.	1.5	219
87	New approach to the treatment of bleomycin-induced lung fibrosis using pulmonary surfactant as pirfenidone carrier into the lung. , 2015, , .		Ο
88	Human Decidua-Derived Mesenchymal Stem Cells Differentiate into Functional Alveolar Type II-Like Cells that Synthesize and Secrete Pulmonary Surfactant Complexes. PLoS ONE, 2014, 9, e110195.	1.1	20
89	Effect of whole body hypothermia on inflammation and surfactant function in asphyxiated neonates. European Respiratory Journal, 2014, 44, 1708-1710.	3.1	23
90	Acidic pH triggers conformational changes at the NH2-terminal propeptide of the precursor of pulmonary surfactant protein B to form a coiled coil structure. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1738-1751.	1.4	12

#	Article	IF	CITATIONS
91	Structure-function relationships in pulmonary surfactant membranes: From biophysics to therapy. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1568-1585.	1.4	204
92	Palmitoylation as a Key Factor to Understand Sp-C-Lipid Interactions in the Lung Surfactant System. Biophysical Journal, 2014, 106, 513a.	0.2	0
93	Physiological variables affecting surface film formation by native lamellar body-like pulmonary surfactant particles. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1842-1850.	1.4	23
94	Functional and Structural Characterization of Pulmonary Surfactant Protein SP-C in Nanodiscs: A Nanotechnological Approach. Biophysical Journal, 2014, 106, 516a.	0.2	0
95	Effect of hypoxia on lung gene expression and proteomic profile: Insights into the pulmonary surfactant response. Journal of Proteomics, 2014, 101, 179-191.	1.2	12
96	Nontoxic impact of PEG-coated gold nanospheres on functional pulmonary surfactant-secreting alveolar type II cells. Nanotoxicology, 2014, 8, 813-823.	1.6	23
97	Effects of Dehydration-Rehydration on the Structural and Functional Properties of Pulmonary Surfactant. Biophysical Journal, 2014, 106, 81a-82a.	0.2	0
98	Structure–function correlations of pulmonary surfactant protein SP-B and the saposin-like family of proteins. European Biophysics Journal, 2013, 42, 209-222.	1.2	69
99	Effect of Cholesterol and Palmitoylation on the Structure, Orientation and Lipid-Protein Interactions of Pulmonary Surfactant Protein SP-C. Biophysical Journal, 2013, 104, 63a-64a.	0.2	0
100	Interfacial Behavior of Murine Pulmonary Surfactant Expressing Different Human Surfactant Protein SP-A Variants. Biophysical Journal, 2013, 104, 63a.	0.2	1
101	Transient Exposure of Pulmonary Surfactant to Hyaluronan Promotes Structural and Compositional Transformations into a Highly Active State. Journal of Biological Chemistry, 2013, 288, 29872-29881.	1.6	20
102	Pre-Exposure of Pulmonary Surfactant to Hyaluronic Acid Alters its Structure and Interfacial Properties. Biophysical Journal, 2013, 104, 433a.	0.2	0
103	Membrane-Perturbing Activities of KL4-Related Surfactant Peptides. Biophysical Journal, 2013, 104, 94a-95a.	0.2	0
104	Hydrophobic Pulmonary Surfactant Proteins SP-B and SP-C Induce Pore Formation in Planar Lipid Membranes: Evidence for Proteolipid Pores. Biophysical Journal, 2013, 104, 146-155.	0.2	45
105	Interfacial Activity of Pulmonary Surfactant Combined with Gold Nanoparticles: A Promising Tool in Lung Medicine. Biophysical Journal, 2013, 104, 677a.	0.2	0
106	Segregated ordered lipid phases and protein-promoted membrane cohesivity are required for pulmonary surfactant films to stabilize and protect the respiratory surface. Faraday Discussions, 2013, 161, 535-548.	1.6	57
107	Adaptations to hibernation in lung surfactant composition of 13-lined ground squirrels influence surfactant lipid phase segregation properties. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1707-1714.	1.4	24
108	Clinical and biological role of secretory phospholipase A2 in acute respiratory distress syndrome infants. Critical Care, 2013, 17, R163.	2.5	51

#	Article	IF	CITATIONS
109	Surfactant and Varespladib Co-Administration in Stimulated Rat Alveolar Macrophages Culture. Current Pharmaceutical Biotechnology, 2013, 14, 445-448.	0.9	3
110	Fluorescence and Infrared Spectroscopy for the Study of Structure and Lipid Packing/Hydration in Pulmonary Surfactant Membranes and Lamellar Body -Like Particles. Biophysical Journal, 2012, 102, 647a-648a.	0.2	1
111	Structural and Functional Characterization of Native Complexes of Pulmonary Surfactant Proteins Purified with Detergents. Biophysical Journal, 2012, 102, 625a-626a.	0.2	1
112	Adaptation to low body temperature influences pulmonary surfactant composition thereby increasing fluidity while maintaining appropriately ordered membrane structure and surface activity. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1581-1589.	1.4	53
113	Topology and lipid selectivity of pulmonary surfactant protein SP-B in membranes: Answers from fluorescence. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1717-1725.	1.4	29
114	Interfacial behavior and structural properties of a clinical lung surfactant from porcine source. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2756-2766.	1.4	22
115	Exposure to Polymers Reverses Inhibition of Pulmonary Surfactant by Serum, Meconium, or Cholesterol in the Captive Bubble Surfactometer. Biophysical Journal, 2012, 103, 1451-1459.	0.2	31
116	Interfacial Behavior of Recombinant Forms of Human Pulmonary Surfactant Protein SP-C. Langmuir, 2012, 28, 7811-7825.	1.6	19
117	Effects of KL4-Type Peptides on the Surface Activity and Stability of Pulmonary Surfactant Films as Evaluated in the Captive Bubble Surfactometer. Biophysical Journal, 2012, 102, 491a.	0.2	1
118	Phase Behavior of Lipid Mixtures that Emulate the HIV-1 Membrane: A Monolayer Approach. Biophysical Journal, 2012, 102, 648a.	0.2	0
119	Deterioration of Pulmonary Surfactant by Volatile Anesthetics. Biophysical Journal, 2012, 102, 496a.	0.2	0
120	Adsorption Mechanism of Pulmonary Surfactant Lamellar Bodies at the Air-Liquid Interface. Biophysical Journal, 2012, 102, 647a.	0.2	0
121	Effects of Hidrophobic Surfactant Proteins SP-B and SP-C on the Mechanical Properties and Structural Stability of Phospholipid Bilayers. Biophysical Journal, 2012, 102, 491a.	0.2	Ο
122	The Interplay of Lung Surfactant Proteins and Lipids Assimilates the Macrophage Clearance of Nanoparticles. PLoS ONE, 2012, 7, e40775.	1.1	123
123	Phase-field model for the morphology of monolayer lipid domains. European Physical Journal E, 2012, 35, 49.	0.7	9
124	New Surfactant with SP-B and C Analogs Gives Survival Benefit after Inactivation in Preterm Lambs. PLoS ONE, 2012, 7, e47631.	1.1	78
125	Effect of Hydrophobic Surfactant Proteins SP-B and SP-C on the Permeability of Phospholipid Membranes. Biophysical Journal, 2011, 100, 337a.	0.2	0
126	Meconium Impairs Pulmonary Surfactant by a Combined Action of Cholesterol and Bile Acids. Biophysical Journal, 2011, 100, 646-655.	0.2	48

#	Article	IF	CITATIONS
127	Effect of SP-B and/OR SP-C on the Micro- and Nano-Structure of Synthetic Lipid Interfacial Films. Biophysical Journal, 2011, 100, 339a-340a.	0.2	0
128	Pulmonary Surfactant Membranes of Hibernating Ground Squirrels Possess Increased Fluidity but are Capable of Maintaining an Ordered Membrane Structure at Low Temperatures. Biophysical Journal, 2011, 100, 628a.	0.2	0
129	Phospholipid packing and hydration in pulmonary surfactant membranes and films as sensed by LAURDAN. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 696-705.	1.4	16
130	Pulmonary surfactant proteins and polymer combinations reduce surfactant inhibition by serum. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2366-2373.	1.4	14
131	A combined action of pulmonary surfactant proteins SP-B and SP-C modulates permeability and dynamics of phospholipid membranes. Biochemical Journal, 2011, 438, 555-564.	1.7	45
132	Uptake of nanoparticles by alveolar macrophages is triggered by surfactant protein A. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 690-693.	1.7	117
133	Preparation and Characterization of a Bifunctional Aldolase/Kinase Enzyme: A More Efficient Biocatalyst for CC Bond Formation. Chemistry - A European Journal, 2010, 16, 4018-4030.	1.7	45
134	Pulmonary Surfactant Pathophysiology: Current Models and Open Questions. Physiology, 2010, 25, 132-141.	1.6	202
135	Myristate is selectively incorporated into surfactant and decreases dipalmitoylphosphatidylcholine without functional impairment. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 299, R1306-R1316.	0.9	19
136	Lamellar Bodies Form Solid Three-dimensional Films at the Respiratory Air-Liquid Interface. Journal of Biological Chemistry, 2010, 285, 28174-28182.	1.6	29
137	Oxygen Diffusion Through Lung Surfactant Layers. Biophysical Journal, 2010, 98, 488a.	0.2	0
138	SP-C Palmitoylation is Crucial for Stabilizing Cholesterol-Containing Surfactant Films during Continuous Compression/Expansion Cycling. Biophysical Journal, 2010, 98, 648a.	0.2	0
139	Surface Activity of Surfactant Protein SP-B and SP-C in Different Lipid Environments. Biophysical Journal, 2010, 98, 55a-56a.	0.2	0
140	Anionic Polymers Reverse Serum Inhibition of Pulmonary Surfactant by Promoting Accumulation of Surfactant Near the Air-Liquid Interface. Biophysical Journal, 2010, 98, 89a.	0.2	0
141	Inhibition of Pulmonary Surfactant by Meconium: Biophysical Properties and Molecular Mechanism. Biophysical Journal, 2010, 98, 90a.	0.2	1
142	Palmitoylation of Pulmonary Surfactant Protein SP-C Is Critical for Its Functional Cooperation with SP-B to Sustain Compression/Expansion Dynamics in Cholesterol-Containing Surfactant Films. Biophysical Journal, 2010, 99, 3234-3243.	0.2	36
143	Combined and Independent Action of Proteins SP-B and SP-C in the Surface Behavior and Mechanical Stability of Pulmonary Surfactant Films. Biophysical Journal, 2010, 99, 3290-3299.	0.2	111
144	Palmitoylation of R-Ras by human DHHC19, a palmitoyl transferase with a CaaX box. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 592-604.	1.4	40

#	Article	IF	CITATIONS
145	A surface view on membrane structure, dynamics and applications. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 701-702.	1.4	0
146	Pulmonary surfactant layers accelerate O2 diffusion through the air-water interface. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1281-1284.	1.4	70
147	Synthetic peptides representing the N-terminal segment of surfactant protein C modulate LPS-stimulated TNF-1± production by macrophages. Innate Immunity, 2009, 15, 53-62.	1.1	15
148	Plant Virus Cell-to-Cell Movement Is Not Dependent on the Transmembrane Disposition of Its Movement Protein. Journal of Virology, 2009, 83, 5535-5543.	1.5	49
149	Kinematic viscosity of therapeutic pulmonary surfactants with added polymers. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 632-637.	1.4	44
150	Cholesterol modulates the exposure and orientation of pulmonary surfactant protein SP-C in model surfactant membranes. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 1907-1915.	1.4	24
151	Comparative Characterization of Lateral Organization and Packing Properties of Lipids in Pulmonary Surfactant Membranes and Interfacial Films. Biophysical Journal, 2009, 96, 150a.	0.2	0
152	Surfactant Protein SP-B Strongly Modifies Surface Collapse of Phospholipid Vesicles: Insights from a Quartz Crystal Microbalance with Dissipation. Biophysical Journal, 2009, 97, 768-776.	0.2	27
153	Segregated Phases in Pulmonary Surfactant Membranes Do Not Show Coexistence of Lipid Populations with Differentiated Dynamic Properties. Biophysical Journal, 2009, 97, 1381-1389.	0.2	91
154	Pulmonary Surfactant Protein SP-C Counteracts the Deleterious Effects of Cholesterol on the Activity of Surfactant Films under Physiologically Relevant Compression-Expansion Dynamics. Biophysical Journal, 2009, 97, 2736-2745.	0.2	58
155	Study of the Effect Of Pulmonary Surfactant Protein B (SP-B) on Phospholipid Membrane Reorganizations Using Quartz Crystal Microbalances with Dissipation (QCM-D). Biophysical Journal, 2009, 96, 328a.	0.2	0
156	Surface Behaviour of Peptoid Mimics of Pulmonary Surfactant Protein SP-C: Captive Bubble Surfactometry. Biophysical Journal, 2009, 96, 352a.	0.2	1
157	Expression, purification and characterization of the precursor of human pulmonary surfactant protein B (preproSPB) produced in Escherichia coli. , 2009, , .		0
158	Self-aggregation of a recombinant form of the propeptide NH2-terminal of the precursor of pulmonary surfactant protein SP-B: a conformational study. Journal of Industrial Microbiology and Biotechnology, 2008, 35, 1367-1376.	1.4	7
159	Properly Interpreting Lipid-Protein Specificities in Pulmonary Surfactant. Biophysical Journal, 2008, 94, 1542-1543.	0.2	6
160	Effects of Palmitoylation on Dynamics and Phospholipid-Bilayer-Perturbing Properties of the N-Terminal Segment of Pulmonary Surfactant Protein SP-C as Shown by 2H-NMR. Biophysical Journal, 2008, 95, 2308-2317.	0.2	16
161	The Surfactant Peptide KL4 Sequence Is Inserted with a Transmembrane Orientation into the Endoplasmic Reticulum Membrane. Biophysical Journal, 2008, 95, L36-L38.	0.2	29
162	Effect of acylation on the interaction of the N-Terminal segment of pulmonary surfactant protein SP-C with phospholipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1274-1282.	1.4	28

#	Article	IF	CITATIONS
163	Structure of pulmonary surfactant membranes and films: The role of proteins and lipid–protein interactions. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1676-1695.	1.4	409
164	Protein modulation of membrane structure. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1527.	1.4	9
165	High-throughput evaluation of pulmonary surfactant adsorption and surface film formation. Journal of Lipid Research, 2008, 49, 2479-2488.	2.0	26
166	Synthetic Pulmonary Surfactant Preparations: New Developments and Future Trends. Current Medicinal Chemistry, 2008, 15, 393-403.	1.2	55
167	The anatomy, physics, and physiology of gas exchange surfaces: is there a universal function for pulmonary surfactant in animal respiratory structures?. Integrative and Comparative Biology, 2007, 47, 610-627.	0.9	39
168	Identification of a segment in the precursor of pulmonary surfactant protein SP-B, potentially involved in pH-dependent membrane assembly of the protein. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 1059-1069.	1.4	11
169	Langmuir Films to Determine Lateral Surface Pressure on Lipid Segregation. Methods in Molecular Biology, 2007, 400, 439-457.	0.4	24
170	Langmuirâ^'Blodgett Films Formed by Continuously Varying Surface Pressure. Characterization by IR Spectroscopy and Epifluorescence Microscopy. Langmuir, 2007, 23, 4950-4958.	1.6	33
171	Structural characterization of pulmonary surfactant protein SP-B in model membranes by fluorescence spectroscopy. Chemistry and Physics of Lipids, 2007, 149, S12-S13.	1.5	0
172	Biochemical and pharmacological differences between preparations of exogenous natural surfactant used to treat Respiratory Distress Syndrome: Role of the different components in an efficient pulmonary surfactant. European Journal of Pharmacology, 2007, 568, 1-15.	1.7	142
173	A recombinant functional variant of the olive pollen allergen Ole e 10 expressed in baculovirus system. Journal of Biotechnology, 2006, 121, 402-409.	1.9	7
174	Critical Structure-Function Determinants within the N-Terminal Region of Pulmonary Surfactant Protein SP-B. Biophysical Journal, 2006, 90, 238-249.	0.2	43
175	Production and characterisation of recombinant forms of human pulmonary surfactant protein C (SP-C): Structure and surface activity. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 509-518.	1.4	24
176	Production in Escherichia coli of a recombinant C-terminal truncated precursor of surfactant protein B (rproSP-BΔc). Structure and interaction with lipid interfaces. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 1621-1632.	1.4	8
177	Production of a recombinant form of the propeptide NH2-terminal of the precursor of pulmonary surfactant protein B. Enzyme and Microbial Technology, 2006, 40, 85-92.	1.6	5
178	Protein–lipid interactions and surface activity in the pulmonary surfactant system. Chemistry and Physics of Lipids, 2006, 141, 105-118.	1.5	260
179	Antimicrobial Activity of Native and Synthetic Surfactant Protein B Peptides. Journal of Immunology, 2006, 176, 416-425.	0.4	62
180	Recognition and Blocking of HIV-1 gp41 Pre-transmembrane Sequence by Monoclonal 4E10 Antibody in a Raft-like Membrane Environment. Journal of Biological Chemistry, 2006, 281, 39598-39606.	1.6	41

#	Article	IF	CITATIONS
181	Lateral Membrane Structure and Lipid-Protein Interactions. , 2006, , 127-140.		Ο
182	Effects of interactions with micellar interfaces on the activity and structure of different lipolytic isoenzymes from Candida rugosa. Enzyme and Microbial Technology, 2005, 37, 695-703.	1.6	18
183	Interfacial properties of pulmonary surfactant layers. Advances in Colloid and Interface Science, 2005, 117, 33-58.	7.0	169
184	Mapping and Analysis of the Lytic and Fusogenic Domains of Surfactant Protein Bâ€. Biochemistry, 2005, 44, 861-872.	1.2	73
185	Intrinsic Structural and Functional Determinants within the Amino Acid Sequence of Mature Pulmonary Surfactant Protein SP-Bâ€. Biochemistry, 2005, 44, 417-430.	1.2	20
186	Influence of a Fluorescent Probe on the Nanostructure of Phospholipid Membranes:Â Dipalmitoylphosphatidylcholine Interfacial Monolayers. Langmuir, 2005, 21, 5349-5355.	1.6	66
187	Interaction of the N-terminal segment of pulmonary surfactant protein SP-C with interfacial phospholipid films. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1713, 118-128.	1.4	31
188	Inactivation of Pulmonary Surfactant Due to Serum-Inhibited Adsorption and Reversal by Hydrophilic Polymers: Experimental. Biophysical Journal, 2005, 89, 1769-1779.	0.2	154
189	Inhibition of Pulmonary Surfactant Adsorption by Serum and the Mechanisms of Reversal by Hydrophilic Polymers: Theory. Biophysical Journal, 2005, 89, 1621-1629.	0.2	73
190	Lipid Phase Coexistence Favors Membrane Insertion of Equinatoxin-II, a Pore-forming Toxin from Actinia equina. Journal of Biological Chemistry, 2004, 279, 34209-34216.	1.6	118
191	Cholesterol Rules. Journal of Biological Chemistry, 2004, 279, 40715-40722.	1.6	260
192	Effect of Pulmonary Surfactant Protein SP-B on the Micro- and Nanostructure of Phospholipid Films. Biophysical Journal, 2004, 86, 308-320.	0.2	83
193	The N-terminal segment of pulmonary surfactant lipopeptide SP-C has intrinsic propensity to interact with and perturb phospholipid bilayers. Biochemical Journal, 2004, 377, 183-193.	1.7	34
194	Potassium efflux induced by a new lactoferrin-derived peptide mimicking the effect of native human lactoferrin on the bacterial cytoplasmic membrane. Biochemistry (Moscow), 2003, 68, 217-227.	0.7	18
195	Effects of Oligomerization and Secondary Structure on the Surface Behavior of Pulmonary Surfactant Proteins SP-B and SP-C. Biophysical Journal, 2003, 84, 1940-1949.	0.2	34
196	Sphingomyelin and Cholesterol Promote HIV-1 gp41 Pretransmembrane Sequence Surface Aggregation and Membrane Restructuring. Journal of Biological Chemistry, 2002, 277, 21776-21785.	1.6	119
197	Molecular Interactions in Pulmonary Surfactant Films. Neonatology, 2002, 81, 6-15.	0.9	43
198	Secondary Structure and Lipid Interactions of the N-Terminal Segment of Pulmonary Surfactant SP-C in Langmuir Films: IR Reflectionâ^'Absorption Spectroscopy and Surface Pressure Studiesâ€. Biochemistry, 2002, 41, 8385-8395.	1.2	67

#	Article	IF	CITATIONS
199	Pulmonary surfactant protein SP-B is significantly more immunoreactive in anionic than in zwitterionic bilayers. FEBS Letters, 2001, 494, 236-240.	1.3	6
200	Superficial disposition of the N-terminal region of the surfactant protein SP-C and the absence of specific SP-B‒SP-C interactions in phospholipid bilayers. Biochemical Journal, 2001, 359, 651.	1.7	18
201	Superficial disposition of the N-terminal region of the surfactant protein SP-C and the absence of specific SP-B–SP-C interactions in phospholipid bilayers. Biochemical Journal, 2001, 359, 651-659.	1.7	22
202	Quantitation of Pulmonary Surfactant Protein SP-B in the Absence or Presence of Phospholipids by Enzyme-Linked Immunosorbent Assay. Analytical Biochemistry, 2001, 293, 78-87.	1.1	5
203	Selective Labeling of Pulmonary Surfactant Protein SP-C in Organic Solution. Analytical Biochemistry, 2001, 296, 49-56.	1.1	16
204	Intrinsic structural differences in the N-terminal segment of pulmonary surfactant protein SP-C from different species. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2001, 129, 129-139.	0.8	21
205	LIPID-PROTEIN INTERACTIONS OF HYDROPHOBIC PROTEINS SP-B AND SP-C IN LUNG SURFACTANT ASSEMBLY AND DYNAMICS. Fetal and Pediatric Pathology, 2001, 20, 445-469.	0.3	34
206	LIPID-PROTEIN INTERACTIONS OF HYDROPHOBIC PROTEINS SP-B AND SP-C IN LUNG SURFACTANT ASSEMBLY AND DYNAMICS. Fetal and Pediatric Pathology, 2001, 20, 445-469.	0.3	8
207	Microstructure and dynamic surface properties of surfactant protein SP-B/dipalmitoylphosphatidylcholine interfacial films spread from lipid-protein bilayers. European Biophysics Journal, 2000, 29, 204-213.	1.2	64
208	Pulmonary Surfactant Protein A Interacts with Gel-Like Regions in Monolayers of Pulmonary Surfactant Lipid Extract. Biophysical Journal, 2000, 79, 2657-2666.	0.2	32
209	Self-Aggregation of Surfactant Protein Aâ€. Biochemistry, 2000, 39, 6529-6537.	1.2	55
210	Interactions of Pulmonary Surfactant Protein A with Phospholipid Monolayers Change with pH. Biophysical Journal, 1999, 77, 1469-1476.	0.2	15
211	Interfacial properties of surfactant proteins. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1998, 1408, 203-217.	1.8	187
212	Rotational dynamics of spin-labelled surfactant-associated proteins SP-B and SP-C in dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylglycerol bilayers. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1415, 125-134.	1.4	26
213	Depth Profiles of Pulmonary Surfactant Protein B in Phosphatidylcholine Bilayers, Studied by Fluorescence and Electron Spin Resonance Spectroscopy. Biochemistry, 1998, 37, 9488-9496.	1.2	59
214	Differential Partitioning of Pulmonary Surfactant Protein SP-A into Regions of Monolayers of Dipalmitoylphosphatidylcholine and Dipalmitoylphosphatidylcholine/Dipalmitoylphosphatidylglycerol. Biophysical Journal, 1998, 74, 1101-1109.	0.2	73
215	Phase Transitions in Films of Lung Surfactant at the Air-Water Interface. Biophysical Journal, 1998, 74, 2983-2995.	0.2	159
216	Increase of C-Reactive Protein and Decrease of Surfactant Protein A in Surfactant after Lung Transplantation. American Journal of Respiratory and Critical Care Medicine, 1998, 157, 43-49.	2.5	57

#	Article	IF	CITATIONS
217	Effect of Acidic pH on the Structure and Lipid Binding Properties of Porcine Surfactant Protein A. Journal of Biological Chemistry, 1998, 273, 15183-15191.	1.6	32
218	Different modes of interaction of pulmonary surfactant protein SP-B in phosphatidylcholine bilayers. Biochemical Journal, 1997, 327, 133-138.	1.7	49
219	Combinations of fluorescently labeled pulmonary surfactant proteins SP-B and SP-C in phospholipid films. Biophysical Journal, 1997, 72, 2638-2650.	0.2	90
220	Fluorescently labeled pulmonary surfactant protein C in spread phospholipid monolayers. Biophysical Journal, 1996, 71, 246-256.	0.2	74
221	Spontaneous formation of interfacial lipid-protein monolayers during adsorption from vesicles. Biophysical Journal, 1996, 71, 1356-1363.	0.2	56
222	Conformational Changes of Different Isolipases from Candida rugosa in Liquid Interfaces and after Their Contact with Low-Water-Content Median. Annals of the New York Academy of Sciences, 1996, 799, 324-327.	1.8	0
223	Comparison of lipid aggregation and self-aggregation activities of pulmonary surfactant-associated protein A. Biochemical Journal, 1996, 313, 683-689.	1.7	44
224	Effect of pH on the interfacial adsorption activity of pulmonary surfactant. Colloids and Surfaces B: Biointerfaces, 1996, 5, 271-277.	2.5	16
225	Conformational flexibility of pulmonary surfactant proteins SP-B and SP-C, studied in aqueous organic solvents. Lipids and Lipid Metabolism, 1995, 1255, 68-76.	2.6	46
226	Interactions of Hydrophobic Lung Surfactant Proteins SP-B and SP-C with Dipalmitoylphosphatidylcholine and Dipalmitoylphosphatidylglycerol Bilayers Studied by Electron Spin Resonance Spectroscopy. Biochemistry, 1995, 34, 3964-3971.	1.2	155
227	Structural Similarities between Myelin and Hydrophobic Surfactant Associated Proteins: Protein Motifs for Interacting with Bilayers. Journal of Theoretical Biology, 1994, 169, 221-229.	0.8	12
228	SURFACTANT PROTEIN-C ENHANCES LIPID AGGREGATION ACTIVITY OF SURFACTANT PROTEIN-A. Biochemical Society Transactions, 1994, 22, 370S-370S.	1.6	10
229	Deacylated pulmonary surfactant protein SP-C has different effects on the thermotroplc behaviour of bilayers of dipalmitoylphosphatidyl-glycerol (DPPC) than the native acylated protein. Biochemical Society Transactions, 1994, 22, 372S-372S.	1.6	9
230	Lipid-Protein Interactions with the Hydrophobic SP-B and SP-C Lung Surfactant Proteins in Dipalmitoylphosphatidylcholine Bilayers. , 1994, , 93-100.		1
231	Solubility of hydrophobic surfactant proteins in organic solvent/water mixtures. Structural studies on SP-B and SP-C in aqueous organic solvents and lipids. Lipids and Lipid Metabolism, 1993, 1168, 261-270.	2.6	97
232	Interfacial adsorption of simple lipid mixtures combined with hydrophobic surfactant protein from pig lung. Biochemistry and Cell Biology, 1992, 70, 332-338.	0.9	65
233	Pulmonary surfactant protein SP-C causes packing rearrangements of dipalmitoylphosphatidylcholine in spread monolayers. Biophysical Journal, 1992, 63, 197-204.	0.2	119
234	Thermodynamic profiles of penicillin G hydrolysis catalyzed by wild-type and Met→Ala168 mutant penicillin acylases from Kluyvera citrophila. BBA - Proteins and Proteomics, 1990, 1037, 133-139.	2.1	26

#	Article	IF	CITATIONS
235	Effect of albumin on acyl-CoA: lysolecithin acyltransferase, lysolecithin : lysolecithin acyltransferase and acyl-CoA hydrolase from rabbit lung. Molecular and Cellular Biochemistry, 1990, 94, 167-173.	1.4	6
236	Essential residues in lysolecithin:lysolecithin acyltransferase from rabbit lung: Assessment by chemical modification. Archives of Biochemistry and Biophysics, 1990, 277, 80-85.	1.4	3
237	Essential histidine residues in lysolecithin:lysolecithin acyltransferase from rabbit lung. Archives of Biochemistry and Biophysics, 1989, 269, 562-568.	1.4	10
238	Effect of lipids on activity and conformation of lysolecithin:lysolecithin acyltransferase from rabbit lung. Molecular and Cellular Biochemistry, 1984, 63, 13-20.	1.4	13
239	Langmuir Films to Determine Lateral Surface Pressure on Lipid Segregation. , 0, , 439-458.		0