
C Lund Myhre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8898402/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009. Atmospheric Chemistry and Physics, 2012, 12, 5447-5481.	1.9	527
2	Very Strong Atmospheric Methane Growth in the 4ÂYears 2014–2017: Implications for the Paris Agreement. Global Biogeochemical Cycles, 2019, 33, 318-342.	1.9	353
3	A vegetation control on seasonal variations in global atmospheric mercury concentrations. Nature Geoscience, 2018, 11, 244-250.	5.4	180
4	Aerosols in polar regions: A historical overview based on optical depth and in situ observations. Journal of Geophysical Research, 2007, 112, .	3.3	173
5	Global and regional trends of atmospheric sulfur. Scientific Reports, 2019, 9, 953.	1.6	166
6	Spectroscopic Study of Aqueous H2SO4 at Different Temperatures and Compositions:  Variations in Dissociation and Optical Properties. Journal of Physical Chemistry A, 2003, 107, 1979-1991.	1.1	135
7	Aerosol decadal trends – Part 1: In-situ optical measurements at GAW and IMPROVE stations. Atmospheric Chemistry and Physics, 2013, 13, 869-894.	1.9	126
8	State of the Climate in 2011. Bulletin of the American Meteorological Society, 2012, 93, S1-S282.	1.7	121
9	Arctic methane sources: Isotopic evidence for atmospheric inputs. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	119
10	AeroCom phase III multi-model evaluation of the aerosol life cycle and optical properties using ground- and space-based remote sensing as well as surface in situ observations. Atmospheric Chemistry and Physics, 2021, 21, 87-128.	1.9	96
11	Multi-model simulations of aerosol and ozone radiative forcing due to anthropogenic emission changes during the periodÂ1990–2015. Atmospheric Chemistry and Physics, 2017, 17, 2709-2720.	1.9	87
12	Aerosol decadal trends – Part 2: In-situ aerosol particle number concentrations at GAW and ACTRIS stations. Atmospheric Chemistry and Physics, 2013, 13, 895-916.	1.9	78
13	Extensive release of methane from Arctic seabed west of Svalbard during summer 2014 does not influence the atmosphere. Geophysical Research Letters, 2016, 43, 4624-4631.	1.5	74
14	Quantifying black carbon from biomass burning by means of levoglucosan – a one-year time series at the Arctic observatory Zeppelin. Atmospheric Chemistry and Physics, 2014, 14, 6427-6442.	1.9	71
15	Atmospheric methane evolution the last 40 years. Atmospheric Chemistry and Physics, 2016, 16, 3099-3126.	1.9	67
16	Density and Surface Tension of Aqueous H2SO4at Low Temperature. Journal of Chemical & Engineering Data, 1998, 43, 617-622.	1.0	65
17	A global analysis of climate-relevant aerosol properties retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories. Atmospheric Measurement Techniques, 2020, 13, 4353-4392.	1.2	65
18	Methane fluxes in the high northern latitudes for 2005–2013 estimated using a Bayesian atmospheric inversion. Atmospheric Chemistry and Physics, 2017, 17, 3553-3572.	1.9	59

C LUND MYHRE

#	Article	IF	CITATIONS
19	Multidecadal trend analysis of in situ aerosol radiative properties around the world. Atmospheric Chemistry and Physics, 2020, 20, 8867-8908.	1.9	58
20	Discrepancy between simulated and observed ethane and propane levels explained by underestimated fossil emissions. Nature Geoscience, 2018, 11, 178-184.	5.4	56
21	Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition. Scientific Data, 2017, 4, 170003.	2.4	44
22	Jury is still out on the radiative forcing by black carbon. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5092-3.	3.3	43
23	Overview of sun photometer measurements of aerosol properties in Scandinavia and Svalbard. Atmospheric Environment, 2012, 52, 18-28.	1.9	42
24	Regional aerosol optical properties and radiative impact of the extreme smoke event in the European Arctic in spring 2006. Atmospheric Chemistry and Physics, 2007, 7, 5899-5915.	1.9	40
25	Changes in black carbon emissions over Europe due to COVID-19 lockdowns. Atmospheric Chemistry and Physics, 2021, 21, 2675-2692.	1.9	40
26	Optical Constants of HNO3/H2O and H2SO4/HNO3/H2O at Low Temperatures in the Infrared Region. Journal of Physical Chemistry A, 2005, 109, 7166-7171.	1.1	36
27	Concentrations and radiative forcing of anthropogenic aerosols from 1750 to 2014 simulated with the OsloACTM3 and CEDS emission inventory. Geoscientific Model Development, 2018, 11, 4909-4931.	1.3	35
28	The radiative effect of the anthropogenic influence on the stratospheric sulfate aerosol layer. Tellus, Series B: Chemical and Physical Meteorology, 2004, 56, 294-299.	0.8	31
29	Seasonality of the particle number concentration and size distribution: a global analysis retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories. Atmospheric Chemistry and Physics, 2021, 21, 17185-17223.	1.9	31
30	Atmospheric composition in the European Arctic and 30Âyears of the Zeppelin Observatory, Ny-Ã…lesund. Atmospheric Chemistry and Physics, 2022, 22, 3321-3369.	1.9	24
31	Measurements of Î' ¹³ C in CH ₄ and using particle dispersion modeling to characterize sources of Arctic methane within an air mass. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14257-14270.	1.2	22
32	Methane at Svalbard and over the European Arctic Ocean. Atmospheric Chemistry and Physics, 2018, 18, 17207-17224.	1.9	19
33	Physical controls of dynamics of methane venting from a shallow seep area west of Svalbard. Continental Shelf Research, 2020, 194, 104030.	0.9	19
34	Vibrational spectra of nitric acid dihydrate (NAD). Vibrational Spectroscopy, 2004, 34, 55-62.	1.2	18
35	The link between springtime total ozone and summer UV radiation in Northern Hemisphere extratropics. Journal of Geophysical Research D: Atmospheres, 2013, 118, 8649-8661.	1.2	16
36	Halfway to doubling of CO2 radiative forcing. Nature Geoscience, 2017, 10, 710-711.	5.4	13

3

C LUND MYHRE

#	Article	IF	CITATIONS
37	Trends, composition, and sources of carbonaceous aerosol at the Birkenes Observatory, northern Europe, 2001–2018. Atmospheric Chemistry and Physics, 2021, 21, 7149-7170.	1.9	12
38	Seasonal and interannual variability of atmospheric methane over Arctic Ocean from satellite data. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Iz Kosmosa, 2016, 13, 107-119.	0.1	12
39	Temporal Variability in Surface Water <i>p</i> CO ₂ in Adventfjorden (West Spitsbergen) With Emphasis on Physical and Biogeochemical Drivers. Journal of Geophysical Research: Oceans, 2018, 123, 4888-4905.	1.0	11
40	Properties of aqueous methanesulfonic acid: complex index of refraction and surface tension. Applied Optics, 2004, 43, 2500.	2.1	10
41	Constraints on oceanic methane emissions west of Svalbard from atmospheric in situ measurements and Lagrangian transport modeling. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14188-14200.	1.2	10
42	Low-Frequency Raman Spectra of Nitric Acid Hydrates. Journal of Physical Chemistry A, 2006, 110, 171-176.	1.1	9
43	The Norwegian UV-monitoring network: QC and results for the period 1996-2011. , 2013, , .		4
44	Stratospheric ozone during the arctic winter: Brewer measurements in Ny-Ãlesund. International Journal of Remote Sensing, 2009, 30, 4319-4330.	1.3	2