Daniel J Lunt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8897497/publications.pdf Version: 2024-02-01

		17429	28275
178	13,478	63	105
papers	citations	h-index	g-index
251	251	251	9649
all docs	docs citations	times ranked	citing authors

DANIEL LLINT

#	Article	IF	CITATIONS
1	Future climate forcing potentially without precedent in the last 420 million years. Nature Communications, 2017, 8, 14845.	5.8	473
2	Cretaceous sea-surface temperature evolution: Constraints from TEX86 and planktonic foraminiferal oxygen isotopes. Earth-Science Reviews, 2017, 172, 224-247.	4.0	358
3	Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature, 2016, 533, 380-384.	13.7	327
4	Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project. Climate of the Past, 2013, 9, 191-209.	1.3	289
5	Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature, 2015, 518, 49-54.	13.7	287
6	A new global biome reconstruction and dataâ€model comparison for the Middle Pliocene. Global Ecology and Biogeography, 2008, 17, 432-447.	2.7	275
7	Pliocene and Eocene provide best analogs for near-future climates. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13288-13293.	3.3	271
8	Past climates inform our future. Science, 2020, 370, .	6.0	253
9	Making sense of palaeoclimate sensitivity. Nature, 2012, 491, 683-691.	13.7	247
10	Late Pliocene Greenland glaciation controlled by a decline in atmospheric CO2 levels. Nature, 2008, 454, 1102-1105.	13.7	243
11	Earth system sensitivity inferred from Pliocene modelling and data. Nature Geoscience, 2010, 3, 60-64.	5.4	230
12	Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP). Journal of Geophysical Research D: Atmospheres, 2013, 118, 8320-8332.	1.2	226
13	Imprints of glacial refugia in the modern genetic diversity of Pinus sylvestris. Global Ecology and Biogeography, 2006, 15, 271-282.	2.7	218
14	Climate model and proxy data constraints on ocean warming across the Paleocene–Eocene Thermal Maximum. Earth-Science Reviews, 2013, 125, 123-145.	4.0	214
15	A model–data comparison for a multi-model ensemble of early Eocene atmosphere–ocean simulations: EoMIP. Climate of the Past, 2012, 8, 1717-1736.	1.3	196
16	Past East Asian monsoon evolution controlled by paleogeography, not CO ₂ . Science Advances, 2019, 5, eaax1697.	4.7	192
17	The BRIDGE HadCM3 family of climate models: HadCM3@BristolÂv1.0. Geoscientific Model Development, 2017, 10, 3715-3743.	1.3	188
18	Closure of the Panama Seaway during the Pliocene: implications for climate and Northern Hemisphere glaciation. Climate Dynamics, 2007, 30, 1-18.	1.7	181

#	Article	IF	CITATIONS
19	Assessing confidence in Pliocene sea surface temperatures to evaluate predictive models. Nature Climate Change, 2012, 2, 365-371.	8.1	171
20	Evolution of the Late Miocene Mediterranean–Atlantic gateways and their impact on regional and global environmental change. Earth-Science Reviews, 2015, 150, 365-392.	4.0	171
21	The PMIP4 contribution to CMIP6 – Part 2: Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations. Geoscientific Model Development, 2017, 10, 3979-4003.	1.3	171
22	Pliocene Model Intercomparison Project (PlioMIP): experimental design and boundary conditions (Experiment 1). Geoscientific Model Development, 2010, 3, 227-242.	1.3	168
23	Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond. Nature Geoscience, 2018, 11, 474-485.	5.4	166
24	The Miocene: The Future of the Past. Paleoceanography and Paleoclimatology, 2021, 36, e2020PA004037.	1.3	166
25	The PMIP4 contribution to CMIP6 – Part 1: Overview and over-arching analysis plan. Geoscientific Model Development, 2018, 11, 1033-1057.	1.3	164
26	Pliocene Model Intercomparison Project (PlioMIP): experimental design and boundary conditions (Experiment 2). Geoscientific Model Development, 2011, 4, 571-577.	1.3	151
27	A Tortonian (Late Miocene, 11.61–7.25Ma) global vegetation reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 300, 29-45.	1.0	149
28	High-resolution simulations of the last glacial maximum climate over Europe: a solution to discrepancies with continental palaeoclimatic reconstructions?. Climate Dynamics, 2005, 24, 577-590.	1.7	142
29	The PMIP4 contribution to CMIP6 – Part 4: Scientific objectives and experimental design of the PMIP4-CMIP6 Last Glacial Maximum experiments and PMIP4 sensitivity experiments. Geoscientific Model Development, 2017, 10, 4035-4055.	1.3	137
30	A multi-model assessment of last interglacial temperatures. Climate of the Past, 2013, 9, 699-717.	1.3	134
31	Challenges in quantifying Pliocene terrestrial warming revealed by data–model discord. Nature Climate Change, 2013, 3, 969-974.	8.1	132
32	Fire and fireâ€edapted vegetation promoted C ₄ expansion in the late Miocene. New Phytologist, 2012, 195, 653-666.	3.5	131
33	The DeepMIP contribution to PMIP4: methodologies for selection, compilation and analysis of latest Paleocene and early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database. Geoscientific Model Development, 2019, 12, 3149-3206.	1.3	131
34	Descent toward the Icehouse: Eocene sea surface cooling inferred from GDGT distributions. Paleoceanography, 2015, 30, 1000-1020.	3.0	129
35	Sea Surface Temperature of the mid-Piacenzian Ocean: A Data-Model Comparison. Scientific Reports, 2013, 3, 2013.	1.6	124
36	How warm was the last interglacial? New model–data comparisons. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20130097.	1.6	124

#	Article	IF	CITATIONS
37	Palaeogeographic controls on climate and proxy interpretation. Climate of the Past, 2016, 12, 1181-1198.	1.3	121
38	Human ecological niches and ranges during the LGM in Europe derived from an application of eco-cultural niche modeling. Journal of Archaeological Science, 2008, 35, 481-491.	1.2	119
39	A model for orbital pacing of methane hydrate destabilization during the Palaeogene. Nature Geoscience, 2011, 4, 775-778.	5.4	119
40	The Pliocene Model Intercomparison Project (PlioMIP) Phase 2: scientific objectives and experimental design. Climate of the Past, 2016, 12, 663-675.	1.3	119
41	Hydrological and associated biogeochemical consequences of rapid global warming during the Paleocene-Eocene Thermal Maximum. Global and Planetary Change, 2017, 157, 114-138.	1.6	119
42	Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17084-17093.	3.3	116
43	Sensitivity of Pliocene ice sheets to orbital forcing. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 309, 98-110.	1.0	106
44	The Mediterranean hydrologic budget from a Late Miocene global climate simulation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 251, 254-267.	1.0	102
45	CO2-driven ocean circulation changes as an amplifier of Paleocene-Eocene thermal maximum hydrate destabilization. Geology, 2010, 38, 875-878.	2.0	100
46	On the causes of mid-Pliocene warmth and polar amplification. Earth and Planetary Science Letters, 2012, 321-322, 128-138.	1.8	97
47	Neogene ice volume and ocean temperatures: Insights from infaunal foraminiferal Mg/Ca paleothermometry. Paleoceanography, 2015, 30, 1437-1454.	3.0	96
48	"Sunshade World― A fully coupled GCM evaluation of the climatic impacts of geoengineering. Geophysical Research Letters, 2008, 35, .	1.5	93
49	The Pliocene Model Intercomparison Project Phase 2: large-scale climate features and climate sensitivity. Climate of the Past, 2020, 16, 2095-2123.	1.3	93
50	The DeepMIP contribution to PMIP4: experimental design for model simulations of the EECO, PETM, and pre-PETM (version 1.0). Geoscientific Model Development, 2017, 10, 889-901.	1.3	90
51	Climate Sensitivity on Geological Timescales Controlled by Nonlinear Feedbacks and Ocean Circulation. Geophysical Research Letters, 2019, 46, 9880-9889.	1.5	90
52	The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and models and model–data comparisons. Climate of the Past, 2021, 17, 269-315.	1.3	90
53	Investigating the sensitivity of numerical model simulations of the modern state of the Greenland ice-sheet and its future response to climate change. Cryosphere, 2010, 4, 397-417.	1.5	88
54	Are there pre-Quaternary geological analogues for a future greenhouse warming?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 933-956.	1.6	88

#	Article	IF	CITATIONS
55	Parameter estimation in an atmospheric GCM using the Ensemble Kalman Filter. Nonlinear Processes in Geophysics, 2005, 12, 363-371.	0.6	85
56	Introduction. Pliocene climate, processes and problems. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 3-17.	1.6	85
57	Last interglacial temperature evolution – a model inter-comparison. Climate of the Past, 2013, 9, 605-619.	1.3	84
58	Quantification of the Greenland ice sheet contribution to Last Interglacial sea level rise. Climate of the Past, 2013, 9, 621-639.	1.3	84
59	Comparison of mid-Pliocene climate predictions produced by the HadAM3 and GCMAM3 General Circulation Models. Global and Planetary Change, 2009, 66, 208-224.	1.6	83
60	Qaidam Basin leaf fossils show northeastern Tibet was high, wet and cool in the early Oligocene. Earth and Planetary Science Letters, 2020, 537, 116175.	1.8	80
61	The past is a guide to the future? Comparing Middle Pliocene vegetation with predicted biome distributions for the twenty-first century. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 189-204.	1.6	78
62	A Palaeogene perspective on climate sensitivity and methane hydrate instability. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 2395-2415.	1.6	71
63	DeepMIP: model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data. Climate of the Past, 2021, 17, 203-227.	1.3	71
64	Global mean surface temperature and climate sensitivity of the early Eocene Climatic Optimum (EECO), Paleocene–Eocene Thermal Maximum (PETM), and latest Paleocene. Climate of the Past, 2020, 16, 1953-1968.	1.3	71
65	Assessing the regional disparities in geoengineering impacts. Geophysical Research Letters, 2010, 37, .	1.5	69
66	On the identification of a Pliocene time slice for data–model comparison. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120515.	1.6	69
67	Effects of a melted greenland ice sheet on climate, vegetation, and the cryosphere. Climate Dynamics, 2004, 23, 679-694.	1.7	67
68	High temperatures in the terrestrial mid-latitudes during the early Palaeogene. Nature Geoscience, 2018, 11, 766-771.	5.4	67
69	Orographic evolution of northern Tibet shaped vegetation and plant diversity in eastern Asia. Science Advances, 2021, 7, .	4.7	66
70	The modern dust cycle: Comparison of model results with observations and study of sensitivities. Journal of Geophysical Research, 2002, 107, AAC 1-1-AAC 1-16.	3.3	63
71	Mid-Pliocene climate modelled using the UK Hadley Centre Model: PlioMIP Experiments 1 and 2. Geoscientific Model Development, 2012, 5, 1109-1125.	1.3	62
72	Changes in equatorial Pacific thermocline depth in response to Panamanian seaway closure: Insights from a multi-model study. Earth and Planetary Science Letters, 2012, 317-318, 76-84.	1.8	60

#	Article	IF	CITATIONS
73	Ecological niche modelling does not support climatically-driven dinosaur diversity decline before the Cretaceous/Paleogene mass extinction. Nature Communications, 2019, 10, 1091.	5.8	60
74	Uncertainties in the modelled CO ₂ threshold for Antarctic glaciation. Climate of the Past, 2014, 10, 451-466.	1.3	59
75	Evaluating the dominant components of warming in Pliocene climate simulations. Climate of the Past, 2014, 10, 79-90.	1.3	58
76	A model–model and data–model comparison for the early Eocene hydrological cycle. Climate of the Past, 2016, 12, 455-481.	1.3	58
77	Proxy evidence for state-dependence of climate sensitivity in the Eocene greenhouse. Nature Communications, 2020, 11, 4436.	5.8	57
78	Climatic effects of surface albedo geoengineering. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	56
79	Paleogeographic controls on the onset of the Antarctic circumpolar current. Geophysical Research Letters, 2013, 40, 5199-5204.	1.5	55
80	Climatic shifts drove major contractions in avian latitudinal distributions throughout the Cenozoic. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12895-12900.	3.3	55
81	Dust transport to Dome C, Antarctica, at the Last Glacial Maximum and present day. Geophysical Research Letters, 2001, 28, 295-298.	1.5	54
82	Pliocene climate and seasonality in North Atlantic shelf seas. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 85-108.	1.6	54
83	Sea surface temperatures of the mid-Piacenzian Warm Period: A comparison of PRISM3 and HadCM3. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 309, 83-91.	1.0	54
84	An impulse response function for the "long tail―of excess atmospheric CO ₂ in an Earth system model. Global Biogeochemical Cycles, 2016, 30, 2-17.	1.9	54
85	Simulating Miocene Warmth: Insights From an Opportunistic Multiâ€Model Ensemble (MioMIP1). Paleoceanography and Paleoclimatology, 2021, 36, e2020PA004054.	1.3	52
86	Mid-pliocene Atlantic Meridional Overturning Circulation not unlike modern. Climate of the Past, 2013, 9, 1495-1504.	1.3	50
87	Mid-latitude continental temperatures through the early Eocene in western Europe. Earth and Planetary Science Letters, 2017, 460, 86-96.	1.8	49
88	Changes in the occurrence of extreme precipitation events at the Paleocene–Eocene thermal maximum. Earth and Planetary Science Letters, 2018, 501, 24-36.	1.8	49
89	Effects of atmospheric dynamics and ocean resolution on bi-stability of the thermohaline circulation examined using the Grid ENabled Integrated Earth system modelling (GENIE) framework. Climate Dynamics, 2007, 29, 591-613.	1.7	48
90	Temperature trends during the Present and Last Interglacial periods – a multi-model-data comparison. Quaternary Science Reviews, 2014, 99, 224-243.	1.4	48

#	Article	IF	CITATIONS
91	The cause of Late Cretaceous cooling: A multimodel-proxy comparison. Geology, 2016, 44, 963-966.	2.0	48
92	Mediterranean outflow pump: An alternative mechanism for the Lago-mare and the end of the Messinian Salinity Crisis. Geology, 2016, 44, 523-526.	2.0	48
93	Nature of the Antarctic Peninsula Ice Sheet during the Pliocene: Geological evidence and modelling results compared. Earth-Science Reviews, 2009, 94, 79-94.	4.0	47
94	The relative roles of CO ₂ and palaeogeography in determining late Miocene climate: results from a terrestrial model–data comparison. Climate of the Past, 2012, 8, 1257-1285.	1.3	45
95	El Niño–Southern Oscillation, Pliocene climate and equifinality. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 127-156.	1.6	44
96	Placing our current â€~hyperthermal' in the context of rapid climate change in our geological past. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170086.	1.6	44
97	The Arctic cryosphere in the Mid-Pliocene and the future. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 49-67.	1.6	42
98	Dust deposition and provenance at the Last Glacial Maximum and present day. Geophysical Research Letters, 2002, 29, 42-1-42-4.	1.5	41
99	The fate of the Greenland Ice Sheet in a geoengineered, high CO ₂ world. Environmental Research Letters, 2009, 4, 045109.	2.2	41
100	Deep ocean temperatures through time. Climate of the Past, 2021, 17, 1483-1506.	1.3	41
101	Orbital control on late Miocene climate and the North African monsoon: insight from an ensemble of sub-precessional simulations. Climate of the Past, 2015, 11, 1271-1295.	1.3	40
102	Extinction intensity during Ordovician and Cenozoic glaciations explained by cooling and palaeogeography. Nature Geoscience, 2020, 13, 65-70.	5.4	39
103	Ice sheet model dependency of the simulated Greenland Ice Sheet in the mid-Pliocene. Climate of the Past, 2015, 11, 369-381.	1.3	38
104	Hadley circulation and precipitation changes controlling black shale deposition in the Late Jurassic Boreal Seaway. Paleoceanography, 2016, 31, 1041-1053.	3.0	37
105	A methodology for targeting palaeo proxy data acquisition: A case study for the terrestrial late Miocene. Earth and Planetary Science Letters, 2008, 271, 53-62.	1.8	36
106	Investigating vegetation–climate feedbacks during the early Eocene. Climate of the Past, 2014, 10, 419-436.	1.3	36
107	Using results from the PlioMIP ensemble to investigate the Greenland Ice Sheet during the mid-Pliocene Warm Period. Climate of the Past, 2015, 11, 403-424.	1.3	35
108	Modelling Late Oligocene C4 grasses and climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 251, 239-253.	1.0	34

#	Article	IF	CITATIONS
109	The impact of Cenozoic cooling on assemblage diversity in planktonic foraminifera. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150224.	1.8	34
110	Exploring uncertainties in the relationship between temperature, ice volume, and sea level over the past 50 million years. Reviews of Geophysics, 2012, 50, .	9.0	33
111	Atmospheric and oceanic impacts of Antarctic glaciation across the Eocene–Oligocene transition. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140419.	1.6	33
112	Widespread Warming Before and Elevated Barium Burial During the Paleoceneâ€Eocene Thermal Maximum: Evidence for Methane Hydrate Release?. Paleoceanography and Paleoclimatology, 2019, 34, 546-566.	1.3	33
113	Quantifying the Mediterranean freshwater budget throughout the late Miocene: New implications for sapropel formation and the Messinian Salinity Crisis. Earth and Planetary Science Letters, 2017, 472, 25-37.	1.8	32
114	Southern Hemisphere sea-surface temperatures during the Cenomanian–Turonian: Implications for the termination of Oceanic Anoxic Event 2. Geology, 2019, 47, 131-134.	2.0	32
115	Impact of global cooling on Early Cretaceous high pCO2 world during the Weissert Event. Nature Communications, 2021, 12, 5411.	5.8	32
116	Early Jurassic North Atlantic seaâ€surface temperatures from <scp>TEX</scp> ₈₆ palaeothermometry. Sedimentology, 2017, 64, 215-230.	1.6	31
117	Climatic drivers of latitudinal variation in Late Triassic tetrapod diversity. Palaeontology, 2021, 64, 101-117.	1.0	31
118	Mountain uplift and the glaciation of North America – a sensitivity study. Climate of the Past, 2010, 6, 707-717.	1.3	30
119	Warm climates of the past—a lesson for the future?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20130146.	1.6	30
120	Oligocene climate signals and forcings in Eurasia revealed by plant macrofossil and modelling results. Gondwana Research, 2018, 61, 115-127.	3.0	30
121	Unravelling the sources of carbon emissions at the onset of Oceanic Anoxic Event (OAE) 1a. Earth and Planetary Science Letters, 2020, 530, 115947.	1.8	30
122	Comparing transient, accelerated, and equilibrium simulations of the last 30 000 years with the GENIE-1 model. Climate of the Past, 2006, 2, 221-235.	1.3	28
123	Past terrestrial hydroclimate sensitivity controlled by Earth system feedbacks. Nature Communications, 2022, 13, 1306.	5.8	28
124	Ecosystem CO ₂ starvation and terrestrial silicate weathering: mechanisms and globalâ€scale quantification during the late Miocene. Journal of Ecology, 2012, 100, 31-41.	1.9	27
125	Changes in benthic ecosystems and ocean circulation in the Southeast Atlantic across Eocene Thermal Maximum 2. Paleoceanography, 2015, 30, 1059-1077.	3.0	27
126	Disentangling the roles of late Miocene palaeogeography and vegetation – Implications for climate sensitivity. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 417, 17-34.	1.0	23

#	Article	IF	CITATIONS
127	Impact of meltwater on high-latitude early Last Interglacial climate. Climate of the Past, 2016, 12, 1919-1932.	1.3	22
128	Precession driven changes in terrestrial organic matter input to the Eastern Mediterranean leading up to the Messinian Salinity Crisis. Earth and Planetary Science Letters, 2017, 462, 199-211.	1.8	22
129	Absolute seasonal temperature estimates from clumped isotopes in bivalve shells suggest warm and variable greenhouse climate. Communications Earth & Environment, 2021, 2, .	2.6	22
130	Eocene to Oligocene terrestrial Southern Hemisphere cooling caused by declining pCO2. Nature Geoscience, 2021, 14, 659-664.	5.4	22
131	Assessment of soil moisture fields from imperfect climate models with uncertain satellite observations. Hydrology and Earth System Sciences, 2009, 13, 1545-1553.	1.9	21
132	Terrestrial environmental change across the onset of the PETM and the associated impact on biomarker proxies: A cautionary tale. Global and Planetary Change, 2019, 181, 102991.	1.6	21
133	Evaluating the large-scale hydrological cycle response within the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) ensemble. Climate of the Past, 2021, 17, 2537-2558.	1.3	21
134	Mid-Pliocene Atlantic Meridional Overturning Circulation simulated in PlioMIP2. Climate of the Past, 2021, 17, 529-543.	1.3	20
135	The impacts of Tibetan uplift on palaeoclimate proxies. Geological Society Special Publication, 2010, 342, 279-291.	0.8	19
136	CMIP6/PMIP4 simulations of the mid-Holocene and Last Interglacial using HadGEM3: comparison to the pre-industrial era, previous model versions and proxy data. Climate of the Past, 2020, 16, 1429-1450.	1.3	19
137	Pliocene climate variability: Northern Annular Mode in models and tree-ring data. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 309, 118-127.	1.0	18
138	Changes in the high-latitude Southern Hemisphere through the Eocene–Oligocene transition: a model–data comparison. Climate of the Past, 2020, 16, 555-573.	1.3	18
139	Quantifying Uncertainty in Model Predictions for the Pliocene (Plio-QUMP): Initial results. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 309, 128-140.	1.0	17
140	An efficient method to generate a perturbed parameter ensemble of a fully coupled AOGCM without flux-adjustment. Geoscientific Model Development, 2013, 6, 1447-1462.	1.3	16
141	Hydrological impact of Middle Miocene Antarctic ice-free areas coupled to deep ocean temperatures. Nature Geoscience, 2021, 14, 429-436.	5.4	16
142	The Cenozoic history of palms: Global diversification, biogeography and the decline of megathermal forests. Global Ecology and Biogeography, 2022, 31, 425-439.	2.7	16
143	Simulation of the mid-Pliocene Warm Period using HadGEM3: experimental design and results from model–model and model–data comparison. Climate of the Past, 2021, 17, 2139-2163.	1.3	15
144	The role of vegetation feedbacks on Greenland glaciation. Climate Dynamics, 2013, 40, 2671-2686.	1.7	14

#	Article	IF	CITATIONS
145	Emulation of long-term changes in global climate: application to the late Pliocene and future. Climate of the Past, 2017, 13, 1539-1571.	1.3	14
146	Assessing Mechanisms and Uncertainty in Modeled Climatic Change at the Eoceneâ€Oligocene Transition. Paleoceanography and Paleoclimatology, 2019, 34, 16-34.	1.3	14
147	How Antarctica got its ice. Science, 2016, 352, 34-35.	6.0	12
148	Predicting sediment discharges and erosion rates in deep time—examples from the late Cretaceous North American continent. Basin Research, 2020, 32, 1547-1573.	1.3	12
149	Geological Society of London Scientific Statement: what the geological record tells us about our present and future climate. Journal of the Geological Society, 2021, 178, .	0.9	12
150	Optimization of integrated Earth System Model components using Grid-enabled data management and computation. Concurrency Computation Practice and Experience, 2007, 19, 153-165.	1.4	11
151	Key factors governing uncertainty in the response to sunshade geoengineering from a comparison of the GeoMIP ensemble and a perturbed parameter ensemble. Journal of Geophysical Research D: Atmospheres, 2014, 119, 7946-7962.	1.2	11
152	Early Eocene Ocean Meridional Overturning Circulation: The Roles of Atmospheric Forcing and Strait Geometry. Paleoceanography and Paleoclimatology, 2022, 37, .	1.3	11
153	Climatic and tectonic drivers shaped the tropical distribution of coral reefs. Nature Communications, 2022, 13, .	5.8	11
154	Precessional Drivers of Late Miocene Mediterranean Sedimentary Sequences: African Summer Monsoon and Atlantic Winter Storm Tracks. Paleoceanography and Paleoclimatology, 2019, 34, 1980-1994.	1.3	10
155	Mid-Pliocene West African Monsoon rainfall as simulated in the PlioMIP2 ensemble. Climate of the Past, 2021, 17, 1777-1794.	1.3	10
156	Reduced El Niño variability in the mid-Pliocene according to the PlioMIP2 ensemble. Climate of the Past, 2021, 17, 2427-2450.	1.3	10
157	Sensitivity of the Greenland Ice Sheet to Interglacial Climate Forcing: MIS 5e Versus MIS 11. Paleoceanography, 2017, 32, 1089-1101.	3.0	9
158	Climate change and landscape development in post-closure safety assessment of solid radioactive waste disposal: Results of an initiative of the IAEA. Journal of Environmental Radioactivity, 2018, 183, 41-53.	0.9	9
159	The role of temperature in the initiation of the end-Triassic mass extinction. Earth-Science Reviews, 2020, 208, 103266.	4.0	9
160	A new dust cycle model with dynamic vegetation: LPJ-dust version 1.0. Geoscientific Model Development, 2011, 4, 85-105.	1.3	8
161	Global warming and ocean stratification: A potential result of large extraterrestrial impacts. Geophysical Research Letters, 2017, 44, 3841-3848.	1.5	8
162	A long-term, high-latitude record of Eocene hydrological change in the Greenland region. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 537, 109378.	1.0	8

#	Article	IF	CITATIONS
163	The 'long tail' of anthropogenic CO2 decline in the atmosphere and its consequences for post-closure performance assessments for disposal of radioactive wastes. Mineralogical Magazine, 2015, 79, 1613-1623.	0.6	7
164	Orbital, tectonic and oceanographic controls on Pliocene climate and atmospheric circulation in Arctic Norway. Global and Planetary Change, 2018, 161, 183-193.	1.6	7
165	Data-constrained assessment of ocean circulation changes since the middle Miocene in an Earth system model. Climate of the Past, 2021, 17, 2223-2254.	1.3	7
166	Plant Proxy Evidence for High Rainfall and Productivity in the Eocene of Australia. Paleoceanography and Paleoclimatology, 2022, 37, .	1.3	7
167	Editorial: The publication of geoscientific model developments v1.0. Geoscientific Model Development, 2013, 6, 1233-1242.	1.3	5
168	Multi-variate factorisation of numerical simulations. Geoscientific Model Development, 2021, 14, 4307-4317.	1.3	5
169	A new global biome reconstruction and data-model comparison for the Middle Pliocene. Global Ecology and Biogeography, 2008, , .	2.7	3
170	African Hydroclimate During the Early Eocene From the DeepMIP Simulations. Paleoceanography and Paleoclimatology, 2022, 37, .	1.3	3
171	Corrigendum to ''The relative roles of CO ₂ and palaeogeography in determining late Miocene climate: results from a terrestrial model-data comparison'' published in Clim. Past, 8, 1257–1285, 2012. Climate of the Past, 2012, 8, 1301-1307.	1.3	2
172	A multimodel investigation of atmospheric mechanisms for driving Arctic amplification in warmer climates. Journal of Climate, 2021, , 1-55.	1.2	2
173	Corrigendum to "The relative roles of CO ₂ and palaeogeography in determining late Miocene climate: results from a terrestrial model–data comparison" published in Clim. Past, 8, 1257〓1285, 2012. Climate of the Past, 2014, 10, 199-206.	1.3	1
174	EVALUATING NORTHERN HIGH-LATITUDE PALEOCLIMATE MODEL RESULTS USING PALEOBOTANICAL EVIDENCE FROM THE MIDDLE CRETACEOUS. , 2019, , 119-133.		1
175	Simulation of Arctic sea ice within the DeepMIP Eocene ensemble: Thresholds, seasonality and factors controlling sea ice development. Global and Planetary Change, 2022, 214, 103848.	1.6	1
176	Correction to "Dust deposition and provenance at the Last Glacial Maximum and present day―by D. J. Lunt and P. J. Valdes. Geophysical Research Letters, 2003, 30, n/a-n/a.	1.5	0
177	Computer code: a model journal. Nature, 2010, 468, 37-37.	13.7	0
178	Causes and effects of Antarctic ice. Nature, 2014, 511, 536-537.	13.7	0