List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8897393/publications.pdf Version: 2024-02-01

ALOK SINCH

#	Article	IF	CITATIONS
1	An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem. Applied Soft Computing Journal, 2009, 9, 625-631.	4.1	399
2	A swarm intelligence approach to the quadratic minimum spanning tree problem. Information Sciences, 2010, 180, 3182-3191.	4.0	96
3	A new grouping genetic algorithm approach to the multiple traveling salesperson problem. Soft Computing, 2009, 13, 95-101.	2.1	92
4	Two metaheuristic approaches for the multiple traveling salesperson problem. Applied Soft Computing Journal, 2015, 26, 74-89.	4.1	82
5	Hybrid metaheuristic algorithms for minimum weight dominating set. Applied Soft Computing Journal, 2013, 13, 76-88.	4.1	48
6	An artificial bee colony algorithm with variable degree of perturbation for the generalized covering traveling salesman problem. Applied Soft Computing Journal, 2019, 78, 481-495.	4.1	45
7	NSGA-II with objective-specific variation operators for multiobjective vehicle routing problem with time windows. Expert Systems With Applications, 2021, 176, 114779.	4.4	42
8	A hyper-heuristic based artificial bee colony algorithm for k-Interconnected multi-depot multi-traveling salesman problem. Information Sciences, 2018, 463-464, 261-281.	4.0	40
9	Two heuristics for the one-dimensional bin-packing problem. OR Spectrum, 2007, 29, 765-781.	2.1	39
10	An artificial bee colony algorithm for the minimum routing cost spanning tree problem. Soft Computing, 2011, 15, 2489-2499.	2.1	39
11	A hybrid heuristic for the maximum clique problem. Journal of Heuristics, 2006, 12, 5-22.	1.1	37
12	A swarm intelligence approach to the early/tardy scheduling problem. Swarm and Evolutionary Computation, 2012, 4, 25-32.	4.5	37
13	Hybrid evolutionary approaches for the single machine order acceptance and scheduling problem. Applied Soft Computing Journal, 2017, 52, 725-747.	4.1	37
14	Lifetime maximization in wireless directional sensor network. European Journal of Operational Research, 2013, 231, 229-241.	3.5	33
15	An exact approach for maximizing the lifetime of sensor networks with adjustable sensing ranges. Computers and Operations Research, 2012, 39, 3166-3176.	2.4	32
16	Improved heuristics for the bounded-diameter minimum spanning tree problem. Soft Computing, 2007, 11, 911-921.	2.1	31
17	A swarm intelligence approach for the colored traveling salesman problem. Applied Intelligence, 2018, 48, 4412-4428.	3.3	29
18	A genetic algorithm based exact approach for lifetime maximization of directional sensor networks. Ad Hoc Networks, 2013, 11, 1006-1021.	3.4	28

#	Article	IF	CITATIONS
19	A hybrid genetic algorithm for the minimum energy broadcast problem in wireless ad hoc networks. Applied Soft Computing Journal, 2011, 11, 667-674.	4.1	27
20	Column generation algorithm for sensor coverage scheduling under bandwidth constraints. Networks, 2012, 60, 141-154.	1.6	27
21	A hybrid swarm intelligence approach to the registration area planning problem. Information Sciences, 2015, 302, 50-69.	4.0	26
22	A HYBRID HEURISTIC FOR THE MINIMUM WEIGHT VERTEX COVER PROBLEM. Asia-Pacific Journal of Operational Research, 2006, 23, 273-285.	0.9	24
23	New heuristic approaches for the dominating tree problem. Applied Soft Computing Journal, 2013, 13, 4695-4703.	4.1	24
24	A Swarm Intelligence Approach to the Quadratic Multiple Knapsack Problem. Lecture Notes in Computer Science, 2010, , 626-633.	1.0	24
25	Matheuristic approaches for <i>Q</i> -coverage problem versions in wireless sensor networks. Engineering Optimization, 2013, 45, 609-626.	1.5	22
26	An Artificial Bee Colony Algorithm for the 0–1 Multidimensional Knapsack Problem. Communications in Computer and Information Science, 2010, , 141-151.	0.4	21
27	A hybrid heuristic for the set covering problem. Operational Research, 2012, 12, 345-365.	1.3	21
28	Genetic algorithms for single machine scheduling with quadratic earliness and tardiness costs. International Journal of Advanced Manufacturing Technology, 2011, 54, 251-265.	1.5	19
29	New heuristics for two bounded-degree spanning tree problems. Information Sciences, 2012, 195, 226-240.	4.0	19
30	Two hybrid metaheuristic approaches for the covering salesman problem. Neural Computing and Applications, 2020, 32, 15643-15663.	3.2	19
31	A hybrid evolutionary algorithm with guided mutation for minimum weight dominating set. Applied Intelligence, 2015, 43, 512-529.	3.3	18
32	Two swarm intelligence approaches for tuning extreme learning machine. International Journal of Machine Learning and Cybernetics, 2018, 9, 1271-1283.	2.3	16
33	Artificial bee colony algorithm for clustering: an extreme learning approach. Soft Computing, 2016, 20, 3163-3176.	2.1	15
34	An Artificial Bee Colony Algorithm for the Quadratic Knapsack Problem. Lecture Notes in Computer Science, 2009, , 196-205.	1.0	15
35	A metaheuristic for the fixed job scheduling problem under spread time constraints. Computers and Operations Research, 2010, 37, 1045-1054.	2.4	14
36	Swarm intelligence approaches for cover scheduling problem in wireless sensor networks. International Journal of Bio-Inspired Computation, 2015, 7, 50.	0.6	14

#	Article	IF	CITATIONS
37	A hybrid artificial bee colony algorithm for the cooperative maximum covering location problem. International Journal of Machine Learning and Cybernetics, 2017, 8, 691-697.	2.3	14
38	A hybrid heuristic for dominating tree problem. Soft Computing, 2016, 20, 377-397.	2.1	13
39	NEW METAHEURISTIC APPROACHES FOR THE LEAF-CONSTRAINED MINIMUM SPANNING TREE PROBLEM. Asia-Pacific Journal of Operational Research, 2008, 25, 575-589.	0.9	12
40	Metaheuristic Approaches for the Blockmodel Problem. IEEE Systems Journal, 2015, 9, 1237-1247.	2.9	11
41	Swarm intelligence approaches for multidepot salesmen problems with load balancing. Applied Intelligence, 2016, 44, 849-861.	3.3	11
42	Metaheuristic algorithms for computing capacitated dominating set with uniform and variable capacities. Swarm and Evolutionary Computation, 2013, 13, 22-33.	4.5	10
43	A Multi-start Iterated Local Search Algorithm with Variable Degree of Perturbation for the Covering Salesman Problem. Advances in Intelligent Systems and Computing, 2019, , 279-292.	0.5	10
44	A HYBRID PERMUTATION-CODED EVOLUTIONARY ALGORITHM FOR THE EARLY/TARDY SCHEDULING PROBLEM. Asia-Pacific Journal of Operational Research, 2010, 27, 713-725.	0.9	9
45	Two grouping-based metaheuristics for clique partitioning problem. Applied Intelligence, 2017, 47, 430-442.	3.3	9
46	Boosting an evolution strategy with a preprocessing step: application to group scheduling problem in directional sensor networks. Applied Intelligence, 2018, 48, 4760-4774.	3.3	9
47	Multi-start heuristics for the profitable tour problem. Swarm and Evolutionary Computation, 2021, 64, 100897.	4.5	9
48	A hybrid evolutionary approach to the registration area planning problem. Applied Intelligence, 2014, 41, 1127-1149.	3.3	8
49	Heuristics for lifetime maximization in camera sensor networks. Information Sciences, 2017, 385-386, 475-491.	4.0	8
50	Hybrid artificial bee colony algorithm based approaches for two ring loading problems. Applied Intelligence, 2017, 47, 1157-1168.	3.3	8
51	An evolution strategy based approach for cover scheduling problem in wireless sensor networks. International Journal of Machine Learning and Cybernetics, 2020, 11, 1981-2006.	2.3	8
52	A general variable neighborhood search algorithm for the k-traveling salesman problem. Procedia Computer Science, 2018, 143, 189-196.	1.2	7
53	A Multi-Start Iterated Local Search Algorithm for the Maximum Scatter Traveling Salesman Problem. , 2019, , .		7
54	Two multi-start heuristics for the k-traveling salesman problem. Opsearch, 2020, 57, 1164-1204.	1.1	7

#	Article	IF	CITATIONS
55	Cutting-plane-based algorithms for two branch vertices related spanning tree problems. Optimization and Engineering, 2014, 15, 855-887.	1.3	6
56	Group scheduling problems in directional sensor networks. Engineering Optimization, 2015, 47, 1651-1669.	1.5	6
57	A hybrid artificial bee colony algorithm for the p-median problem with positive/negative weights. Opsearch, 2017, 54, 67-93.	1.1	6
58	Focus distance-aware lifetime maximization of video camera-based wireless sensor networks. Journal of Heuristics, 2021, 27, 5-30.	1.1	6
59	A Hybrid Grouping Genetic Algorithm for Multiprocessor Scheduling. Communications in Computer and Information Science, 2009, , 1-7.	0.4	6
60	On the Cover Scheduling Problem in Wireless Sensor Networks. Lecture Notes in Computer Science, 2011, , 657-668.	1.0	6
61	A New Heuristic for the Minimum Routing Cost Spanning Tree Problem. , 2008, , .		5
62	TABU SEARCH FOR MULTIPROCESSOR SCHEDULING: APPLICATION TO HIGH LEVEL SYNTHESIS. Asia-Pacific Journal of Operational Research, 2011, 28, 201-212.	0.9	5
63	Hybrid heuristics for the single machine scheduling problem with quadratic earliness and tardiness costs. International Journal of Machine Learning and Cybernetics, 2012, 3, 327-333.	2.3	5
64	An artificial bee colony algorithm for minimum weight dominating set. , 2014, , .		5
65	A hybrid evolutionary approach for set packing problem. Opsearch, 2015, 52, 271-284.	1.1	5
66	A Novel ELM K-Means Algorithm for Clustering. Lecture Notes in Computer Science, 2015, , 212-222.	1.0	5
67	Hybrid metaheuristic approaches for the single machine total stepwise tardiness problem with release dates. Operational Research, 2017, 17, 275-295.	1.3	5
68	A Hybrid Swarm Intelligence Approach for Anti-Covering Location Problem. , 2019, , .		5
69	Multi-start iterated local search, exact and matheuristic approaches for minimum capacitated dominating set problem. Applied Soft Computing Journal, 2021, 108, 107437.	4.1	5
70	Combining ELM with Random Projections for Low and High Dimensional Data Classification and Clustering. Advances in Intelligent Systems and Computing, 2015, , 89-107.	0.5	3
71	A simple hyper-heuristic approach for a variant of many-to-many hub location-routing problem. Journal of Heuristics, 2021, 27, 791-868.	1.1	3
72	Design of an Efficient Verification Scheme for Correctness of Outsourced Computations in Cloud Computing. Communications in Computer and Information Science, 2015, , 66-77.	0.4	3

#	Article	IF	CITATIONS
73	An artificial bee colony algorithm based approach to the constrained p-center problem. , 2012, , .		2
74	A Greedy Heuristic and Its Variants for Minimum Capacitated Dominating Set. Communications in Computer and Information Science, 2012, , 28-39.	0.4	2
75	A swarm intelligence approach for the p-median problem. International Journal of Metaheuristics, 2016, 5, 136.	0.1	2
76	Two swarm intelligence-based approaches for the <i>p</i> -centre problem. International Journal of Swarm Intelligence, 2018, 3, 290.	0.2	2
77	A Hybrid Discrete Differential Evolution Approach for the Single Machine Total Stepwise Tardiness Problem with Release Dates. , 2021, , .		2
78	A Hybrid Artificial Bee Colony Algorithm for the Terminal Assignment Problem. Lecture Notes in Computer Science, 2015, , 134-144.	1.0	2
79	An Evolutionary Approach to Multi-point Relays Selection in Mobile Ad Hoc Networks. Lecture Notes in Computer Science, 2019, , 375-384.	1.0	2
80	Swarm intelligence, exact and matheuristic approaches for minimum weight directed dominating set problem. Engineering Applications of Artificial Intelligence, 2022, 109, 104647.	4.3	2
81	Evolutionary approaches for the weighted anti-covering location problem. Evolutionary Intelligence, 2023, 16, 891-901.	2.3	2
82	An evolutionary approach for obnoxious cooperative maximum covering location problem. Applied Intelligence, 2022, 52, 16651-16666.	3.3	2
83	A study on energy issues in construction of all-to-all minimum power broadcast (A2A MPB) trees in wireless networks. , 2013, , .		1
84	An effective heuristic for construction of all-to-all minimum power broadcast trees in wireless networks. , 2014, , .		1
85	Comparative analysis of ELM and No-Prop algorithms. , 2016, , .		1
86	A Novel Hybrid Ant Colony Optimization Approach to Terminal Assignment Problem. , 2016, , .		1
87	Grouping Genetic Algorithm for Data Clustering. Lecture Notes in Computer Science, 2011, , 225-232.	1.0	1
88	An Ant Colony Optimization Algorithm for the Min-Degree Constrained Minimum Spanning Tree Problem. Lecture Notes in Computer Science, 2013, , 85-94.	1.0	1
89	Heuristics for Minimum Weight Directed Dominating Set Problem. Communications in Computer and Information Science, 2020, , 494-507.	0.4	1
90	A swarm intelligence approach to the minimum reload cost spanning tree problem. , 2010, , .		0

#	Article	IF	CITATIONS
91	An Artificial Bee Colony Algorithm for the Minimum Average Routing Path Clustering Problem in Multi-hop Underwater Sensor Networks. Communications in Computer and Information Science, 2012, , 212-219.	0.4	0
92	Solving the min-degree constrained minimum spanning tree problem using heuristic and metaheuristic approaches. , 2012, , .		0
93	An Ant Colony Optimization Approach for the Dominating Tree Problem. Lecture Notes in Computer Science, 2016, , 143-153.	1.0	0
94	Heuristics for Generalized Minimum Dominating Set Problem. Advances in Intelligent Systems and Computing, 2021, , 313-327.	0.5	0
95	p-shrink: A Heuristic for Improving Minimum All-to-All Power Broadcast Trees in Wireless Networks. Lecture Notes in Electrical Engineering, 2014, , 61-69.	0.3	0