
David F Tough

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8897181/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bromodomain proteins regulate human cytomegalovirus latency and reactivation allowing epigenetic therapeutic intervention. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	25
2	Novel Insights Into Rheumatoid Arthritis Through Characterization of Concordant Changes in DNA Methylation and Gene Expression in Synovial Biopsies of Patients With Differing Numbers of Swollen Joints. Frontiers in Immunology, 2021, 12, 651475.	4.8	7
3	Selective Targeting of Epigenetic Readers and Histone Deacetylases in Autoimmune and Inflammatory Diseases: Recent Advances and Future Perspectives. Journal of Personalized Medicine, 2021, 11, 336.	2.5	13
4	Preclinical models of arthritis for studying immunotherapy and immune tolerance. Annals of the Rheumatic Diseases, 2021, 80, 1268-1277.	0.9	20
5	Identification of a Distal Locus Enhancer Element That Controls Cell Type–Specific <i>TNF</i> and <i>LTA</i> Gene Expression in Human T Cells. Journal of Immunology, 2020, 205, 2479-2488.	0.8	8
6	HDAC3 Mediates the Inflammatory Response and LPS Tolerance in Human Monocytes and Macrophages. Frontiers in Immunology, 2020, 11, 550769.	4.8	30
7	BACH2 drives quiescence and maintenance of resting Treg cells to promote homeostasis and cancer immunosuppression. Journal of Experimental Medicine, 2020, 217, .	8.5	47
8	Selective targeting of BD1 and BD2 of the BET proteins in cancer and immunoinflammation. Science, 2020, 368, 387-394.	12.6	274
9	Chromatin activity at GWAS loci identifies T cell states driving complex immune diseases. Nature Genetics, 2019, 51, 1486-1493.	21.4	81
10	BET Bromodomain Inhibitor iBET151 Impedes Human ILC2 Activation and Prevents Experimental Allergic Lung Inflammation. Frontiers in Immunology, 2019, 10, 678.	4.8	16
11	Modulating PCAF/GCN5 Immune Cell Function through a PROTAC Approach. ACS Chemical Biology, 2018, 13, 2862-2867.	3.4	118
12	Influenza's signature move. Nature Immunology, 2018, 19, 518-520.	14.5	1
13	Immune disease-associated variants in gene enhancers point to BET epigenetic mechanisms for therapeutic intervention. Epigenomics, 2017, 9, 573-584.	2.1	37
14	Discovery of a Potent, Cell Penetrant, and Selective p300/CBP-Associated Factor (PCAF)/General Control Nonderepressible 5 (GCN5) Bromodomain Chemical Probe. Journal of Medicinal Chemistry, 2017, 60, 695-709.	6.4	70
15	BET bromodomain inhibition promotes neurogenesis while inhibiting gliogenesis in neural progenitor cells. Stem Cell Research, 2016, 17, 212-221.	0.7	38
16	BET bromodomain inhibition reduces maturation and enhances tolerogenic properties of human and mouse dendritic cells. Molecular Immunology, 2016, 79, 66-76.	2.2	47
17	Epigenetic drug discovery: breaking through the immune barrier. Nature Reviews Drug Discovery, 2016, 15, 835-853.	46.4	136
18	Bromodomain Proteins Contribute to Maintenance of Bloodstream Form Stage Identity in the African Trypanosome. PLoS Biology, 2015, 13, e1002316.	5.6	58

#	Article	IF	CITATIONS
19	Epigenetic pathway targets for the treatment of disease: accelerating progress in the development of pharmacological tools: <scp>IUPHAR</scp> Review 11. British Journal of Pharmacology, 2014, 171, 4981-5010.	5.4	23
20	Systematic analysis of immunodeficiency. Nature Immunology, 2014, 15, 1097-1098.	14.5	0
21	Potent antimyeloma activity of the novel bromodomain inhibitors I-BET151 and I-BET762. Blood, 2014, 123, 697-705.	1.4	184
22	Targeting CCR4 as an emerging strategy for cancer therapy and vaccines. Trends in Pharmacological Sciences, 2014, 35, 163-165.	8.7	36
23	Remodeling of the Enhancer Landscape during Macrophage Activation Is Coupled to Enhancer Transcription. Molecular Cell, 2013, 51, 310-325.	9.7	616
24	Selective inhibition of CD4 ⁺ T-cell cytokine production and autoimmunity by BET protein and c-Myc inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14532-14537.	7.1	177
25	Modulation of Tâ€cell function by type I interferon. Immunology and Cell Biology, 2012, 90, 492-497.	2.3	100
26	Bromodomains: a new target class for small molecule drug discovery. Drug Discovery Today: Therapeutic Strategies, 2012, 9, e111-e120.	0.5	30
27	Regulation of immune cell homeostasis by type I interferons. Cytokine and Growth Factor Reviews, 2010, 21, 227-236.	7.2	34
28	Toward the Discovery of Vaccine Adjuvants: Coupling In Silico Screening and In Vitro Analysis of Antagonist Binding to Human and Mouse CCR4 Receptors. PLoS ONE, 2009, 4, e8084.	2.5	51
29	Type I IFN regulate DC turnover <i>in vivo</i> . European Journal of Immunology, 2009, 39, 1807-1818.	2.9	31
30	Turnabout Is Fair Play: T Cell Stimulation by Dendritic Cell-Expressed CD40L. Immunity, 2009, 30, 171-173.	14.3	3
31	Surveillance of Antigen-Presenting Cells by CD4+CD25+ Regulatory T Cells in Autoimmunity. American Journal of Pathology, 2009, 174, 1575-1587.	3.8	123
32	Type I interferon as a stimulus for cross-priming. Cytokine and Growth Factor Reviews, 2008, 19, 33-40.	7.2	108
33	In silico identified CCR4 antagonists target regulatory T cells and exert adjuvant activity in vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10221-10226.	7.1	126
34	Human Dendritic Cells Acquire a Semimature Phenotype and Lymph Node Homing Potential through Interaction with CD4+CD25+ Regulatory T Cells. Journal of Immunology, 2007, 178, 4184-4193.	0.8	79
35	In vivo T lymphocyte dynamics in humans and the impact of human T-lymphotropic virus 1 infection. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8035-8040.	7.1	105
36	A role for CD44 in T cell development and function during direct competition between CD44+ and CD44– cells. European Journal of Immunology, 2007, 37, 925-934.	2.9	29

#	Article	IF	CITATIONS
37	<i>In vivo</i> kinetics of human natural killer cells: the effects of ageing and acute and chronic viral infection. Immunology, 2007, 121, 258-265.	4.4	257
38	Rescuing CD4+CD25+ regulatory T-cell functions in rheumatoid arthritis by cytokine-targeted monoclonal antibody therapy. Drug Discovery Today, 2007, 12, 548-552.	6.4	59
39	Interaction of foot-and-mouth disease virus with dendritic cells. Trends in Microbiology, 2006, 14, 346-347.	7.7	5
40	Prolonged exposure of naÃ⁻ve CD8 ⁺ T cells to interleukinâ€7 or interleukinâ€15 stimulates proliferation without differentiation or loss of telomere length. Immunology, 2006, 119, 243-253.	4.4	68
41	'3d' effects on global immunity. Nature Immunology, 2006, 7, 127-128.	14.5	2
42	Induction of CD8+ T cell responses through targeting of antigen to Dectin-2. Cellular Immunology, 2006, 239, 87-91.	3.0	41
43	A role for the transcription factor RelB in IFN-α production and in IFN-α-stimulated cross-priming. European Journal of Immunology, 2006, 36, 2085-2093.	2.9	17
44	Modification of TLR-induced activation of human dendritic cells by type I IFN: synergistic interaction with TLR4 but not TLR3 agonists. European Journal of Immunology, 2006, 36, 1827-1836.	2.9	16
45	Salmonella typhimurium infection triggers dendritic cells and macrophages to adopt distinct migration patternsin vivo. European Journal of Immunology, 2006, 36, 2939-2950.	2.9	25
46	Preferential Induction of CD4+ T Cell Responses through In Vivo Targeting of Antigen to Dendritic Cell-Associated C-Type Lectin-1. Journal of Immunology, 2006, 177, 2276-2284.	0.8	162
47	Direct Stimulation of T Cells by Type I IFN Enhances the CD8+ T Cell Response during Cross-Priming. Journal of Immunology, 2006, 176, 4682-4689.	0.8	248
48	Requirement for CD70 in CD4+ Th Cell-Dependent and Innate Receptor-Mediated CD8+ T Cell Priming. Journal of Immunology, 2006, 177, 2969-2975.	0.8	53
49	Cutting Edge: Enhancement of Antibody Responses Through Direct Stimulation of B and T Cells by Type I IFN. Journal of Immunology, 2006, 176, 2074-2078.	0.8	320
50	B-cell kinetics in humans: rapid turnover of peripheral blood memory cells. Blood, 2005, 105, 3633-3640.	1.4	155
51	Initial T cell frequency dictates memory CD8+ T cell lineage commitment. Nature Immunology, 2005, 6, 793-799.	14.5	400
52	Dendritic Cells and NK Cells Stimulate Bystander T Cell Activation in Response to TLR Agonists through Secretion of IFN-1±1² and IFN-1³. Journal of Immunology, 2005, 174, 767-776.	0.8	136
53	Modulation of Dendritic Cell Maturation and Function by B Lymphocytes. Journal of Immunology, 2005, 175, 15-20.	0.8	72
54	Altered CD45 isoform expression affects lymphocyte function in CD45 Tg mice. International Immunology, 2004, 16, 1323-1332.	4.0	20

#	Article	IF	CITATIONS
55	Rapid Turnover of Effector–Memory CD4+ T Cells in Healthy Humans. Journal of Experimental Medicine, 2004, 200, 255-260.	8.5	176
56	Fully Functional Memory CD8 T Cells in the Absence of CD4 T Cells. Journal of Immunology, 2004, 173, 969-975.	0.8	111
57	Direct Measurement of T Cell Subset Kinetics In Vivo in Elderly Men and Women. Journal of Immunology, 2004, 173, 1787-1794.	0.8	104
58	Shaping of adaptive immune responses to soluble proteins by TLR agonists: A role for IFNâ€Î±/β. Immunology and Cell Biology, 2004, 82, 596-602.	2.3	89
59	Type I Interferon as a Link Between Innate and Adaptive Immunity through Dendritic Cell Stimulation. Leukemia and Lymphoma, 2004, 45, 257-264.	1.3	162
60	Measurement and modeling of human T cell kinetics. European Journal of Immunology, 2003, 33, 2316-2326.	2.9	114
61	Rapid turnover of T cells in acute infectious mononucleosis. European Journal of Immunology, 2003, 33, 2655-2665.	2.9	41
62	Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon. Nature Immunology, 2003, 4, 1009-1015.	14.5	715
63	IL-15 Promotes the Survival of Naive and Memory Phenotype CD8+ T Cells. Journal of Immunology, 2003, 170, 5018-5026.	0.8	300
64	Tissue-Level Regulation of Th1 and Th2 Primary and Memory CD4 T Cells in Response to <i>Listeria</i> Infection. Journal of Immunology, 2002, 168, 4504-4510.	0.8	53
65	Type I interferons produced by dendritic cells promote their phenotypic and functional activation. Blood, 2002, 99, 3263-3271.	1.4	446
66	Type I IFN as a Natural Adjuvant for a Protective Immune Response: Lessons from the Influenza Vaccine Model. Journal of Immunology, 2002, 169, 375-383.	0.8	208
67	Links between innate and adaptive immunity via type I interferon. Current Opinion in Immunology, 2002, 14, 432-436.	5.5	518
68	Qualitative differences between naive and memory T cells. Immunology, 2002, 106, 127-138.	4.4	181
69	Developmental kinetics and lifespan of dendritic cells in mouse lymphoid organs. Blood, 2002, 100, 1734-41.	1.4	160
70	Type I Interferons Potently Enhance Humoral Immunity and Can Promote Isotype Switching by Stimulating Dendritic Cells In Vivo. Immunity, 2001, 14, 461-470.	14.3	865
71	Interferon with dendritic cells?. Nature Immunology, 2001, 2, 1098-1100.	14.5	8
72	T Cell Death and Memory. Science, 2001, 293, 245-248.	12.6	191

#	Article	IF	CITATIONS
73	An IFN-Î ³ -Dependent Pathway Controls Stimulation of Memory Phenotype CD8+ T Cell Turnover In Vivo by IL-12, IL-18, and IFN-Î ³ . Journal of Immunology, 2001, 166, 6007-6011.	0.8	95
74	IL-15 Is Expressed by Dendritic Cells in Response to Type I IFN, Double-Stranded RNA, or Lipopolysaccharide and Promotes Dendritic Cell Activation. Journal of Immunology, 2001, 167, 1179-1187.	0.8	389
75	The Development, Maturation, and Turnover Rate of Mouse Spleen Dendritic Cell Populations. Journal of Immunology, 2000, 165, 6762-6770.	0.8	368
76	T-Cell turnover in vivo and the role of cytokines. Immunology Letters, 1999, 65, 21-25.	2.5	39
77	Anti-viral immunity: Spotting virus-specific T cells. Current Biology, 1998, 8, R498-R501.	3.9	15
78	Bystander stimulation of T cells in vivo by cytokines. Veterinary Immunology and Immunopathology, 1998, 63, 123-129.	1.2	30
79	Potent and Selective Stimulation of Memory-Phenotype CD8+ T Cells In Vivo by IL-15. Immunity, 1998, 8, 591-599.	14.3	1,146
80	Type I Interferon-mediated Stimulation of T Cells by CpG DNA. Journal of Experimental Medicine, 1998, 188, 2335-2342.	8.5	337
81	Lifespan of γ/δT Cells. Journal of Experimental Medicine, 1998, 187, 357-365.	8.5	96
82	CD40 Ligand-Mediated Interactions Are Involved in the Generation of Memory CD8 ⁺ Cytotoxic T Lymphocytes (CTL) but Are Not Required for the Maintenance of CTL Memory following Virus Infection. Journal of Virology, 1998, 72, 7440-7449.	3.4	111
83	T Cell Stimulation In Vivo by Lipopolysaccharide (LPS). Journal of Experimental Medicine, 1997, 185, 2089-2094.	8.5	300
84	Factors controlling the turnover of T memory cells. Immunological Reviews, 1997, 156, 79-85.	6.0	73
85	Viruses and T Cell Turnover: Evidence for Bystander Proliferation. Immunological Reviews, 1996, 150, 129-142.	6.0	78
86	Life span of naive and memory t cells. Stem Cells, 1995, 13, 242-249.	3.2	74
87	Lifespan of lymphocytes. Immunologic Research, 1995, 14, 1-12.	2.9	82
88	Regulation of natural antibody binding and susceptibility to natural killer cells through Zn++-inducibleras oncogene expression. International Journal of Cancer, 1992, 50, 423-430.	5.1	9