Max Larsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8897041/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of C-tactile fibers in pain modulation: animal and human perspectives. Current Opinion in Behavioral Sciences, 2022, 43, 138-144.	2.0	7
2	VGluT1 Deficiency Impairs Visual Attention and Reduces the Dynamic Range of Short-Term Plasticity at Corticothalamic Synapses. Cerebral Cortex, 2020, 30, 1813-1829.	1.6	4
3	Synaptic Organization of VGLUT3 Expressing Low-Threshold Mechanosensitive C Fiber Terminals in the Rodent Spinal Cord. ENeuro, 2019, 6, ENEURO.0007-19.2019.	0.9	22
4	Non-canonical heterogeneous cellular distribution and co-localization of CaMKIIα and CaMKIIβ in the spinal superficial dorsal horn. Brain Structure and Function, 2018, 223, 1437-1457.	1.2	5
5	Alzheimer's disease pathology propagation by exosomes containing toxic amyloid-beta oligomers. Acta Neuropathologica, 2018, 136, 41-56.	3.9	334
6	Pax2 is persistently expressed by GABAergic neurons throughout the adult rat dorsal horn. Neuroscience Letters, 2017, 638, 96-101.	1.0	51
7	Immunogold Electron Microscopic Quantification of Small Molecular Compounds and Proteins at Synapses and Other Neural Profiles. Neuromethods, 2015, , 281-297.	0.2	2
8	Spinal HMGB1 induces TLR4-mediated long-lasting hypersensitivity and glial activation and regulates pain-like behavior in experimental arthritis. Pain, 2014, 155, 1802-1813.	2.0	141
9	Vesicular uptake and exocytosis of Lâ€aspartate is independent of sialin. FASEB Journal, 2013, 27, 1264-1274.	0.2	30
10	Distribution of transmembrane AMPA receptor regulatory protein (TARP) isoforms in the rat spinal cord. Neuroscience, 2013, 248, 180-193.	1.1	6
11	Pre- and postsynaptic localization of NMDA receptor subunits at hippocampal mossy fibre synapses. Neuroscience, 2013, 230, 139-150.	1.1	32
12	Functional and Anatomical Identification of a Vesicular Transporter Mediating Neuronal ATP Release. Cerebral Cortex, 2012, 22, 1203-1214.	1.6	94
13	Synaptic Plasticity and Pain: Role of Ionotropic Glutamate Receptors. Neuroscientist, 2011, 17, 256-273.	2.6	54
14	The Sodium-Dependent Inorganic Phosphate Transporter SLC34A1 (NaPi-IIa) Is Not Localized in the Mouse Brain. Journal of Histochemistry and Cytochemistry, 2011, 59, 807-812.	1.3	7
15	Ionotropic Glutamate Receptors in Spinal Nociceptive Processing. Molecular Neurobiology, 2009, 40, 260-288.	1.9	37
16	Translocation of GluR1-Containing AMPA Receptors to a Spinal Nociceptive Synapse during Acute Noxious Stimulation. Journal of Neuroscience, 2008, 28, 7084-7090.	1.7	81
17	Distribution of vesicular glutamate transporters 1 and 2 in the rat spinal cord, with a note on the spinocervical tract. Journal of Comparative Neurology, 2006, 497, 683-701.	0.9	75
18	Pathway-Specific Bidirectional Regulation of Ca2+/Calmodulin-Dependent Protein Kinase II at Spinal Nociceptive Synapses after Acute Noxious Stimulation. Journal of Neuroscience, 2006, 26, 4198-4205.	1.7	20

MAX LARSSON

#	Article	IF	CITATIONS
19	Different basal levels of CaMKII phosphorylated at Thr286/287at nociceptive and low-threshold primary afferent synapses. European Journal of Neuroscience, 2005, 21, 2445-2458.	1.2	46
20	Large dense-core vesicle exocytosis in pancreatic \$beta;-cells monitored by capacitance measurements. Methods, 2004, 33, 302-311.	1.9	38
21	Quantitative analysis of immunogold labeling indicates low levels and non-vesicular localization ofL-aspartate in rat primary afferent terminals. Journal of Comparative Neurology, 2001, 430, 147-159.	0.9	22