Michaela Burke Stevens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8896707/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reactive Fe-Sites in Ni/Fe (Oxy)hydroxide Are Responsible for Exceptional Oxygen Electrocatalysis Activity. Journal of the American Chemical Society, 2017, 139, 11361-11364.	13.7	532
2	Earth-Abundant Oxygen Electrocatalysts for Alkaline Anion-Exchange-Membrane Water Electrolysis: Effects of Catalyst Conductivity and Comparison with Performance in Three-Electrode Cells. ACS Catalysis, 2019, 9, 7-15.	11.2	189
3	Understanding the Origin of Highly Selective CO ₂ Electroreduction to CO on Ni,Nâ€doped Carbon Catalysts. Angewandte Chemie - International Edition, 2020, 59, 4043-4050.	13.8	148
4	Ternary Ni-Co-Fe oxyhydroxide oxygen evolution catalysts: Intrinsic activity trends, electrical conductivity, and electronic band structure. Nano Research, 2019, 12, 2288-2295.	10.4	134
5	Operando Xâ€Ray Absorption Spectroscopy Shows Iron Oxidation Is Concurrent with Oxygen Evolution in Cobalt–Iron (Oxy)hydroxide Electrocatalysts. Angewandte Chemie - International Edition, 2018, 57, 12840-12844.	13.8	131
6	Morphology Dynamics of Single-Layered Ni(OH) ₂ /NiOOH Nanosheets and Subsequent Fe Incorporation Studied by <i>in Situ</i> Electrochemical Atomic Force Microscopy. Nano Letters, 2017, 17, 6922-6926.	9.1	121
7	Tuning the electronic structure of Ag-Pd alloys to enhance performance for alkaline oxygen reduction. Nature Communications, 2021, 12, 620.	12.8	107
8	Influence of Electrolyte Cations on Ni(Fe)OOH Catalyzed Oxygen Evolution Reaction. Chemistry of Materials, 2017, 29, 4761-4767.	6.7	105
9	Nitride or Oxynitride? Elucidating the Composition–Activity Relationships in Molybdenum Nitride Electrocatalysts for the Oxygen Reduction Reaction. Chemistry of Materials, 2020, 32, 2946-2960.	6.7	57
10	Understanding the Origin of Highly Selective CO ₂ Electroreduction to CO on Ni,Nâ€doped Carbon Catalysts. Angewandte Chemie, 2020, 132, 4072-4079.	2.0	48
11	Acid anion electrolyte effects on platinum for oxygen and hydrogen electrocatalysis. Communications Chemistry, 2022, 5, .	4.5	48
12	Effects of Metal Electrode Support on the Catalytic Activity of Fe(oxy)hydroxide for the Oxygen Evolution Reaction in Alkaline Media. ChemPhysChem, 2019, 20, 3089-3095.	2.1	39
13	In Situ X-Ray Absorption Spectroscopy Disentangles the Roles of Copper and Silver in a Bimetallic Catalyst for the Oxygen Reduction Reaction. Chemistry of Materials, 2020, 32, 1819-1827.	6.7	30
14	Operando Xâ€Ray Absorption Spectroscopy Shows Iron Oxidation Is Concurrent with Oxygen Evolution in Cobalt–Iron (Oxy)hydroxide Electrocatalysts. Angewandte Chemie, 2018, 130, 13022-13026.	2.0	28
15	Probing the Effects of Acid Electrolyte Anions on Electrocatalyst Activity and Selectivity for the Oxygen Reduction Reaction. ChemElectroChem, 2021, 8, 2467-2478.	3.4	25
16	First-Row Transition Metal Antimonates for the Oxygen Reduction Reaction. ACS Nano, 2022, 16, 6334-6348.	14.6	23
17	Engineering metal–metal oxide surfaces for high-performance oxygen reduction on Ag–Mn electrocatalysts. Energy and Environmental Science, 2022, 15, 1611-1629.	30.8	22
18	Isolating the Electrocatalytic Activity of a Confined NiFe Motif within Zirconium Phosphate. Advanced Energy Materials, 2021, 11, 2003545.	19.5	21

#	Article	IF	CITATIONS
19	Nanosized Zirconium Porphyrinic Metal–Organic Frameworks that Catalyze the Oxygen Reduction Reaction in Acid. Small Methods, 2020, 4, 2000085.	8.6	18
20	Identifying and Tuning the In Situ Oxygen-Rich Surface of Molybdenum Nitride Electrocatalysts for Oxygen Reduction. ACS Applied Energy Materials, 2020, 3, 12433-12446.	5.1	17
21	Understanding Degradation Mechanisms in SrIrO ₃ Oxygen Evolution Electrocatalysts: Chemical and Structural Microscopy at the Nanoscale. Advanced Functional Materials, 2021, 31, 2101542.	14.9	16
22	Methods—A Practical Approach to the Reversible Hydrogen Electrode Scale. Journal of the Electrochemical Society, 2022, 169, 066505.	2.9	11
23	Transition-Metal-Incorporated Aluminum Oxide Thin Films: Toward Electronic Structure Design in Amorphous Mixed-Metal Oxides. Journal of Physical Chemistry C, 2018, 122, 13691-13704.	3.1	8
24	Transmission Electron Microscopy (TEM) Studies on Nickel and Molybdenum Nitrides as Oxygen Reduction Reaction Catalysts. Microscopy and Microanalysis, 2019, 25, 2072-2073.	0.4	1
25	Degradation and Stabilization of Porphyrin-Based Metal Organic Framework Electrocatalysts for the Oxygen Reduction Reaction. ECS Meeting Abstracts, 2019, , .	0.0	Ο
26	Characterization of Surface Changes on Molybdenum Nitride Thin Films during the Oxygen Reduction Reaction Using Operando Grazing Incidence X-Ray Absorption Spectroscopy. ECS Meeting Abstracts, 2019, , .	0.0	0
27	Microenvironment Effects on Electrocatalytic Oxygen Reduction: The Role of Acid Electrolyte Anions. ECS Meeting Abstracts, 2021, MA2021-02, 1422-1422.	0.0	0
28	Enhanced Oxygen Reduction Activity on Silver-Palladium Alloyed Thin Film Electrocatalysts in Alkaline Media. ECS Meeting Abstracts, 2020, MA2020-02, 2397-2397.	0.0	0
29	Use of in Situ Synchrotron Techniques to Probe the Oxidized Surface of Molybdenum Nitride Oxygen Reduction Electrocatalysis. ECS Meeting Abstracts, 2020, MA2020-02, 3157-3157.	0.0	0
30	Acid Anion Electrolyte Effects on Platinum for Oxygen and Hydrogen Electrocatalysis. ECS Meeting Abstracts, 2022, MA2022-01, 2056-2056.	0.0	0