David Joseph Bagyaraj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8896599/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PHOSPHORUS CONCENTRATIONS IN PLANTS RESPONSIBLE FOR INHIBITION OF MYCORRHIZAL INFECTION. New Phytologist, 1978, 80, 575-578.	3.5	288
2	<i>Bacillus</i> species in soil as a natural resource for plant health and nutrition. Journal of Applied Microbiology, 2020, 128, 1583-1594.	1.4	250
3	Novel plant growth promoting rhizobacteria—Prospects and potential. Applied Soil Ecology, 2015, 95, 38-53.	2.1	171
4	Bacteria and actinomycetes associated with pot cultures of vesicular–arbuscular mycorrhizas. Canadian Journal of Microbiology, 1987, 33, 1069-1073.	0.8	143
5	INTERACTION BETWEEN A VA MYCORRHIZA AND AZOTOBACTER AND THEIR EFFECTS ON RHIZOSPHERE MICROFLORA AND PLANT GROWTH. New Phytologist, 1978, 80, 567-573.	3.5	125
6	Influence of vermicompost application on the available macronutrients and selected microbial populations in a paddy field. Soil Biology and Biochemistry, 1992, 24, 1317-1320.	4.2	112
7	Effect of crop rotation on native vesicular arbuscular mycorrhizal propagules in soil. Plant and Soil, 1988, 110, 77-80.	1.8	102
8	Interaction between arbuscular mycorrhizal fungi andÂBacillusÂspp. in soil enhancing growth of crop plants. Fungal Biology and Biotechnology, 2019, 6, 23.	2.5	98
9	Influence of soil inoculation with vesicular-arbuscular mycorrhiza and a phosphate-dissolving bacterium on plant growth and 32P-uptake. Soil Biology and Biochemistry, 1981, 13, 105-108.	4.2	95
10	INTERACTION BETWEEN A VESICULAR-ARBUSCULAR MYCORRHIZA AND RHIZOBIUM AND THEIR EFFECTS ON SOYBEAN IN THE FIELD. New Phytologist, 1979, 82, 141-145.	3.5	81
11	Vesicular-arbuscular mycorrhizas in submerged aquatic plants of New Zealand. Aquatic Botany, 1984, 19, 251-262.	0.8	76
12	Mycorrhizal colonization in cowpea is host dependent and heritable. Plant and Soil, 1990, 121, 292-294.	1.8	73
13	Interaction between Glomus fasciculatum and Sclerotium rolfsii in peanut. Canadian Journal of Botany, 1983, 61, 2349-2351.	1.2	64
14	Occurrence of vesicular-arbuscular mycorrhizas in some tropical aquatic plants. Transactions of the British Mycological Society, 1979, 72, 164-167.	0.6	63
15	Use of pesticides for mass production of vesicular-arbuscular mycorrhizal inoculum. Plant and Soil, 1989, 119, 127-132.	1.8	63
16	Interaction of vesicular arbuscular mycorrhiza with root knot nematodes in tomato. Plant and Soil, 1979, 51, 397-403.	1.8	59
17	Biological control of root-rot of Coleus forskohlii Briq. using microbial inoculants. World Journal of Microbiology and Biotechnology, 2003, 19, 175-180.	1.7	57
18	Agricultural intensification, soil biodiversity and agro-ecosystem function in the tropics: the role of mycorrhiza in crops and trees. Applied Soil Ecology, 1997, 6, 77-85.	2.1	53

#	Article	IF	CITATIONS
19	Effect of cropping sequence, fertilizers and farmyard manure on vesicular-arbuscular mycorrhizal fungi in different crops over three consecutive seasons. Biology and Fertility of Soils, 1989, 7, 173-175.	2.3	52
20	Dual inoculation with VA mycorrhiza and Rhizobium is beneficial to Leucaena. Plant and Soil, 1984, 78, 445-448.	1.8	51
21	Potential of earthworms, ants, millipedes, and termites for dissemination of vesicular-arbuscular mycorrhizal fungi in soil. Biology and Fertility of Soils, 1994, 18, 115-118.	2.3	51
22	Screening of arbuscular mycorrhizal fungi for their symbiotic efficiency with Tectona grandis. Forest Ecology and Management, 2000, 126, 91-95.	1.4	51
23	Inoculation of field-established mulberry and papaya with arbuscular mycorrhizal fungi and a mycorrhiza helper bacterium. Mycorrhiza, 2002, 12, 313-316.	1.3	51
24	Effect of arbuscular mycorrhizal fungi and <i>Pseudomonas fluorescens</i> on root-rot and wilt, growth and yield of <i>Coleus forskohlii</i> . Biocontrol Science and Technology, 2009, 19, 835-841.	0.5	49
25	Interaction between Glomus mosseae and soil yeasts on growth and nutrition of cowpea. Microbiological Research, 2008, 163, 693-700.	2.5	45
26	Preinoculation with VA mycorrhiza improves growth and yield of chilli transplanted in the field and saves phosphatic fertilizer. Plant and Soil, 1982, 69, 375-381.	1.8	41
27	Growth and nutrient uptake of peanut inoculated with the mycorrhizal fungusClomus fasciculatum compared with non-inoculated ones. Plant and Soil, 1984, 77, 405-408.	1.8	40
28	Title is missing!. World Journal of Microbiology and Biotechnology, 2003, 19, 69-72.	1.7	40
29	19 Vesicular-arbuscular Mycorrhiza: Application in Agriculture. Methods in Microbiology, 1992, 24, 359-373.	0.4	39
30	Interaction between Arbuscular Mycorrhizal Fungi and Plants. Advances in Microbial Ecology, 1995, , 119-142.	0.1	35
31	Selection of a suitable host for mass production of VA mycorrhizal inoculum. Plant and Soil, 1980, 55, 495-498.	1.8	34
32	Selection of an efficient inoculant VA mycorrhizal fungus for Leucaena. Forest Ecology and Management, 1989, 27, 81-85.	1.4	34
33	Selection of efficient vesicular-arbuscular mycorrhizal fungi for wetland rice (Oryza sativa L.). Biology and Fertility of Soils, 1992, 13, 108-111.	2.3	33
34	Selection of efficient vesicular-arbuscular mycorrhizal fungi for wetland rice — a preliminary screen. Mycorrhiza, 1994, 4, 265-268.	1.3	33
35	Effect of potential bioinoculants and organic manures on rootâ€rot and wilt, growth, yield and quality of organically grown <i>Coleus forskohlii</i> in a semiarid tropical region of Bangalore (India). Plant Pathology, 2012, 61, 700-708.	1.2	33
36	CHANGES IN THE LEAVES OF FINGER MILLET DUE TO VA MYCORRHIZAL INFECTION. New Phytologist, 1981, 87, 717-722.	3.5	32

#	Article	IF	CITATIONS
37	Chloris gayana (Rhodes grass), a better host for the mas production ofGlomus fasciculatum inoculum. Plant and Soil, 1988, 106, 289-290.	1.8	31
38	Effect of vesicular-arbuscular mycorrhiza on survival, penetration and development of root-knot nematode in tomato. Plant and Soil, 1985, 87, 305-308.	1.8	29
39	Below ground microbial diversity as influenced by coffee agroforestry systems in the Western Ghats, India. Agriculture, Ecosystems and Environment, 2015, 202, 198-202.	2.5	29
40	Evaluation and first-year field testing of efficient vesicular arbuscular mycorrhizal fungi for inoculation of wetland rice seedlings. World Journal of Microbiology and Biotechnology, 1994, 10, 381-384.	1.7	26
41	Phenols in mycorrhizal roots ofArachis hypogaea. Experientia, 1984, 40, 85-86.	1.2	24
42	Effect of fungicides on mycorrhizal colonization and growth of onion. Plant and Soil, 1984, 80, 147-150.	1.8	24
43	RESPONSE OF CROP PLANTS TO VA MYCORRHIZAL INOCULATION IN AN UNSTERILE INDIAN SOIL. New Phytologist, 1980, 85, 33-36.	3.5	23
44	PLANT GROWTH-PROMOTING BACTERIAL ENDOPHYTES FROM SUGARCANE AND THEIR POTENTIAL IN PROMOTING GROWTH OF THE HOST UNDER FIELD CONDITIONS. Experimental Agriculture, 2013, 49, 43-52.	0.4	23
45	Effect of four soil-applied insecticides on symbiosis of Rhizobium sp. with Arachis hypogaea Linn Plant and Soil, 1974, 40, 169-172.	1.8	22
46	INTERACTION BETWEEN BEIJERINCKIA MOBILIS, ASPERGILLUS NIGER AND GLOMUS FASCICULATUS AND THEIR EFFECTS ON GROWTH OF ONION. New Phytologist, 1981, 87, 723-727.	3.5	22
47	COMPONENTS OF VA MYCORRHIZAL INOCULUM AND THEIR EFFECTS ON GROWTH OF ONION. New Phytologist, 1981, 87, 355-361.	3.5	22
48	Soil Biodiversity and Arthropods: Role in Soil Fertility. , 2016, , 17-51.		22
49	Intercropping Transplanted Pigeon Pea With Finger Millet: Arbuscular Mycorrhizal Fungi and Plant Growth Promoting Rhizobacteria Boost Yield While Reducing Fertilizer Input. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	22
50	Mycorrhizal Fungi. Proceedings of the Indian National Science Academy, 2014, 80, 415.	0.5	22
51	Selection of an Efficient VA Mycorrhizal Fungus for Finger Millet. Zentralblatt Für Mikrobiologie, 1983, 138, 415-419.	0.2	20
52	Vesicular-arbuscular mycorrhizae screened for Troyer citrange. Biology and Fertility of Soils, 1990, 9, 311-314.	2.3	20
53	Field response of chilli to VA mycorrhiza on black clayey soil. Plant and Soil, 1986, 93, 299-302.	1.8	19
54	Growth stimulation ofTamarindus indica by selected VA mycorrhizal fungi. World Journal of Microbiology and Biotechnology, 1990, 6, 59-63.	1.7	19

4

#	Article	IF	CITATIONS
55	Root exudation from Leucaena leucocephala in relation to mycorrhizal colonization. World Journal of Microbiology and Biotechnology, 1993, 9, 342-344.	1.7	19
56	Effectiveness of Arbuscular Mycorrhizal Fungal Isolates on Arabica Coffee (<i>Coffea arabica</i> L.). Biological Agriculture and Horticulture, 2002, 20, 125-131.	0.5	19
57	Selection of an Efficient VA Mycorrhizal Fungus for Finger Millet. Zentralblatt Für Mikrobiologie, 1983, 138, 409-413.	0.2	17
58	Selection of a suitable substrate for mass multiplication ofGlomus fasciculatum. Plant and Soil, 1988, 109, 125-127.	1.8	17
59	Selection of Efficient VA Mycorrhizal Fungi for Trifoliate Orange. Biological Agriculture and Horticulture, 1990, 6, 305-311.	0.5	17
60	Influence of Different Arbuscular Mycorrhizal Fungi on Growth and Yield of Chilly. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2015, 85, 71-75.	0.4	17
61	Effect of intercropping and organic soil amendments on native VA mycorrhizal fungi in an oxisol. Arid Land Research and Management, 1990, 4, 193-197.	0.3	16
62	Preparation of Chyang, an ethnic fermented beverage of the Himalayas, using different raw cereals. Journal of Ethnic Foods, 2016, 3, 297-299.	0.8	16
63	Bacillus sonorensis, a Novel Plant Growth Promoting Rhizobacterium in Improving Growth, Nutrition and Yield of Chilly (Capsicum annuum L.). Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2018, 88, 813-818.	0.4	16
64	Inoculation with Microbial Consortium Promotes Growth of Tomato and Capsicum Seedlings Raised in Pro Trays. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2020, 90, 21-28.	0.4	16
65	Effect of mycorrhizal inoculation on the nursery production of blueberry cuttings — a note. New Zealand Journal of Agricultural Research, 1984, 27, 467-471.	0.9	14
66	Response of <i>Acacia nilotica</i> and <i>Calliandra calothyrsus</i> to different VA Mycorrhizal fungi. Arid Land Research and Management, 1990, 4, 261-268.	0.3	14
67	Biological control of damping-off of Cardamom by the VA mycorrhizal fungus, Glomus fasciculatum. Microbiological Research, 1994, 149, 413-417.	2.5	14
68	Fungi associated with pot cultures of vesicular arbuscular mycorrhizas. Transactions of the British Mycological Society, 1988, 90, 117-119.	0.6	13
69	Responses of Casuarina equisetifolia to inoculation with Glomus fasciculatum and/or Frankia. Forest Ecology and Management, 1994, 68, 399-402.	1.4	13
70	Spread of vesicular arbuscular mycorrhizal fungal hyphae in soil. Microbiological Research, 1995, 150, 77-80.	2.5	13
71	Exploiting PGPR and AMF Biodiversity for Plant Health Management. , 2016, , 145-160.		13
72	Response of citrus to vesicular–arbuscular mycorrhizal inoculation in unsterile soils. Canadian Journal of Botany, 1983, 61, 2729-2732.	1.2	12

#	Article	IF	CITATIONS
73	The Symbiotic Efficiency of Pigeonpea to VA Mycorrhizal Inoculation in an Alfisol and a Vertisol. Biological Agriculture and Horticulture, 1991, 8, 177-182.	0.5	12
74	Effect of vesicular arbuscular mycorrhiza and soluble phosphate onAbelmoscus esculentus (L.) Moench. Plant and Soil, 1982, 64, 209-213.	1.8	11
75	Effect of soil inoculation with vesicular-arbuscular mycorrhizal fungi and either phosphate rock dissolving bacteria or thiobacilli on dry matter production and uptake of phosphorus by tomato plants. New Zealand Journal of Agricultural Research, 1986, 29, 525-531.	0.9	11
76	Influence of alley copping system on AM fungi, microbial biomass C and yield of finger millet, peanut and pigeon pea. Agroforestry Systems, 2017, 91, 487-493.	0.9	11
77	Microorganisms in Sustainable Agriculture. Proceedings of the Indian National Science Academy, 2014, 80, 357.	0.5	11
78	Selection of efficient VA mycorrhizal fungi for inoculating <i>Casuarina equisetifolia</i> . Arid Land Research and Management, 1993, 7, 377-380.	0.3	10
79	Inoculation with vesicular-arbuscular mycorrhizal fungi in the greenhouse production of asparagus seedlings. New Zealand Journal of Agricultural Research, 1985, 28, 293-297.	0.9	9
80	Screening Arbuscular Mycorrhizal Fungi in Order to Select the Best for Alleviating Wilt Disease Complex of Capsicum. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2018, 88, 679-684.	0.4	9
81	Changes in the Free Amino Nitrogen and Protein Fractions of Groundnut Caused by Inoculation with VA Mycorrhiza. Annals of Botany, 1983, 51, 399-401.	1.4	8
82	Persistence of introduced Glomus intraradices in the field as influenced by repeated inoculation and cropping system. Biology and Fertility of Soils, 1996, 21, 184-188.	2.3	8
83	Response ofSimarouba glaucato Inoculation withGlomus mosseae, Bacillus coagulansandAzotobacter chroococcum. Biological Agriculture and Horticulture, 2003, 20, 339-345.	0.5	8
84	Symbiotic Response of Drought Tolerant Soybean Varieties, DSR 2 and DSR 12 to Different Arbuscular Mycorrhizal Fungi. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2019, 89, 649-655.	0.4	8
85	Microbial Consortium Improved Growth and Performance of Teak (Tectona grandis L.f.) in Nursery and Field Trials. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2020, 90, 903-909.	0.4	8
86	Intensity of mycorrhizal infection and response of onion at different stages of growth. Plant and Soil, 1981, 63, 295-298.	1.8	7
87	Effect of Soil Solarization on Native AM Fungi and Microbial Biomass. Agricultural Research, 2015, 4, 196-201.	0.9	6
88	Enhancing plant quality and outplanting growth of <i>Acacia auriculiformis</i> in dry wasteland plantations by inoculating a selected microbial consortium in the nursery. Canadian Journal of Forest Research, 2020, 50, 736-741.	0.8	6
89	Ecology of Arbuscular Mycorrhizal Fungi. , 2014, , 133-146.		6
90	Dual inoculation with rhizobia and arbuscular mycorrhizal fungus improves water stress tolerance and productivity in soybean. Plant Stress, 2022, 4, 100084.	2.7	6

#	Article	IF	CITATIONS
91	Selection of efficient vesicular arbuscular mycorrhizal fungi for inoculating the mango rootstock cultivar â€~Nekkare'. Scientia Horticulturae, 1994, 59, 69-73.	1.7	5
92	Influence ofGlomus bagyarajiiand PGPRs on the Growth, Nutrition and Forskolin concentration ofColeus forskohlii. Biological Agriculture and Horticulture, 2006, 23, 371-381.	0.5	5
93	Feeding activity of the millipede,Jonespeltis splendidus Verhoeff and soil humification. Proceedings of the Indian Academy of Sciences - Section A Part 3 Mathematical Sciences, 1976, 83, 1-11.	0.1	5
94	Protozoa in relation to Rhizobium S-12 and Azotobacter chroococcum in soil. Plant and Soil, 1977, 47, 75-80.	1.8	4
95	Microbial consortia developed for <i>Ocimum tenuiflorum</i> reduces application of chemical fertilizers by 50% under field conditions. Medicinal Plants - International Journal of Phytomedicines and Related Industries, 2018, 10, 138.	0.1	4
96	Arbuscular Mycorrhizal Fungi Influence Crop Productivity, Plant Diversity, and Ecosystem Services. Fungal Biology, 2022, , 345-362.	0.3	3
97	Occurrence and intensity of mycorrhizal infections in cultivated orchids in some New Zealand nurseries. New Zealand Journal of Agricultural Research, 1983, 26, 409-412.	0.9	2
98	VA mycorrhizal fungi associated with Casuarina aquisetifolia. Microbiological Research, 1994, 149, 23-25.	2.5	2
99	Role of AM Fungi in the Uptake and Accumulation of Cd and Ni by Luffa aegyptiaca. Water, Air, and Soil Pollution, 2019, 230, 1.	1.1	2
100	Selected microbial consortia promotes <i>Dalbergia sissoo</i> growth in the large-scale nursery and wastelands in a semi-arid region in India. Journal of Forest Research, 2021, 26, 448-454.	0.7	2
101	Inoculation with effective microbial consortia can reduce half the fertilizer application for <i>Andrographis paniculata</i> (kalmegh) under field condition. Medicinal Plants - International Journal of Phytomedicines and Related Industries, 2015, 7, 103.	0.1	2
102	Spatial Arrangement and Biofertilizers Enhance the Performance of Legume—Millet Intercropping System in Rainfed Areas of Southern India. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	2
103	Suitable form and level of phosphorus for mass production of the VA mycorrhizal fungus Glomus fasciculatum. Zentralblatt Für Mikrobiologie, 1989, 144, 33-36.	0.2	1
104	Microbial Biodiversity in Agroforestry Systems. , 2017, , 645-667.		1
105	Influence of different AM fungi on the growth, nutrition and withanolide concentration ofWithania somnifera. Medicinal Plants - International Journal of Phytomedicines and Related Industries, 2015, 7, 272.	0.1	1
106	Rhizosphere microflora ofCajanus cajan in relation to Fusarium wilt resistance. Plant and Soil, 1978, 50, 485-487.	1.8	0
107	Effect of some herbicides and fungicides on thein vitrogrowth of the endomycorrhizal fungusPezizella ericae. New Zealand Journal of Agricultural Research, 1984, 27, 581-585.	0.9	0
108	The effect of season on VA mycorrhizae of leucaena and mango in a semi-arid tropic. Arid Land Research and Management, 1988, 2, 139-143.	0.6	0

#	Article	IF	CITATIONS
109	VA mycorrhizal fungi associated with pigeonpaea. Zentralblatt Für Mikrobiologie, 1990, 145, 61-63.	0.2	0
110	Suitable source and level of nitrogen for mass production of the VA mycorrhizal fungus, Glomus fasciculatum. Zentralblatt Für Mikrobiologie, 1991, 146, 213-216.	0.2	0
111	Microorganisms in Sustainable Agriculture Guest Editor. Proceedings of the Indian National Science Academy, 2014, 80, 356.	0.5	0
112	Inoculation with microbial consortia enhances the growth, nutrition and oil concentration of <i>Ocimum sanctum</i> . Medicinal Plants - International Journal of Phytomedicines and Related Industries, 2017, 9, 237.	0.1	0
113	Mycorrhizal colonization in cowpea is host dependent and heritable. Plant and Soil, 1990, 122, 292-294.	1.8	0
114	History and Development of Arbuscular Mycorrhizal Research in India. , 2021, , 223-248.		0