
Gaetano Finocchiaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8896376/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Somatic Genomic Landscape of Glioblastoma. Cell, 2013, 155, 462-477.	13.5	3,979
2	Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. New England Journal of Medicine, 2015, 372, 2481-2498.	13.9	2,582
3	Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment. Cancer Cell, 2017, 32, 42-56.e6.	7.7	1,282
4	Intertumoral Heterogeneity within Medulloblastoma Subgroups. Cancer Cell, 2017, 31, 737-754.e6.	7.7	836
5	Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncology, The, 2017, 18, 1373-1385.	5.1	776
6	Transforming Fusions of <i>FGFR</i> and <i>TACC</i> Genes in Human Glioblastoma. Science, 2012, 337, 1231-1235.	6.0	716
7	Clonal evolution of glioblastoma under therapy. Nature Genetics, 2016, 48, 768-776.	9.4	591
8	Immunotherapy response assessment in neuro-oncology: a report of the RANO working group. Lancet Oncology, The, 2015, 16, e534-e542.	5.1	582
9	The integrated landscape of driver genomic alterations in glioblastoma. Nature Genetics, 2013, 45, 1141-1149.	9.4	524
10	Gene therapy of experimental brain tumors using neural progenitor cells. Nature Medicine, 2000, 6, 447-450.	15.2	450
11	Longitudinal molecular trajectories of diffuse glioma in adults. Nature, 2019, 576, 112-120.	13.7	320
12	Neurospheres Enriched in Cancer Stem–Like Cells Are Highly Effective in Eliciting a Dendritic Cell–Mediated Immune Response against Malignant Gliomas. Cancer Research, 2006, 66, 10247-10252.	0.4	237
13	Detection, Characterization, and Inhibition of FGFR–TACC Fusions in IDH Wild-type Glioma. Clinical Cancer Research, 2015, 21, 3307-3317.	3.2	230
14	The landscape of the mesenchymal signature in brain tumours. Brain, 2019, 142, 847-866.	3.7	228
15	Epigenetic Activation of WNT5A Drives Glioblastoma Stem Cell Differentiation and Invasive Growth. Cell, 2016, 167, 1281-1295.e18.	13.5	207
16	Identification of Tumor-Specific Molecular Signatures in Intracranial Ependymoma and Association With Clinical Characteristics. Journal of Clinical Oncology, 2006, 24, 5223-5233.	0.8	194
17	Combined analysis of <i>TERT</i> , <i>EGFR</i> , and <i>IDH</i> status defines distinct prognostic glioblastoma classes. Neurology, 2014, 83, 1200-1206.	1.5	176
18	Prognostic factors for survival in 676 consecutive patients with newly diagnosed primary glioblastoma. Neuro-Oncology, 2008, 10, 79-87.	0.6	172

#	Article	IF	CITATIONS
19	Phase III trial of chemoradiotherapy with temozolomide plus nivolumab or placebo for newly diagnosed glioblastoma with methylated <i>MGMT</i> promoter. Neuro-Oncology, 2022, 24, 1935-1949.	0.6	165
20	Glioma progression is shaped by genetic evolution and microenvironment interactions. Cell, 2022, 185, 2184-2199.e16.	13.5	163
21	TERT promoter mutations in gliomas, genetic associations and clinico-pathological correlations. British Journal of Cancer, 2014, 111, 2024-2032.	2.9	158
22	Molecular characterization of inherited carnitine palmitoyltransferase II deficiency Proceedings of the United States of America, 1992, 89, 8429-8433.	3.3	151
23	The molecular landscape of glioma in patients with Neurofibromatosis 1. Nature Medicine, 2019, 25, 176-187.	15.2	145
24	Methylation of O6-Methylguanine DNA Methyltransferase and Loss of Heterozygosity on 19q and/or 17p Are Overlapping Features of Secondary Glioblastomas with Prolonged Survival. Clinical Cancer Research, 2007, 13, 2606-2613.	3.2	144
25	cDNA cloning, sequence analysis, and chromosomal localization of the gene for human carnitine palmitoyltransferase Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 661-665.	3.3	141
26	The "Bystander Effect― Association of U-87 Cell Death with Ganciclovir-Mediated Apoptosis of Nearby Cells and Lack of Effect in Athymic Mice. Human Gene Therapy, 1995, 6, 763-772.	1.4	135
27	The <i>MET</i> Oncogene Is a Functional Marker of a Glioblastoma Stem Cell Subtype. Cancer Research, 2012, 72, 4537-4550.	0.4	120
28	Glioma through the looking GLASS: molecular evolution of diffuse gliomas and the Glioma Longitudinal Analysis Consortium. Neuro-Oncology, 2018, 20, 873-884.	0.6	119
29	Enhancer of Zeste 2 (EZH2) is up-regulated in malignant gliomas and in glioma stem-like cells. Neuropathology and Applied Neurobiology, 2011, 37, 381-394.	1.8	118
30	Randomized, Double-Blind, Placebo-Controlled, Multicenter Phase II Study of Onartuzumab Plus Bevacizumab Versus Placebo Plus Bevacizumab in Patients With Recurrent Glioblastoma: Efficacy, Safety, and Hepatocyte Growth Factor and O ⁶ -Methylguanine–DNA Methyltransferase Biomarker Analyses. Journal of Clinical Oncology, 2017, 35, 343-351.	0.8	110
31	B7-H3-redirected chimeric antigen receptor T cells target glioblastoma and neurospheres. EBioMedicine, 2019, 47, 33-43.	2.7	101
32	Effective immuno-targeting of the IDH1 mutation R132H in a murine model of intracranial glioma. Acta Neuropathologica Communications, 2015, 3, 4.	2.4	100
33	Constitutive and TNFα-inducible expression of chondroitin sulfate proteoglycan 4 in glioblastoma and neurospheres: Implications for CAR-T cell therapy. Science Translational Medicine, 2018, 10, .	5.8	96
34	A Radial Glia Gene Marker, Fatty Acid Binding Protein 7 (FABP7), Is Involved in Proliferation and Invasion of Glioblastoma Cells. PLoS ONE, 2012, 7, e52113.	1.1	94
35	High-Resolution Genomic Copy Number Profiling of Glioblastoma Multiforme by Single Nucleotide Polymorphism DNA Microarray. Molecular Cancer Research, 2009, 7, 665-677.	1.5	91
36	Carnitine palmitoyltransferase II deficiency: structure of the gene and characterization of two novel disease-causing mutations. Human Molecular Genetics, 1995, 4, 19-29.	1.4	89

#	Article	IF	CITATIONS
37	Sox2 Is Required to Maintain Cancer Stem Cells in a Mouse Model of High-Grade Oligodendroglioma. Cancer Research, 2014, 74, 1833-1844.	0.4	84
38	PTEN/MMAC1 mutations in primary glioblastomas and short-term cultures of malignant gliomas. Oncogene, 1998, 16, 541-545.	2.6	79
39	DNA Damage in Mammalian Neural Stem Cells Leads to Astrocytic Differentiation Mediated by BMP2 Signaling through JAK-STAT. Stem Cell Reports, 2013, 1, 123-138.	2.3	79
40	NEDD9, a novel target of miR-145, increases the invasiveness of glioblastoma. Oncotarget, 2012, 3, 723-734.	0.8	77
41	The neural progenitor-restricted isoform of the MARK4 gene in 19q13.2 is upregulated in human gliomas and overexpressed in a subset of glioblastoma cell lines. Oncogene, 2003, 22, 2581-2591.	2.6	76
42	<scp>MET</scp> inhibition overcomes radiation resistance of glioblastoma stemâ€like cells. EMBO Molecular Medicine, 2016, 8, 550-568.	3.3	74
43	A regulatory circuit of miR-125b/miR-20b and Wnt signalling controls glioblastoma phenotypes through FZD6-modulated pathways. Nature Communications, 2016, 7, 12885.	5.8	72
44	AVAREG: a phase II, randomized, noncomparative study of fotemustine or bevacizumab for patients with recurrent glioblastoma. Neuro-Oncology, 2016, 18, 1304-1312.	0.6	71
45	Limited Efficacy of the HSV-TK/GCV System for Gene Therapy of Malignant Gliomas and Perspectives for the Combined Transduction of the Interleukin-4 Gene. Human Gene Therapy, 1997, 8, 1345-1353.	1.4	69
46	Survival effect of first- and second-line treatments for patients with primary glioblastoma: a cohort study from a prospective registry, 1997-2010. Neuro-Oncology, 2014, 16, 719-727.	0.6	68
47	Genetic alterations and in vivo tumorigenicity of neurospheres derived from an adult glioblastoma. Molecular Cancer, 2004, 3, 25.	7.9	66
48	Assignment of the Human Carnitine Palmitoyltransferase II Gene (CPT1) to Chromosome 1p32. Genomics, 1994, 24, 195-197.	1.3	65
49	Different simian virus 40 genomic regions and sequences homologous with SV40 large T antigen in DNA of human brain and bone tumors and of leukocytes from blood donors. Cancer, 2002, 94, 1037-1048.	2.0	65
50	MRI in Glioma Immunotherapy: Evidence, Pitfalls, and Perspectives. Journal of Immunology Research, 2017, 2017, 1-16.	0.9	61
51	Paracrine delivery of IL-12 against intracranial 9L gliosarcoma in rats. Journal of Neurosurgery, 2000, 92, 419-427.	0.9	60
52	A role for the transcription factor HEY1 in glioblastoma. Journal of Cellular and Molecular Medicine, 2009, 13, 136-146.	1.6	60
53	The natural killer cell response and tumor debulking are associated with prolonged survival in recurrent glioblastoma patients receiving dendritic cells loaded with autologous tumor lysates. Oncolmmunology, 2013, 2, e23401.	2.1	56
54	Survival gain in glioblastoma patients treated with dendritic cell immunotherapy is associated with increased NK but not CD8 ⁺ T cell activation in the presence of adjuvant temozolomide. Oncolmmunology, 2018, 7, e1412901.	2.1	54

#	Article	IF	CITATIONS
55	Increasing complexity of the karyotype in 50 human gliomas. Cancer Genetics and Cytogenetics, 1994, 75, 77-89.	1.0	51
56	Expression of MATH1, a marker of cerebellar granule cell progenitors, identifies different medulloblastoma sub-types. Neuroscience Letters, 2004, 370, 180-185.	1.0	51
57	Reclassification of oligoastrocytomas by loss of heterozygosity studies. International Journal of Cancer, 2006, 119, 84-90.	2.3	51
58	The Somatic Genomic Landscape of Glioblastoma. Cell, 2014, 157, 753.	13.5	51
59	Resetting cancer stem cell regulatory nodes upon <scp>MYC</scp> inhibition. EMBO Reports, 2016, 17, 1872-1889.	2.0	51
60	Genetic Evolution of Glioblastoma Stem-Like Cells From Primary to Recurrent Tumor. Stem Cells, 2017, 35, 2218-2228.	1.4	47
61	A Randomized Phase II Trial (TAMIGA) Evaluating the Efficacy and Safety of Continuous Bevacizumab Through Multiple Lines of Treatment for Recurrent Glioblastoma. Oncologist, 2019, 24, 521-528.	1.9	47
62	Extraneural metastases in glioblastoma patients: two cases with YKL-40-positive glioblastomas and a meta-analysis of the literature. Neurosurgical Review, 2016, 39, 37-46.	1.2	45
63	cDNA cloning and mitochondrial import of the beta-subunit of the human electron-transfer flavoprotein. FEBS Journal, 1993, 213, 1003-1008.	0.2	44
64	The therapeutic potential of neural stem/progenitor cells in murine globoid cell leukodystrophy is conditioned by macrophage/microglia activation. Neurobiology of Disease, 2006, 21, 314-323.	2.1	44
65	ATIM-03. ACT IV: AN INTERNATIONAL, DOUBLE-BLIND, PHASE 3 TRIAL OF RINDOPEPIMUT IN NEWLY DIAGNOSED, EGFRvIII-EXPRESSING GLIOBLASTOMA. Neuro-Oncology, 2016, 18, vi17-vi18.	0.6	43
66	Immunotherapy with dendritic cells loaded with glioblastoma stem cells: from preclinical to clinical studies. Cancer Immunology, Immunotherapy, 2016, 65, 101-109.	2.0	42
67	Purification and properties of carnitine acetyltransferase from human liver. FEBS Journal, 1990, 189, 539-546.	0.2	40
68	EGFR Amplified and Overexpressing Glioblastomas and Association With Better Response to Adjuvant Metronomic Temozolomide. Journal of the National Cancer Institute, 2015, 107, .	3.0	39
69	A critical role for regulatory T cells in driving cytokine profiles of Th17 cells and their modulation of glioma microenvironment. Cancer Immunology, Immunotherapy, 2011, 60, 1739-1750.	2.0	38
70	Intra-tumoral dendritic cells increase efficacy of peripheral vaccination by modulation of glioma microenvironment. Neuro-Oncology, 2010, 12, 377-388.	0.6	33
71	ROLE OF CYTOKINES IN CANCER CACHEXIA IN A MURINE MODEL OF INTRACEREBRAL INJECTION OF HUMAN TUMOURS. Cytokine, 2001, 15, 27-38.	1.4	32
72	Association of chromosome 10 losses and negative prognosis in oligoastrocytomas. Annals of Neurology, 2002, 52, 842-845.	2.8	32

#	Article	IF	CITATIONS
73	Rai is a New Regulator of Neural Progenitor Migration and Glioblastoma Invasion. Stem Cells, 2012, 30, 817-832.	1.4	32
74	Salvage treatment for childhood ependymoma after surgery only: Pitfalls of omitting "at once― adjuvant treatment. International Journal of Radiation Oncology Biology Physics, 2006, 65, 1440-1445.	0.4	31
75	Expression of the neurogenic basic helix-loop-helix transcription factor NEUROG1 identifies a subgroup of medulloblastomas not expressing ATOH1. Neuro-Oncology, 2007, 9, 298-307.	0.6	31
76	Radiosurgery reirradiation for high-grade glioma recurrence: a retrospective analysis. Neurological Sciences, 2015, 36, 1431-1440.	0.9	31
77	An Optimized Method for Manufacturing a Clinical Scale Dendritic Cell-Based Vaccine for the Treatment of Glioblastoma. PLoS ONE, 2012, 7, e52301.	1.1	30
78	Instability of mitochondrial DNA and MRI and clinical correlations in malignant gliomas. Journal of Neuro-Oncology, 2005, 74, 87-90.	1.4	29
79	Reelin affects chain-migration and differentiation of neural precursor cells. Molecular and Cellular Neurosciences, 2009, 42, 341-349.	1.0	29
80	Immunotherapy for glioma. Current Opinion in Neurology, 2011, 24, 641-647.	1.8	29
81	VEGFA SNP rs2010963 is associated with vascular toxicity in recurrent glioblastomas and longer response to bevacizumab. Journal of Neuro-Oncology, 2015, 121, 499-504.	1.4	29
82	Prognostic Value of CD109+ Circulating Endothelial Cells in Recurrent Glioblastomas Treated with Bevacizumab and Irinotecan. PLoS ONE, 2013, 8, e74345.	1.1	28
83	Human glioblastoma stem-like cells accumulate protoporphyrin IX when subjected to exogenous 5-aminolaevulinic acid, rendering them sensitive to photodynamic treatment. Journal of Photochemistry and Photobiology B: Biology, 2016, 163, 203-210.	1.7	28
84	KLF6 is not the major target of chromosome 10p losses in glioblastomas. International Journal of Cancer, 2004, 111, 640-641.	2.3	27
85	Perspectives for immunotherapy in glioblastoma treatment. Current Opinion in Oncology, 2014, 26, 608-614.	1.1	26
86	Retroviral-mediated transfer of the galactocerebrosidase gene in neural progenitor cells. NeuroReport, 1998, 9, 3823-2827.	0.6	25
87	FABP4 is a candidate marker of cerebellar liponeurocytomas. Journal of Neuro-Oncology, 2012, 108, 513-519.	1.4	25
88	126 novel mutations in Italian patients with neurofibromatosis type 1. Molecular Genetics & Genomic Medicine, 2015, 3, 513-525.	0.6	25
89	The multidrug-resistance transporter Abcc3 protects NK cells from chemotherapy in a murine model of malignant glioma. Oncolmmunology, 2016, 5, e1108513.	2.1	25
90	Modifications to the Framework Regions Eliminate Chimeric Antigen Receptor Tonic Signaling. Cancer Immunology Research, 2021, 9, 441-453.	1.6	25

#	Article	IF	CITATIONS
91	Brain cancer immunoediting: novel examples provided by immunotherapy of malignant gliomas. Expert Review of Anticancer Therapy, 2011, 11, 1759-1774.	1.1	24
92	FOXP3, a novel glioblastoma oncosuppressor, affects proliferation and migration. Oncotarget, 2012, 3, 1146-1157.	0.8	24
93	Different simian virus 40 genomic regions and sequences homologous with SV40 large T antigen in DNA of human brain and bone tumors and of leukocytes from blood donors. Cancer, 2002, 94, 1037-48.	2.0	24
94	Expression studies in gliomas and glial cells do not support a tumor suppressor role for LGI11. Neuro-Oncology, 2006, 8, 96-108.	0.6	23
95	Molecular Cloning of cDNAs Encoding Human Carnitine Acetyltransferase and Mapping of the Corresponding Gene to Chromosome 9q34.1. Genomics, 1994, 23, 94-99.	1.3	22
96	Redefinition of the coding sequence of the MXI1 gene and identification of a polymorphic repeat in the 3? non-coding region that allows the detection of loss of heterozygosity of chromosome 10q25 in glioblastomas. Human Genetics, 1995, 95, 709-11.	1.8	22
97	DNA Microarray Analysis Identifies <i>CKS2</i> and <i>LEPR</i> as Potential Markers of Meningioma Recurrence. Oncologist, 2011, 16, 1440-1450.	1.9	22
98	Accuracy of 2-hydroxyglutarate quantification by short-echo proton-MRS at 3ÂT: A phantom study. Physica Medica, 2014, 30, 702-707.	0.4	22
99	Altered function of the glutamate–aspartate transporter GLAST, a potential therapeutic target in glioblastoma. International Journal of Cancer, 2019, 144, 2539-2554.	2.3	21
100	Brain engraftment and therapeutic potential of stem/progenitor cells derived from mouse skin. Journal of Gene Medicine, 2006, 8, 506-513.	1.4	20
101	Radiationâ€induced glioblastoma in a medulloblastoma patient: A case report with molecular features. Neuropathology, 2008, 28, 633-639.	0.7	20
102	High tumor mutational burden and T-cell activation are associated with long-term response to anti-PD1 therapy in Lynch syndrome recurrent glioblastoma patient. Cancer Immunology, Immunotherapy, 2021, 70, 831-842.	2.0	20
103	Immunotherapy against the radial glia marker GLAST effectively triggers specific antitumor effectors without autoimmunity. Oncolmmunology, 2012, 1, 884-893.	2.1	19
104	Risk of Optic Pathway Glioma in Neurofibromatosis Type 1: No Evidence of Genotype–Phenotype Correlations in a Large Independent Cohort. Cancers, 2019, 11, 1838.	1.7	19
105	Dendritic Cell Vaccines for Cancer Stem Cells. Methods in Molecular Biology, 2009, 568, 233-247.	0.4	19
106	Localization of the human gene for carnitine palmitoyltransferase to 1p13–p11 by nonradioactive in situ hybridization. Genomics, 1992, 13, 1372-1374.	1.3	18
107	Absence of mutations and identification of two polymorphisms in the SSCP and sequence analysis of p21CK1 gene in malignant gliomas. International Journal of Cancer, 1995, 62, 115-117.	2.3	18
108	ERBB3 overexpression due to miR-205 inactivation confers sensitivity to FGF, metabolic activation, and liability to ERBB3 targeting in glioblastoma. Cell Reports, 2021, 36, 109455.	2.9	18

#	Article	IF	CITATIONS
109	Safe and Reproducible Preparation of Functional Dendritic Cells for Immunotherapy in Glioblastoma Patients. Stem Cells Translational Medicine, 2015, 4, 1164-1172.	1.6	17
110	ABCC3 Expressed by CD56dim CD16+ NK Cells Predicts Response in Glioblastoma Patients Treated with Combined Chemotherapy and Dendritic Cell Immunotherapy. International Journal of Molecular Sciences, 2019, 20, 5886.	1.8	17
111	Parametric Response Maps of Perfusion MRI May Identify Recurrent Glioblastomas Responsive to Bevacizumab and Irinotecan. PLoS ONE, 2014, 9, e90535.	1.1	17
112	A Subpopulation of Circulating Endothelial Cells Express CD109 and is Enriched in the Blood of Cancer Patients. PLoS ONE, 2014, 9, e114713.	1.1	17
113	Loss of heterozygosity studies in extracranial metastatic meningiomas. Journal of Neuro-Oncology, 2007, 85, 81-85.	1.4	16
114	TLRgeting Evasion of Immune Pathways in Glioblastoma. Cell Stem Cell, 2017, 20, 422-424.	5.2	16
115	Expansion of effector and memory T cells is associated with increased survival in recurrent glioblastomas treated with dendritic cell immunotherapy. Neuro-Oncology Advances, 2019, 1, vdz022.	0.4	16
116	Genetic signature of adult gliomas and correlation with MRI features. Expert Review of Molecular Diagnostics, 2009, 9, 709-720.	1.5	15
117	Expression profile of frizzled receptors in human medulloblastomas. Journal of Neuro-Oncology, 2012, 106, 271-280.	1.4	14
118	Frequency of NFKBIA deletions is low in glioblastomas and skewed in glioblastoma neurospheres. Molecular Cancer, 2013, 12, 160.	7.9	14
119	Assignment of the Gene Encoding the β-Subunit of the Electron-Transfer Flavoprotein (ETFB) to Human Chromosome 19q13.3. Genomics, 1994, 19, 177-179.	1.3	12
120	Principles of immunotherapy. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2016, 134, 163-181.	1.0	12
121	Identification and characterization of a new source of adult human neural progenitors. Cell Death and Disease, 2017, 8, e2991-e2991.	2.7	12
122	Advanced MRI Assessment during Dendritic Cell Immunotherapy Added to Standard Treatment Against Glioblastoma. Journal of Clinical Medicine, 2019, 8, 2007.	1.0	12
123	In vivo 2-hydroxyglutarate-proton magnetic resonance spectroscopy (3 T, PRESS technique) in treatment-naà ve suspect lower-grade gliomas: feasibility and accuracy in a clinical setting. Neurological Sciences, 2020, 41, 347-355.	0.9	12
124	A Long-Term Extension Study of Bevacizumab in Patients With Solid Tumors. Oncologist, 2021, 26, e2254-e2264.	1.9	12
125	Isolation and sub-chromosomal localization of a DNA fragment of the human choline acetyltransferase gene. Neuroscience Letters, 1991, 132, 191-194.	1.0	11
126	Identification of 5′ regulatory regions of the human carnitine palmitoyltransferase II gene. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1994, 1219, 237-240.	2.4	11

#	Article	IF	CITATIONS
127	P53 mutations and microsatellite analysis of loss of heterozygosity in malignant gliomas. Cancer Genetics and Cytogenetics, 1994, 74, 139-143.	1.0	11
128	Ultrasonic Surgical Aspirate is a Reliable Source For Culturing Glioblastoma Stem Cells. Scientific Reports, 2016, 6, 32788.	1.6	11
129	Early tumour shrinkage as a survival predictor in patients with recurrent glioblastoma treated with bevacizumab in the AVAREG randomized phase II study. Oncotarget, 2017, 8, 55575-55581.	0.8	10
130	Operability of glioblastomas: "sins of action―versus "sins of non-action― Neurological Sciences, 2013, 34, 2107-2116.	0.9	9
131	Fibronectin-adherent peripheral blood derived mononuclear cells as Paclitaxel carriers for glioblastoma treatment: An in vitro study. Cytotherapy, 2017, 19, 721-734.	0.3	9
132	Novel mechanisms and approaches in immunotherapy for brain tumors. Discovery Medicine, 2015, 20, 7-15.	0.5	9
133	A Recurrent 19q11–12 Breakpoint Suggested by Cytogenetic and Fluorescence In Situ Hybridization Analysis of Three Glioblastoma Cell Lines. Cancer Genetics and Cytogenetics, 1999, 110, 82-86.	1.0	8
134	Allergic Signs in Glioma Pathology: Current Knowledge and Future Perspectives. Cancers, 2019, 11, 404.	1.7	7
135	Actinomycin D: a new opening for an old drug. Neuro-Oncology, 2020, 22, 1235-1236.	0.6	7
136	IL-4 Gene Transfer for the Treatment of Experimental Gliomas. Advances in Experimental Medicine and Biology, 1998, 451, 315-321.	0.8	7
137	Substrate stereochemistry of isovaleryl-CoA dehydrogenase. Bioorganic Chemistry, 1986, 14, 170-175.	2.0	5
138	Go, no-go decision making for phase 3 clinical trials: ACT IV revisited – Authors' reply. Lancet Oncology, The, 2017, 18, e709-e710.	5.1	5
139	Neurological malignancies in neurofibromatosis type 1. Current Opinion in Oncology, 2019, 31, 554-561.	1.1	5
140	Simultaneous Detection of NF1, SPRED1, LZTR1, and NF2 Gene Mutations by Targeted NGS in an Italian Cohort of Suspected NF1 Patients. Genes, 2020, 11, 671.	1.0	5
141	Identification of PTEN-related sequences in glioma cells and in non-neoplastic cell lines. Cancer Letters, 1999, 138, 1-4.	3.2	4
142	Gene therapy of glioblastomas: from suicide to homicide. Progress in Brain Research, 2001, 132, 711-719.	0.9	4
143	Diffuse glioblastoma resembling acute hemorrhagic leukoencephalitis. Quantitative Imaging in Medicine and Surgery, 2017, 7, 592-597.	1.1	4
144	NG2/CSPG4 in glioblastoma: about flexibility. Neuro-Oncology, 2019, 21, 697-698.	0.6	4

#	Article	IF	CITATIONS
145	PGE2 Is Crucial for the Generation of FAST Whole- Tumor-Antigens Loaded Dendritic Cells Suitable for Immunotherapy in Glioblastoma. Pharmaceutics, 2020, 12, 215.	2.0	4
146	From Standard Treatment to Personalized Medicine: Role of IDH1 Mutations in Low-Grade Glioma Evolution and Treatment. World Neurosurgery, 2010, 73, 234-236.	0.7	3
147	Central nervous system lymphoma occurring in a patient with neurofibromatosis type 1 (von) Tj ETQq1 1 0.7843	14 rgBT /C	Overlock 10 1
148	Gene Transfer of Suicide Genes for the Treatment of Malignant Gliomas: Efficacy, Limitations, and Perspectives for a Combined Immunotherapy. , 1997, 68, 100-104.		2
149	Substrate stereochemistry of 2-methyl-branched-chain acyl-CoA dehydrogenase: elimination of one 1986, 873, 308-311.	2.1	1
150	The potential of stem cells for the treatment of brain tumors and globoid cell leukodystrophy. Cytotechnology, 2003, 41, 93-101.	0.7	1
151	Milan 2020: COVID-19, neuro-oncology and much more. Journal of Neuro-Oncology, 2020, 148, 201-202.	1.4	1
152	Association of increased progression-free survival in primary glioblastomas with lymphopenia at baseline and activation of NK and NKT cells after dendritic cell immunotherapy Journal of Clinical Oncology, 2014, 32, 2087-2087.	0.8	1
153	Principi di terapia genica. , 2009, , 593-606.		0
154	Oligoastrocytomas. , 2011, , 2600-2602.		0
155	Cancer Stem-Like Cells. , 2014, , 767-771.		0
156	Cancer Stem-Like Cells. , 2014, , 1-5.		0
157	Oligoastrocytomas. , 2017, , 3189-3192.		0
158	Glioblastomas. Cancers, 2022, 14, 104.	1.7	0