Mohammad Akbari Garakani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8896043/publications.pdf

Version: 2024-02-01

22 papers 2,134 citations

361388 20 h-index 677123 22 g-index

23 all docs 23 docs citations

times ranked

23

3777 citing authors

#	Article	IF	Citations
1	Porous graphene oxide/carbon nanotube hybrid films as interlayer for lithium-sulfur batteries. Carbon, 2016, 99, 624-632.	10.3	246
2	Graphene Aerogel/Epoxy Composites with Exceptional Anisotropic Structure and Properties. ACS Applied Materials & Samp; Interfaces, 2015, 7, 5538-5549.	8.0	235
3	Electrospun Carbon Nanofibers with in Situ Encapsulated Co ₃ O ₄ Nanoparticles as Electrodes for High-Performance Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2015, 7, 13503-13511.	8.0	199
4	Novel interlayer made from Fe3C/carbon nanofiber webs for high performance lithium–sulfur batteries. Journal of Power Sources, 2015, 285, 43-50.	7.8	178
5	Cobalt Carbonate/ and Cobalt Oxide/Graphene Aerogel Composite Anodes for High Performance Li-lon Batteries. ACS Applied Materials & Diterfaces, 2014, 6, 18971-18980.	8.0	135
6	NiCo2O4/CNT nanocomposites as bi-functional electrodes for Li ion batteries and supercapacitors. Carbon, 2016, 102, 262-272.	10.3	127
7	Co ₃ O ₄ /porous electrospun carbon nanofibers as anodes for high performance Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 16939-16944.	10.3	115
8	Enhanced conversion reaction kinetics in low crystallinity SnO ₂ /CNT anodes for Na-ion batteries. Journal of Materials Chemistry A, 2016, 4, 10964-10973.	10.3	111
9	Heterogeneous, mesoporous NiCo ₂ O ₄ –MnO ₂ /graphene foam for asymmetric supercapacitors with ultrahigh specific energies. Journal of Materials Chemistry A, 2017, 5, 3547-3557.	10.3	106
10	Exceptional rate performance of functionalized carbon nanofiber anodes containing nanopores created by (Fe) sacrificial catalyst. Nano Energy, 2014, 4, 88-96.	16.0	94
11	Carbon-coated mesoporous silicon microsphere anodes with greatly reduced volume expansion. Journal of Materials Chemistry A, 2016, 4, 6098-6106.	10.3	81
12	Electrospun graphitic carbon nanofibers with in-situ encapsulated Co–Ni nanoparticles as freestanding electrodes for Li–O2 batteries. Carbon, 2016, 100, 329-336.	10.3	79
13	Effect of long-term service exposure on microstructure and mechanical properties of Alloy 617. Materials & Design, 2011, 32, 2695-2700.	5.1	64
14	Scalable spray-coated graphene-based electrodes for high-power electrochemical double-layer capacitors operating over a wide range of temperature. Energy Storage Materials, 2021, 34, 1-11.	18.0	61
15	Ultrafine SnO2 nanoparticles encapsulated in ordered mesoporous carbon framework for Li-ion battery anodes. Electrochimica Acta, 2018, 284, 436-443.	5.2	52
16	Controlled synthesis of cobalt carbonate/graphene composites with excellent supercapacitive performance and pseudocapacitive characteristics. Journal of Materials Chemistry A, 2015, 3, $17827-17836$.	10.3	48
17	Study of lithiation mechanisms of high performance carbon-coated Si anodes by in-situ microscopy. Energy Storage Materials, 2016, 3, 45-54.	18.0	47
18	In-situ TEM examination and exceptional long-term cyclic stability of ultrafine Fe3O4 nanocrystal/carbon nanofiber composite electrodes. Energy Storage Materials, 2015, 1, 25-34.	18.0	46

#	Article	IF	CITATIONS
19	Nanocavity-engineered Si/multi-functional carbon nanofiber composite anodes with exceptional high-rate capacities. Journal of Materials Chemistry A, 2014, 2, 17944-17951.	10.3	42
20	Carbon nanofibers containing Si nanoparticles and graphene-covered Ni for high performance anodes in Li ion batteries. RSC Advances, 2014, 4, 22359-22366.	3.6	37
21	<i>In situ</i> TEM study of lithiation into a PPy coated α-MnO ₂ /graphene foam freestanding electrode. Materials Chemistry Frontiers, 2018, 2, 1481-1488.	5.9	16
22	From scaled-up production of silicon-graphene nanocomposite to the realization of an ultra-stable full-cell Li-ion battery. 2D Materials, 2021, 8, 035014.	4.4	15