Lorenzo Casalino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8895296/publications.pdf

Version: 2024-02-01

31 2,603 papers citations

43

all docs

43

docs citations

43 times ranked

18

h-index

489802

25 g-index

651938

4599 citing authors

#	Article	IF	CITATIONS
1	<i>GlycoGrip</i> : Cell Surface-Inspired Universal Sensor for Betacoronaviruses. ACS Central Science, 2022, 8, 22-42.	5. 3	31
2	The flexibility of ACE2 in the context of SARS-CoV-2 infection. Biophysical Journal, 2021, 120, 1072-1084.	0.2	102
3	Atomic-Level Mechanism of Pre-mRNA Splicing in Health and Disease. Accounts of Chemical Research, 2021, 54, 144-154.	7.6	23
4	A multiscale coarse-grained model of the SARS-CoV-2 virion. Biophysical Journal, 2021, 120, 1097-1104.	0.2	139
5	SARS-CoV-2 Glycosylated Spike Activation Mechanism - Simulations of the Full Unbiased Pathway. Biophysical Journal, 2021, 120, 276a.	0.2	1
6	Multiscale Simulations Examining Glycan Shield Effects on Drug Binding to Influenza Neuraminidase. Biophysical Journal, 2021, 120, 122a.	0.2	0
7	Critical Role of Conserved Histidine Residues in Genome Editing and Recombination. Biophysical Journal, 2021, 120, 137a-138a.	0.2	O
8	A potential interaction between the SARS-CoV-2 spike protein and nicotinic acetylcholine receptors. Biophysical Journal, 2021, 120, 983-993.	0.2	43
9	Al-driven multiscale simulations illuminate mechanisms of SARS-CoV-2 spike dynamics. International Journal of High Performance Computing Applications, 2021, 35, 432-451.	2.4	91
10	Decoding allosteric regulation by the acyl carrier protein. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	14
11	A glycan gate controls opening of the SARS-CoV-2 spike protein. Nature Chemistry, 2021, 13, 963-968.	6.6	254
12	SARS-CoV-2 escape from a highly neutralizing COVID-19 convalescent plasma. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	251
13	Catalytic Mechanism of Non-Target DNA Cleavage in CRISPR-Cas9 Revealed by <i>Ab Initio</i> Molecular Dynamics. ACS Catalysis, 2020, 10, 13596-13605.	5. 5	63
14	Beyond Shielding: The Roles of Glycans in the SARS-CoV-2 Spike Protein. ACS Central Science, 2020, 6, 1722-1734.	5. 3	727
15	Mesoscale All-Atom Influenza Virus Simulations Suggest New Substrate Binding Mechanism. ACS Central Science, 2020, 6, 189-196.	5. 3	86
16	Two-Metal Ion Mechanism of DNA Cleavage in CRISPR-Cas9. Biophysical Journal, 2020, 118, 64a.	0.2	2
17	Decrypting the Information Exchange Pathways across the Spliceosome Machinery. Journal of the American Chemical Society, 2020, 142, 8403-8411.	6.6	35
18	Multiscale Simulations Examining Glycan Shield Effects on Drug Binding to Influenza Neuraminidase. Biophysical Journal, 2020, 119, 2275-2289.	0.2	13

#	Article	IF	CITATIONS
19	Vincent van Gogh's Autocatalysis. , 2020, , 114-115.		0
20	Unraveling the Molecular Mechanism of Pre-mRNA Splicing From Multi-Scale Simulations. Frontiers in Molecular Biosciences, 2019, 6, 62.	1.6	7
21	Influenza Virulence and Transmissibility through the Computational Microscope. Biophysical Journal, 2019, 116, 342a.	0.2	0
22	Pre-mRNA Splicing: The Gene Maturation Symphony of the Intron Lariat Spliceosome Revealed by Molecular Dynamics Simulations. Biophysical Journal, 2019, 116, 299a.	0.2	0
23	Understanding the mechanistic basis of non-coding RNA through molecular dynamics simulations. Journal of Structural Biology, 2019, 206, 267-279.	1.3	37
24	Can multiscale simulations unravel the function of metallo-enzymes to improve knowledge-based drug discovery?. Future Medicinal Chemistry, 2019, 11, 771-791.	1.1	9
25	Human Influenza A Virus Hemagglutinin Glycan Evolution Follows a Temporal Pattern to a Glycan Limit. MBio, 2019, 10, .	1.8	74
26	How does Glycosylation Affect Drug Binding on Influenza? The Roles ofÂElectrostatics and Sterics Examined through Brownian Dynamics Simulations. Biophysical Journal, 2019, 116, 483a.	0.2	0
27	A Dehydrogenase Dual Hydrogen Abstraction Mechanism Promotes Estrogen Biosynthesis: Can We Expand the Functional Annotation of the Aromatase Enzyme?. Chemistry - A European Journal, 2018, 24, 10840-10849.	1.7	31
28	All-atom simulations disentangle the functional dynamics underlying gene maturation in the intron lariat spliceosome. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6584-6589.	3.3	59
29	Development of Site-Specific Mg ²⁺ â€"RNA Force Field Parameters: A Dream or Reality? Guidelines from Combined Molecular Dynamics and Quantum Mechanics Simulations. Journal of Chemical Theory and Computation, 2017, 13, 340-352.	2.3	51
30	Who Activates the Nucleophile in Ribozyme Catalysis? An Answer from the Splicing Mechanism of Group II Introns. Journal of the American Chemical Society, 2016, 138, 10374-10377.	6.6	79
31	Structural, dynamical and catalytic interplay between Mg2+ ions and RNA. Vices and virtues of atomistic simulations. Inorganica Chimica Acta, 2016, 452, 73-81.	1.2	16