List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8895187/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High Resolution Model Intercomparison Project (HighResMIPÂv1.0) for CMIP6. Geoscientific Model Development, 2016, 9, 4185-4208.	3.6	643
2	Tropical Cyclones and Climate Change Assessment: Part II: Projected Response to Anthropogenic Warming. Bulletin of the American Meteorological Society, 2020, 101, E303-E322.	3.3	573
3	Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations. Journal of Computational Physics, 2008, 227, 3486-3514.	3.8	548
4	The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation. Bulletin of the American Meteorological Society, 2015, 96, 1311-1332.	3.3	443
5	A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dynamics Research, 2004, 34, 357-400.	1.3	351
6	Tropical Cyclones and Climate Change Assessment: Part I: Detection and Attribution. Bulletin of the American Meteorological Society, 2019, 100, 1987-2007.	3.3	326
7	A Madden-Julian Oscillation Event Realistically Simulated by a Global Cloud-Resolving Model. Science, 2007, 318, 1763-1765.	12.6	315
8	The Non-hydrostatic Icosahedral Atmospheric Model: description and development. Progress in Earth and Planetary Science, 2014, 1, .	3.0	274
9	DYAMOND: the DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains. Progress in Earth and Planetary Science, 2019, 6, .	3.0	239
10	Diurnal Cycle of Precipitation in the Tropics Simulated in a Global Cloud-Resolving Model. Journal of Climate, 2009, 22, 4809-4826.	3.2	214
11	A global cloud-resolving simulation: Preliminary results from an aqua planet experiment. Geophysical Research Letters, 2005, 32, .	4.0	193
12	Simulating the diurnal cycle of rainfall in global climate models: resolution versus parameterization. Climate Dynamics, 2012, 39, 399-418.	3.8	190
13	Relative humidity changes in a warmer climate. Journal of Geophysical Research, 2010, 115, .	3.3	185
14	Shallow Water Model on a Modified Icosahedral Geodesic Grid by Using Spring Dynamics. Journal of Computational Physics, 2001, 174, 579-613.	3.8	171
15	Global Cloud-Resolving Models. Current Climate Change Reports, 2019, 5, 172-184.	8.6	164
16	TransCom model simulations of hourly atmospheric CO ₂ : Experimental overview and diurnal cycle results for 2002. Global Biogeochemical Cycles, 2008, 22, .	4.9	142
17	Radiative–convective equilibrium model intercomparison project. Geoscientific Model Development, 2018, 11, 793-813.	3.6	127
18	TransCom model simulations of hourly atmospheric CO ₂ : Analysis of synopticâ€scale variations for the period 2002–2003. Global Biogeochemical Cycles, 2008, 22, .	4.9	119

#	Article	IF	CITATIONS
19	The Benefits of Global High Resolution for Climate Simulation: Process Understanding and the Enabling of Stakeholder Decisions at the Regional Scale. Bulletin of the American Meteorological Society, 2018, 99, 2341-2359.	3.3	107
20	A 20-Year Climatology of a NICAM AMIP-Type Simulation. Journal of the Meteorological Society of Japan, 2015, 93, 393-424.	1.8	104
21	Importance of the subgrid-scale turbulent moist process: Cloud distribution in global cloud-resolving simulations. Atmospheric Research, 2010, 96, 208-217.	4.1	100
22	Madden–Julian Oscillation prediction skill of a new-generation global model demonstrated using a supercomputer. Nature Communications, 2014, 5, 3769.	12.8	97
23	Response of Tropical Cyclone Activity and Structure to Global Warming in a High-Resolution Global Nonhydrostatic Model. Journal of Climate, 2017, 30, 9703-9724.	3.2	92
24	Clouds and Convective Selfâ€Aggregation in a Multimodel Ensemble of Radiativeâ€Convective Equilibrium Simulations. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002138.	3.8	86
25	An Optimization of the Icosahedral Grid Modified by Spring Dynamics. Journal of Computational Physics, 2002, 183, 307-331.	3.8	81
26	Evaluating cloud microphysics from NICAM against CloudSat and CALIPSO. Journal of Geophysical Research D: Atmospheres, 2013, 118, 7273-7292.	3.3	79
27	Imposing strong constraints on tropical terrestrial CO2fluxes using passenger aircraft based measurements. Journal of Geophysical Research, 2012, 117, n/a-n/a.	3.3	75
28	Revolutionizing Climate Modeling with Project Athena: A Multi-Institutional, International Collaboration. Bulletin of the American Meteorological Society, 2013, 94, 231-245.	3.3	75
29	A joint satellite and global cloudâ€resolving model analysis of a Maddenâ€Julian Oscillation event: Model diagnosis. Journal of Geophysical Research, 2008, 113, .	3.3	73
30	Conservative Scheme for the Compressible Nonhydrostatic Models with the Horizontally Explicit and Vertically Implicit Time Integration Scheme. Monthly Weather Review, 2002, 130, 1227-1245.	1.4	67
31	Seasonal and Intraseasonal Modulation of Tropical Cyclogenesis Environment over the Bay of Bengal during the Extended Summer Monsoon. Journal of Climate, 2012, 25, 2914-2930.	3.2	67
32	A climate sensitivity test using a global cloud resolving model under an aqua planet condition. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	65
33	Hadley Circulations in Radiative–Convective Equilibrium in an Axially Symmetric Atmosphere. Journals of the Atmospheric Sciences, 1994, 51, 1947-1968.	1.7	64
34	The Aqua-Planet Experiment (APE): CONTROL SST Simulation. Journal of the Meteorological Society of Japan, 2013, 91A, 17-56.	1.8	64
35	Projection of changes in tropical cyclone activity and cloud height due to greenhouse warming: Global cloudâ€systemâ€resolving approach. Geophysical Research Letters, 2010, 37, .	4.0	63
36	Model depiction of the atmospheric flows of radioactive cesium emitted from the Fukushima Daiichi Nuclear Power Station accident. Progress in Earth and Planetary Science, 2017, 4, .	3.0	63

#	Article	IF	CITATIONS
37	Global cloudâ€systemâ€resolving model NICAM successfully simulated the lifecycles of two real tropical cyclones. Geophysical Research Letters, 2008, 35, .	4.0	61
38	Evaluations of cloud properties of global and local cloud system resolving models using CALIPSO and CloudSat simulators. Journal of Geophysical Research, 2010, 115, .	3.3	60
39	Characteristics of Cloud Size of Deep Convection Simulated by a Global Cloud Resolving Model over the Western Tropical Pacific. Journal of the Meteorological Society of Japan, 2008, 86A, 1-15.	1.8	59
40	A PDF-based hybrid prognostic cloud scheme for general circulation models. Climate Dynamics, 2009, 33, 795-816.	3.8	59
41	Multiscale Organization of Convection Simulated with Explicit Cloud Processes on an Aquaplanet. Journals of the Atmospheric Sciences, 2007, 64, 1902-1921.	1.7	58
42	Global cloudâ€systemâ€resolving simulation of aerosol effect on warm clouds. Geophysical Research Letters, 2008, 35, .	4.0	58
43	Diurnal Convection Peaks over the Eastern Indian Ocean off Sumatra during Different MJO Phases. Journal of the Meteorological Society of Japan, 2011, 89A, 317-330.	1.8	58
44	Evaluation of Precipitating Hydrometeor Parameterizations in a Single-Moment Bulk Microphysics Scheme for Deep Convective Systems over the Tropical Central Pacific. Journals of the Atmospheric Sciences, 2014, 71, 2654-2673.	1.7	57
45	Resolution Dependency of the Diurnal Cycle of Convective Clouds over the Tibetan Plateau in a Mesoscale Model. Journal of the Meteorological Society of Japan, 2008, 86A, 17-31.	1.8	57
46	A multi-instrument comparison of integrated water vapour measurements at a high latitude site. Atmospheric Chemistry and Physics, 2012, 12, 10925-10943.	4.9	55
47	On the Land–Ocean Contrast of Tropical Convection and Microphysics Statistics Derived from TRMM Satellite Signals and Global Storm-Resolving Models. Journal of Hydrometeorology, 2016, 17, 1425-1445.	1.9	54
48	An MJO Simulated by the NICAM at 14- and 7-km Resolutions. Monthly Weather Review, 2009, 137, 3254-3268.	1.4	53
49	Intraseasonal variability and tropical cyclogenesis in the western North Pacific simulated by a global nonhydrostatic atmospheric model. Geophysical Research Letters, 2015, 42, 565-571.	4.0	53
50	A Three-Dimensional Icosahedral Grid Advection Scheme Preserving Monotonicity and Consistency with Continuity for Atmospheric Tracer Transport. Journal of the Meteorological Society of Japan, 2011, 89, 255-268.	1.8	53
51	On the Warm Core of a Tropical Cyclone Formed near the Tropopause. Journals of the Atmospheric Sciences, 2015, 72, 551-571.	1.7	51
52	The Intra-Seasonal Oscillation and its control of tropical cyclones simulated by high-resolution global atmospheric models. Climate Dynamics, 2012, 39, 2185-2206.	3.8	50
53	A short-duration global cloud-resolving simulation with a realistic land and sea distribution. Geophysical Research Letters, 2007, 34, .	4.0	49
54	An assessment of the cloud signals simulated by NICAM using ISCCP, CALIPSO, and CloudSat satellite simulators. Journal of Geophysical Research, 2012, 117, .	3.3	49

#	Article	IF	CITATIONS
55	Asian summer monsoon simulated by a global cloudâ€systemâ€resolving model: Diurnal to intraâ€seasonal variability. Geophysical Research Letters, 2009, 36, .	4.0	42
56	Convective Momentum Transport by Rainbands within a Madden–Julian Oscillation in a Global Nonhydrostatic Model with Explicit Deep Convective Processes. Part I: Methodology and General Results. Journals of the Atmospheric Sciences, 2012, 69, 1317-1338.	1.7	42
57	Three-dimensional variations of atmospheric CO ₂ : aircraft measurements and multi-transport model simulations. Atmospheric Chemistry and Physics, 2011, 11, 13359-13375.	4.9	41
58	Predictability Aspects of Global Aqua-planet Simulations with Explicit Convection. Journal of the Meteorological Society of Japan, 2008, 86A, 175-185.	1.8	40
59	Response of Upper Clouds in Global Warming Experiments Obtained Using a Global Nonhydrostatic Model with Explicit Cloud Processes. Journal of Climate, 2012, 25, 2178-2191.	3.2	40
60	Conservative Scheme for a Compressible Nonhydrostatic Model with Moist Processes. Monthly Weather Review, 2003, 131, 1033-1050.	1.4	38
61	A Simulated Preconditioning of Typhoon Genesis Controlled by a Boreal Summer Madden-Julian Oscillation Event in a Global Cloud-system-resolving Model. Scientific Online Letters on the Atmosphere, 2009, 5, 65-68.	1.4	38
62	Constraint on Future Change in Global Frequency of Tropical Cyclones due to Global Warming. Journal of the Meteorological Society of Japan, 2015, 93, 489-500.	1.8	37
63	Improvement in Global Cloud-System-Resolving Simulations by Using a Double-Moment Bulk Cloud Microphysics Scheme. Journal of Climate, 2015, 28, 2405-2419.	3.2	37
64	Improvement of a Cloud Microphysics Scheme for a Global Nonhydrostatic Model Using TRMM and a Satellite Simulator. Journals of the Atmospheric Sciences, 2017, 74, 167-184.	1.7	37
65	High cloud increase in a perturbed SST experiment with a global nonhydrostatic model including explicit convective processes. Journal of Advances in Modeling Earth Systems, 2014, 6, 571-585.	3.8	35
66	Impact of different definitions of clear-sky flux on the determination of longwave cloud radiative forcing: NICAM simulation results. Atmospheric Chemistry and Physics, 2010, 10, 11641-11646.	4.9	34
67	The Aqua-Planet Experiment (APE): Response to Changed Meridional SST Profile. Journal of the Meteorological Society of Japan, 2013, 91A, 57-89.	1.8	34
68	Comparison of highâ€level clouds represented in a global cloud system–resolving model with CALIPSO/CloudSat and geostationary satellite observations. Journal of Geophysical Research, 2010, 115,	3.3	33
69	Quantitative Assessment of Diurnal Variation of Tropical Convection Simulated by a Global Nonhydrostatic Model without Cumulus Parameterization. Journal of Climate, 2012, 25, 5119-5134.	3.2	33
70	Application of a global nonhydrostatic model with a stretched-grid system to regional aerosol simulations around Japan. Geoscientific Model Development, 2015, 8, 235-259.	3.6	33
71	Multi-scale Organization of Convection in a Global Numerical Simulation of the December 2006 MJO Event Using Explicit Moist Processes. Journal of the Meteorological Society of Japan, 2009, 87, 335-345.	1.8	33
72	Future Changes in the Global Frequency of Tropical Cyclone Seeds. Scientific Online Letters on the Atmosphere, 2020, 16, 70-74.	1.4	33

#	Article	IF	CITATIONS
73	Evaluation of the contribution of tropical cyclone seeds to changes in tropical cyclone frequency due to global warming in high-resolution multi-model ensemble simulations. Progress in Earth and Planetary Science, 2021, 8, .	3.0	30
74	Climatology of a nonhydrostatic global model with explicit cloud processes. Geophysical Research Letters, 2007, 34, .	4.0	29
75	Convectively Coupled Equatorial Waves Simulated on an Aquaplanet in a Global Nonhydrostatic Experiment. Journals of the Atmospheric Sciences, 2008, 65, 1246-1265.	1.7	29
76	Statistics on High-Cloud Areas and Their Sensitivities to Cloud Microphysics Using Single-Cloud Experiments. Journals of the Atmospheric Sciences, 2009, 66, 2659-2677.	1.7	28
77	Toward reduction of the uncertainties in climate sensitivity due to cloud processes using a global non-hydrostatic atmospheric model. Progress in Earth and Planetary Science, 2018, 5, .	3.0	28
78	The Nonhydrostatic ICosahedral Atmospheric Model for CMIP6 HighResMIP simulations (NICAM16-S): experimental design, model description, and impacts of model updates. Geoscientific Model Development, 2021, 14, 795-820.	3.6	28
79	Tropical Cyclones in Global Storm-Resolving Models. Journal of the Meteorological Society of Japan, 2021, 99, 579-602.	1.8	28
80	Vertical grid spacing necessary for simulating tropical cirrus clouds with a highâ€resolution atmospheric general circulation model. Geophysical Research Letters, 2015, 42, 4150-4157.	4.0	27
81	A 4D-Var inversion system based on the icosahedral grid model (NICAM-TM 4D-Var v1.0) – PartÂ2: Optimization scheme and identical twin experiment of atmospheric CO ₂ inversion. Geoscientific Model Development, 2017, 10, 2201-2219.	3.6	27
82	A 4D-Var inversion system based on the icosahedral grid model (NICAM-TM 4D-Var v1.0) – Part 1: Offline forward and adjoint transport models. Geoscientific Model Development, 2017, 10, 1157-1174.	3.6	27
83	Roles of Cloud Microphysics on Cloud Responses to Sea Surface Temperatures in Radiativeâ€Convective Equilibrium Experiments Using a Highâ€Resolution Global Nonhydrostatic Model. Journal of Advances in Modeling Earth Systems, 2018, 10, 1970-1989.	3.8	27
84	Evaluating Arctic cloud radiative effects simulated by NICAM with Aâ€ŧrain. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7041-7063.	3.3	26
85	Predictability of Record-Breaking Rainfall in Japan in July 2018: Ensemble Forecast Experiments with the Near-Real-Time Global Atmospheric Data Assimilation System NEXRA. Scientific Online Letters on the Atmosphere, 2019, 15A, 1-7.	1.4	26
86	Simple Cumulus Models in One-Dimensional Radiative Convective Equilibrium Problems. Journals of the Atmospheric Sciences, 1992, 49, 1202-1220.	1.7	25
87	The Genesis of Tropical Cyclone Nargis (2008): Environmental Modulation and Numerical Predictability. Journal of the Meteorological Society of Japan, 2010, 88, 497-519.	1.8	25
88	Comparison of Explicitly Simulated and Downscaled Tropical Cyclone Activity in a Highâ€Resolution Global Climate Model. Journal of Advances in Modeling Earth Systems, 2010, 2, .	3.8	25
89	Characteristics of the Kinetic Energy Spectrum of NICAM Model Atmosphere. Scientific Online Letters on the Atmosphere, 2009, 5, 180-183.	1.4	24
90	Spontaneous onset of a Maddenâ€Julian oscillation event in a cloudâ€systemâ€resolving simulation. Geophysical Research Letters, 2009, 36, .	4.0	23

#	Article	IF	CITATIONS
91	Outcomes and challenges of global high-resolution non-hydrostatic atmospheric simulations using the K computer. Progress in Earth and Planetary Science, 2017, 4, .	3.0	23
92	Fine Vertical Resolution Radiativeâ€Convective Equilibrium Experiments: Roles of Turbulent Mixing on the Highâ€Cloud Response to Sea Surface Temperatures. Journal of Advances in Modeling Earth Systems, 2019, 11, 1637-1654.	3.8	23
93	Ensemble Simulation of Cyclone Nargis by a Global Cloud-System-Resolving Model-Modulation of Cyclogenesis by the Madden-Julian Oscillation. Journal of the Meteorological Society of Japan, 2010, 88, 571-591.	1.8	23
94	A New Approach to Atmospheric General Circulation Model: Global Cloud Resolving Model NICAM and its Computational Performance. SIAM Journal of Scientific Computing, 2008, 30, 2755-2776.	2.8	22
95	Precipitation Efficiency and its Role in Cloud-Radiative Feedbacks to Climate Variability. Journal of the Meteorological Society of Japan, 2020, 98, 261-282.	1.8	22
96	Current Understanding and Quantification of Clouds in the Changing Climate System and Strategies for Reducing Critical Uncertainties. , 2009, , 557-574.		22
97	Multiscale Interactions in the Life Cycle of a Tropical Cyclone Simulated in a Global Cloud-System-Resolving Model. Part II: System-Scale and Mesoscale Processes*. Monthly Weather Review, 2010, 138, 4305-4327.	1.4	21
98	Response of Ice and Liquid Water Paths of Tropical Cyclones to Global Warming Simulated by a Global Nonhydrostatic Model with Explicit Cloud Microphysics. Journal of Climate, 2013, 26, 9931-9945.	3.2	21
99	Simultaneous evaluation of ice cloud microphysics and nonsphericity of the cloud optical properties using hydrometeor video sonde and radiometer sonde in situ observations. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6681-6701.	3.3	21
100	High Cloud Responses to Global Warming Simulated by Two Different Cloud Microphysics Schemes Implemented in the Nonhydrostatic Icosahedral Atmospheric Model (NICAM). Journal of Climate, 2016, 29, 5949-5964.	3.2	21
101	Spring diurnal cycle of clouds over Tibetan Plateau: Global cloudâ€resolving simulations and satellite observations. Geophysical Research Letters, 2007, 34, .	4.0	20
102	Multiscale Interactions in the Life Cycle of a Tropical Cyclone Simulated in a Global Cloud-System-Resolving Model. Part I: Large-Scale and Storm-Scale Evolutions*. Monthly Weather Review, 2010, 138, 4285-4304.	1.4	20
103	Gradient Wind Balance in Tropical Cyclones in High-Resolution Global Experiments. Monthly Weather Review, 2014, 142, 1908-1926.	1.4	20
104	Evaluation of summertime surface ozone in Kanto area of Japan using a semi-regional model and observation. Atmospheric Environment, 2017, 153, 163-181.	4.1	20
105	Online Model Parameter Estimation With Ensemble Data Assimilation in the Real Global Atmosphere: A Case With the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) and the Global Satellite Mapping of Precipitation Data. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7375-7392.	3.3	20
106	Responses of Tropical and Subtropical High-Cloud Statistics to Global Warming. Journal of Climate, 2014, 27, 7753-7768.	3.2	19
107	Tropical intraseasonal oscillation simulated in an AMIP-type experiment by NICAM. Climate Dynamics, 2017, 48, 2507-2528.	3.8	19
108	A Maddenâ€Julian Oscillation event remotely accelerates ocean upwelling to abruptly terminate the 1997/1998 super El Niño. Geophysical Research Letters, 2017, 44, 9489-9495.	4.0	19

#	Article	IF	CITATIONS
109	A New Perspective for Future Precipitation Change from Intense Extratropical Cyclones. Geophysical Research Letters, 2019, 46, 12435-12444.	4.0	19
110	Evaluation of the Tourism Climate Index over Japan in a Future Climate Using a Statistical Downscaling Method. Journal of the Meteorological Society of Japan, 2014, 92, 37-54.	1.8	18
111	Intermodel variances of subtropical stratocumulus environments simulated in CMIP5 models. Geophysical Research Letters, 2014, 41, 7754-7761.	4.0	18
112	Topographical Effects on Internally Produced MJO-Like Disturbances in an Aqua-Planet Version of NICAM. Scientific Online Letters on the Atmosphere, 2015, 11, 170-176.	1.4	18
113	Warm Cores, Eyewall Slopes, and Intensities of Tropical Cyclones Simulated by a 7-km-Mesh Global Nonhydrostatic Model. Journals of the Atmospheric Sciences, 2016, 73, 4289-4309.	1.7	18
114	Role of the Vertical Structure of a Simulated Tropical Cyclone in Its Motion: A Case Study of Typhoon Fengshen (2008). Scientific Online Letters on the Atmosphere, 2016, 12, 203-208.	1.4	18
115	A 1024-Member Ensemble Data Assimilation with 3.5-Km Mesh Global Weather Simulations. , 2020, , .		18
116	Sensitivity of Hadley Circulation to Physical Parameters and Resolution through Changing Upper-Tropospheric Ice Clouds Using a Global Cloud-System Resolving Model. Journal of Climate, 2011, 24, 2666-2679.	3.2	17
117	Error and Energy Budget Analysis of a Nonhydrostatic Stretched-Grid Global Atmospheric Model. Monthly Weather Review, 2016, 144, 1423-1447.	1.4	17
118	Tropical synoptic-scale wave disturbances over the western Pacific simulated by a global cloud-system resolving model. Theoretical and Applied Climatology, 2016, 124, 737-755.	2.8	17
119	Feasibility Study for Future Space-Borne Coherent Doppler Wind Lidar, Part 1: Instrumental Overview for Global Wind Profile Observation. Journal of the Meteorological Society of Japan, 2017, 95, 301-317.	1.8	17
120	Initiation Processes of the Tropical Intraseasonal Variability Simulated in an Aquaâ€Planet Experiment: What is the Intrinsic Mechanism for MJO Onset?. Journal of Advances in Modeling Earth Systems, 2018, 10, 1047-1073.	3.8	17
121	Mountain-Wave-Like Spurious Waves Associated with Simulated Cold Fronts due to Inconsistencies between Horizontal and Vertical Resolutions. Monthly Weather Review, 2007, 135, 2629-2641.	1.4	15
122	Observational Evidence of Mixed Rossbyâ€Gravity Waves as a Driving Force for the MJO Convective Initiation and Propagation. Geophysical Research Letters, 2019, 46, 5546-5555.	4.0	15
123	Vertical structure of ice cloud layers from CloudSat and CALIPSO measurements and comparison to NICAM simulations. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9930-9947.	3.3	14
124	Numerical Examination of the Diurnal Variation of Summer Precipitation over Southern China. Scientific Online Letters on the Atmosphere, 2013, 9, 129-133.	1.4	14
125	Rapid development of arctic cyclone in June 2008 simulated by the cloud resolving global model NICAM. Meteorology and Atmospheric Physics, 2014, 126, 105-117.	2.0	14
126	Impact of Precipitating Ice Hydrometeors on Longwave Radiative Effect Estimated by a Global Cloudâ€ S ystem Resolving Model. Journal of Advances in Modeling Earth Systems, 2018, 10, 284-296.	3.8	14

#	Article	IF	CITATIONS
127	Responses of Clouds and Largeâ€Scale Circulation to Global Warming Evaluated From Multidecadal Simulations Using a Global Nonhydrostatic Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 2980-2995.	3.8	14
128	Precipitation Statistics Comparison Between Global Cloud Resolving Simulation with NICAM and TRMM PR Data. , 2008, , 99-112.		14
129	Evaluations of the Thermodynamic Phases of Clouds in a Cloud-System-Resolving Model Using CALIPSO and a Satellite Simulator over the Southern Ocean. Journals of the Atmospheric Sciences, 2020, 77, 3781-3801.	1.7	14
130	Eastward-Propagating Property of Large-Scale Precipitation Systems Simulated in the Coarse-Resolution NICAM and an Explanation of its Appearance. Scientific Online Letters on the Atmosphere, 2012, 8, 21-24.	1.4	13
131	Impact of the sea surface temperature rise on stormâ€track clouds in global nonhydrostatic aqua planet simulations. Geophysical Research Letters, 2014, 41, 3545-3552.	4.0	13
132	Highâ€Resolution Ensemble Simulations of Intense Tropical Cyclones and Their Internal Variability During the El Niños of 1997 and 2015. Geophysical Research Letters, 2019, 46, 7592-7601.	4.0	13
133	Assessments of Doppler Velocity Errors of EarthCARE Cloud Profiling Radar Using Global Cloud System Resolving Simulations: Effects of Doppler Broadening and Folding. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-9.	6.3	13
134	Cloud Assumption of Precipitation Retrieval Algorithms for the Dual-Frequency Precipitation Radar. Journal of Atmospheric and Oceanic Technology, 2020, 37, 2015-2031.	1.3	13
135	Properties of Precipitation and In-Cloud Vertical Motion in a Global Nonhydrostatic Aquaplanet Experiment. Journal of the Meteorological Society of Japan, 2011, 89, 413-439.	1.8	13
136	Cold and Warm Rain Simulated Using a Global Nonhydrostatic Model without Cumulus Parameterization, and their Responses to Global Warming. Journal of the Meteorological Society of Japan, 2015, 93, 181-197.	1.8	12
137	High cloud size dependency in the applicability of the fixed anvil temperature hypothesis using global nonhydrostatic simulations. Geophysical Research Letters, 2016, 43, 2307-2314.	4.0	12
138	Intercomparison of Cloud Properties in DYAMOND Simulations over the Atlantic Ocean. Journal of the Meteorological Society of Japan, 2021, 99, 1439-1451.	1.8	12
139	Impact of Lateral Boundary Errors on the Simulation of Clouds with a Nonhydrostatic Regional Climate Model. Monthly Weather Review, 2017, 145, 5059-5082.	1.4	11
140	Extension of a Multisensor Satellite Radiance-Based Evaluation for Cloud System Resolving Models. Journal of the Meteorological Society of Japan, 2018, 96, 55-63.	1.8	10
141	An Accurate Semi-Lagrangian Scheme for Raindrop Sedimentation. Monthly Weather Review, 2003, 131, 974-983.	1.4	9
142	Coarse-Resolution Models Only Partly Cloudy. Science, 2008, 320, 612-613.	12.6	9
143	Genesis of Super Cyclone Pam (2015): Modulation of Low-Frequency Large-Scale Circulations and the Madden–Julian Oscillation by Sea Surface Temperature Anomalies. Monthly Weather Review, 2017, 145, 3143-3159.	1.4	9
144	Feasibility Study for Future Spaceborne Coherent Doppler Wind Lidar, Part 2: Measurement Simulation Algorithms and Retrieval Error Characterization. Journal of the Meteorological Society of Japan, 2017, 95, 319-342.	1.8	9

#	Article	IF	CITATIONS
145	ppOpen-HPC: Open Source Infrastructure for Development and Execution of Large-Scale Scientific Applications on Post-Peta-Scale Supercomputers with Automatic Tuning (AT). Mathematics for Industry, 2016, , 15-35.	0.4	9
146	Continual influences of tropical waves on the genesis and rapid intensification of Typhoon Durian (2006). Geophysical Research Letters, 2010, 37, .	4.0	8
147	Measurement Performance Assessment of Future Space-Borne Doppler Wind Lidar for Numerical Weather Prediction. Scientific Online Letters on the Atmosphere, 2016, 12, 55-59.	1.4	8
148	Structure of Tropical Convective Systems in Aqua-Planet Experiments: Radiative-Convective Equilibrium Versus the Earth-Like Experiment. Scientific Online Letters on the Atmosphere, 2016, 12, 220-224.	1.4	8
149	Importance of Pressure Changes in High Cloud Area Feedback Due to Global Warming. Geophysical Research Letters, 2021, 48, e2021GL093646.	4.0	8
150	Improved Representation of Lowâ€Level Mixedâ€Phase Clouds in a Global Cloudâ€Systemâ€Resolving Simulation. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035223.	3.3	8
151	Response of the Asian Summer Monsoon Precipitation to Global Warming in a High-Resolution Global Nonhydrostatic Model. Journal of Climate, 2020, 33, 8147-8164.	3.2	8
152	A Numerical Study of a Stratocumulus-Topped Boundary-Layer: Relations of Decaying Clouds with a Stability Parameter across Inversion. Journal of the Meteorological Society of Japan, 2013, 91, 727-746.	1.8	8
153	Responses of Subtropical Marine Stratocumulus Cloud to Perturbed Lower Atmospheres. Scientific Online Letters on the Atmosphere, 2014, 10, 34-38.	1.4	8
154	Simulating Global Clouds. , 2009, , 469-486.		8
155	Analysis of the tropical tropopause layer using the Nonhydrostatic Icosahedral Atmospheric Model (NICAM): Aqua planet experiments. Journal of Geophysical Research, 2010, 115, .	3.3	7
156	Impacts of Sub-grid Ice Cloud Physics in a Turbulence Scheme on High Clouds and their Response to Global Warming. Journal of the Meteorological Society of Japan, 2020, 98, 1069-1081.	1.8	7
157	Environmental Conditions for Tropical Cyclogenesis Associated with African Easterly Waves. Scientific Online Letters on the Atmosphere, 2013, 9, 120-124.	1.4	7
158	Cloud Microphysics in Global Cloud Resolving Models. Atmosphere - Ocean, 2022, 60, 477-505.	1.6	7
159	Universal Frequency Spectra of Surface Meteorological Fluctuations. Journal of Climate, 2011, 24, 4718-4732.	3.2	6
160	Analysis of the tropical tropopause layer using the Nonhydrostatic Icosahedral Atmospheric Model (NICAM): 2. An experiment under the atmospheric conditions of December 2006 to January 2007. Journal of Geophysical Research, 2012, 117, .	3.3	6
161	Scalable rank-mapping algorithm for an icosahedral grid system on the massive parallel computer with a 3-D torus network. Parallel Computing, 2014, 40, 362-373.	2.1	6
162	Regional Energy and Water Budget of a Precipitating Atmosphere over Ocean. Journal of Climate, 2021, 34, 4189-4205.	3.2	6

#	Article	IF	CITATIONS
163	Impact of Latent Heat Flux Modifications on the Reproduction of a Madden–Julian Oscillation Event during the 2015 Pre-YMC Campaign Using a Global Cloud-System-Resolving Model. Scientific Online Letters on the Atmosphere, 2020, 16A, 12-18.	1.4	6
164	Why do Super Clusters and Madden Julian Oscillation Exist over the Equatorial Region?. Scientific Online Letters on the Atmosphere, 2012, 8, 33-36.	1.4	6
165	Coupling library Jcup3: its philosophy and application. Progress in Earth and Planetary Science, 2020, 7, .	3.0	6

1980年以é™ã«æ—¥æœ¬ä,å¤éf¨ã®æ²;å²,ã«è¥²æ¥ã⊷ãŸç†±å,¯ä½Žæ°—圧ã•é«~æ½®ãfã,¶ãf¼ãf‰ã®å‰åŒ±gournal of the Mete 166

167	Hadley circulations and their rÃ1es in the global angular momentum budget in two- and three-dimensional models. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 47, 548.	1.7	5
168	Response of the atmospheric angular momentum and the length of the day to the surface temperature increase for an Aqua Planet Model. Geophysical Research Letters, 1996, 23, 2569-2572.	4.0	5
169	Possible Impact of a Tropical Cyclone on the Northward Migration of the Baiu Frontal Zone. Scientific Online Letters on the Atmosphere, 2013, 9, 89-93.	1.4	5
170	Impact of Tropical Disturbance on the Indian Summer Monsoon Onset Simulated by a Global Cloud-System-Resolving Model. Scientific Online Letters on the Atmosphere, 2015, 11, 80-84.	1.4	5
171	Influence of topography on temperature variations in the tropical tropopause layer. Journal of Geophysical Research D: Atmospheres, 2016, 121, 11,556.	3.3	5
172	Improving Representation of Tropical Cloud Overlap in GCMs Based on Cloud-Resolving Model Data. Journal of Meteorological Research, 2018, 32, 233-245.	2.4	5
173	Characteristics of Ice Clouds Over Mountain Regions Detected by CALIPSO and CloudSat Satellite Observations. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10858-10877.	3.3	5
174	Evaluation of Rain Microphysics Using a Radar Simulator and Numerical Models: Comparison of Twoâ€Moment Bulk and Spectral Bin Cloud Microphysics Schemes. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001891.	3.8	5
175	Prediction Skill of the Boreal Summer Intra-Seasonal Oscillation in Global Non-hydrostatic Atmospheric Model Simulations with Explicit Cloud Microphysics. Journal of the Meteorological Society of Japan, 2021, 99, 973-992.	1.8	5
176	Improvement of the Cloud Microphysics Scheme of the Mesoscale Model at the Japan Meteorological Agency Using Spaceborne Radar and Microwave Imager of the Global Precipitation Measurement as Reference. Monthly Weather Review, 2021, 149, 3803-3819.	1.4	5
177	Dynamical Roles of Mixed Rossby–Gravity Waves in Driving Convective Initiation and Propagation of the Madden–Julian Oscillation: General Views. Journals of the Atmospheric Sciences, 2020, 77, 4211-4231.	1.7	5
178	Sensitivity of the Horizontal Scale of Convective Selfâ€Aggregation to Sea Surface Temperature in Radiative Convective Equilibrium Experiments Using a Global Nonhydrostatic Model. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	5
179	Hadley circulations and their roles in the global angular momentum budget in two- and three-dimensional models. Tellus, Series A: Dynamic Meteorology and Oceanography, 1995, 47, 548-560.	1.7	4
180	Development of cloud liquid water database using global cloud-system resolving model for GPM/DPR		4

Development of cloud liquid water database using global cloud-system resolving model for GPM/DPR algorithm. , 2012, , . 180

#	Article	IF	CITATIONS
181	Resolution Dependency of Numerically Simulated Stratosphere-to-Troposphere Transport Associated with Mid-Latitude Closed Cyclones in Early Spring around Japan. Scientific Online Letters on the Atmosphere, 2017, 13, 186-191.	1.4	4
182	On the Semidiurnal Variation in Surface Rainfall Rate over the Tropics in a Global Cloud-Resolving Model Simulation and Satellite Observations. Journal of the Meteorological Society of Japan, 2021, 99, 1371-1388.	1.8	4
183	Diversity of the Madden–Julian Oscillation: Initiation Region Modulated by the Interaction between the Intraseasonal and Interannual Variabilities. Journal of Climate, 2021, 34, 2297-2318.	3.2	4
184	Climatology of Tropical Cyclone Seed Frequency and Survival Rate in Tropical Cyclones. Geophysical Research Letters, 2021, 48, e2021GL093626.	4.0	4
185	Multi-scale Simulations of Atmospheric Pollutants Using a Non-hydrostatic Icosahedral Atmospheric Model. Springer Remote Sensing/photogrammetry, 2018, , 277-302.	0.4	4
186	Statistical Relation between Maximum Vertical Velocity and Surface Precipitation of Tropical Convective Clouds in a Global Nonhydrostatic Aquaplanet Experiment. Journal of the Meteorological Society of Japan, 2011, 89, 553-561.	1.8	4
187	Excitation of Deep Convection to the North of Tropical Storm Bebinca (2006). Journal of the Meteorological Society of Japan, 2014, 92, 141-161.	1.8	4
188	A hypothesis and a case-study projection of an influence of MJO modulation on boreal-summer tropical cyclogenesis in a warmer climate with a global non-hydrostatic model: a transition toward the central Pacific?. Frontiers in Earth Science, 2014, 2, .	1.8	3
189	Relationships between layer-mean radar reflectivity and columnar effective radius of warm cloud: Numerical study using a cloud microphysical bin model. Journal of Geophysical Research D: Atmospheres, 2014, 119, 3281-3294.	3.3	3
190	Numerical Experiments to Analyze Cloud Microphysical Processes Depicted in Vertical Profiles of Radar Reflectivity of Warm Clouds. Journals of the Atmospheric Sciences, 2015, 72, 4509-4528.	1.7	3
191	A Conserved Topographical Representation Scheme Using a Thin-Wall Approximation in Z-Coordinates. Scientific Online Letters on the Atmosphere, 2016, 12, 232-236.	1.4	3
192	ï¼™æœ^ã®ç™ºé ۥ "ã⊷ãŸä½Žæº—圧ã«ã,^ã,‹ã,੶ベリã,¢ã•ã,‰åŒ—極域ã¸ã®é»'色ç,ç´ã,¨ã,¢ãƒã,¾ãƒ«è¼	4,é €ã &å⁻3⁄4	ã J™ã ,<ãf¢ãf‡ã
193	Numerical Simulations of Heavy Rainfalls by a Global Cloud-Resolving Model. Journal of Disaster Research, 2008, 3, 33-38.	0.7	3
194	Development of a Nonhydrostatic General Circulation Model using an Icosahedral Grid. , 2003, , 115-122.		3
195	Analysis of High Radon-222 Concentration Events Using Multi-Horizontal-Resolution NICAM Simulations. Scientific Online Letters on the Atmosphere, 2018, 14, 111-115.	1.4	3
196	Response of convective systems to the orbital forcing of the last interglacial in a global nonhydrostatic atmospheric model with and without a convective parameterization. Climate Dynamics, 2022, 59, 1617-1648.	3.8	3
197	Hadley Circulations and Large-Scale Motions of Moist Convection in the Two-Dimensional Numerical Model. Journal of the Meteorological Society of Japan, 1995, 73, 1059-1078.	1.8	2
198	Relation between the meridional distribution of potential vorticity and the Lagrangian mean circulation in the troposphere. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 51, 833.	1.7	2

#	Article	IF	CITATIONS
199	Computational Performance of the Dynamical Part of a Next Generation Climate Model using an Icosahedral Grid on the Earth Simulator. , 2003, , 63-69.		2
200	A Synoptic-Scale Cold-Reservoir Hypothesis on the Origin of the Mature-Stage Super Cloud Cluster: A Case Study with a Global Nonhydrostatic Model. Meteorological Monographs, 2016, 56, 14.1-14.24.	5.0	2
201	Study on measurement performance of future space-based Doppler wind lidar in Japan. , 2017, , .		2
202	Standard experiments of atmospheric general circulation models. , 2014, , 689-702.		2
203	Possible Roles of the Sea Surface Temperature Warming of the Pacific Meridional Mode and the Indian Ocean Warming on Tropical Cyclone Genesis over the North Pacific for the Super El Niño in 2015. Journal of the Meteorological Society of Japan, 2022, 100, 767-782.	1.8	2
204	Relation between the meridional distribution of potential vorticity and the Lagrangian mean circulation in the troposphere. Tellus, Series A: Dynamic Meteorology and Oceanography, 1999, 51, 833-853.	1.7	1
205	An Accurate Semi-Lagrangian Scheme with a Unified Interpolation Function Constructed from Vorticity and Velocity Components. JSME International Journal Series B, 2004, 47, 716-724.	0.3	1
206	Semi-diurnal variation of surface rainfall studied from global cloud-system resolving model and satellite observations. , 2012, , .		1
207	Editorial for the Special Edition on Contributions to Asia Oceania Atmospheric Sciences. Journal of the Meteorological Society of Japan, 2017, 95, 4-5.	1.8	1
208	Icosahedral grids. , 2014, , 636-660.		1
209	Numerical Simulation of the Genesis of Cyclone Nargis Using a Global Cloud-System Resolving Model, NICAM. , 2010, , 65-72.		1
210	CLOUD-CLUSTER-RESOLVING GLOBAL ATMOSPHERE MODELING – A CHALLENGE FOR THE NEW AGE OF TROPICAL METEOROLOGY. World Scientific Series on Asia-Pacific Weather and Climate, 2011, , 455-473.	0.2	1
211	Evaluation of Cloud Liquid Water Database Using Global CloudSystem Resolving Model for GPM/DPR Algorithms. , 2020, , .		1
212	Projection of high clouds and its link to ice hydrometeors: An approach using long-term global cloud-system resolving simulations. Journal of Climate, 2022, , 1-59.	3.2	1
213	Current Challenges in Climate and Weather Research and Future Directions. Atmosphere - Ocean, 0, , 1-12.	1.6	1
214	The latitudinal gradient of potential vorticity in the mid-latitudes of the troposphere. Geophysical Research Letters, 2001, 28, 163-166.	4.0	0
215	Climate Study Using a Global Cloud-resolving Model. Journal of Geography (Chigaku Zasshi), 2010, 119, 427-440.	0.3	Ο
216	First International Workshop on Advances in High-Performance Computational Earth Sciences: Applications and Frameworks (IHPCES). Procedia Computer Science, 2011, 4, 1448-1449.	2.0	0

#	Article	IF	CITATIONS
217	A review by the chief editors of some of the most popular papers published by PEPS in 2014–2015. Progress in Earth and Planetary Science, 2016, 3, .	3.0	Ο
218	2020 JMSJ Award. Journal of the Meteorological Society of Japan, 2021, 99, 4-4.	1.8	0
219	A Comparison Study of Computational Performace between a Spectral Transform Model and a Gridpoint Model. , 2004, , 333-340.		Ο
220	Change of Tropical Cyclone and Seasonal Climate State in a Global Warming Experiment with a Global Cloud-System-Resolving Model. , 2010, , 25-37.		0
221	JMSJ Award in 2011. Journal of the Meteorological Society of Japan, 2012, 90, ii-ii.	1.8	ο
222	Global nonhydrostatic models. , 2014, , 661-688.		0
223	Nonhydrostatic modeling. , 2014, , 608-635.		Ο
224	Moist convection. , 2014, , 395-419.		0
225	Low-latitude circulations. , 2014, , 420-440.		Ο
226	A Stretched Icosahedral Grid for the Global Cloud Resolving Model. , 1996, , 177-182.		0
227	A Stretched Icosahedral Grid for the Global Cloud Resolving Model. , 1996, , 177-182.		Ο
228	å¹³æ^27å¹′9æœ^é–¢æ±ãƒ»æ±åŒ—豪雨ã«ãŠãťã,‹å¹³æ^27å¹′åºé¢¨ç¬¬17åҹï¼^Kilo)ã®å½¹å‰². Journal of t	he 1\& eteoi	rol o gical Socie
229	Enhancing data assimilation of GPM observations. , 2022, , 787-804.		0
230	Editorial for the special edition on DYAMOND: The DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains. Journal of the Meteorological Society of Japan, 2021, 99, 1393-1394.	1.8	0

231	2021 JMSJ Award. Journal of the Meteorological Society of Japan, 2022, 100, 4-4.	1.8	0