
Herman J M Kramer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8895167/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent advances in the monitoring, modelling and control of crystallization systems. Chemical Engineering Research and Design, 2013, 91, 1903-1922.	5.6	245
2	Combination of a Single Primary Nucleation Event and Secondary Nucleation in Crystallization Processes. Crystal Growth and Design, 2011, 11, 1271-1277.	3.0	128
3	Analysis of Nucleation Rate Measurements in Precipitation Processes. Crystal Growth and Design, 2006, 6, 1380-1392.	3.0	75
4	Deracemization of a Racemic Compound via Its Conglomerate-Forming Salt Using Temperature Cycling. Crystal Growth and Design, 2016, 16, 5563-5570.	3.0	63
5	Crystal Nucleation by Laser-Induced Cavitation. Crystal Growth and Design, 2011, 11, 2311-2316.	3.0	62
6	Nonlinear Model-Based Control of a Semi-Industrial Batch Crystallizer Using a Population Balance Modeling Framework. IEEE Transactions on Control Systems Technology, 2012, 20, 1188-1201.	5.2	54
7	Application of Seeding as a Process Actuator in a Model Predictive Control Framework for Fed-Batch Crystallization of Ammonium Sulphate. Particle and Particle Systems Characterization, 2007, 24, 40-48.	2.3	45
8	Realâ€ŧime control of a semiâ€industrial fedâ€batch evaporative crystallizer using different direct optimization strategies. AICHE Journal, 2011, 57, 1557-1569.	3.6	44
9	Precipitation mechanism of stable and metastable polymorphs of L-glutamic acid. AICHE Journal, 2007, 53, 354-362.	3.6	39
10	A Comparative Study of ATR-FTIR and FT-NIR Spectroscopy for In-Situ Concentration Monitoring during Batch Cooling Crystallization Processes. Crystal Growth and Design, 2010, 10, 2629-2640.	3.0	38
11	Application of inline imaging for monitoring crystallization process in a continuous oscillatory baffled crystallizer. AICHE Journal, 2018, 64, 2450-2461.	3.6	32
12	An Air-Lift Crystallizer Can Suppress Secondary Nucleation at a Higher Supersaturation Compared to a Stirred Crystallizer. Crystal Growth and Design, 2014, 14, 3264-3275.	3.0	29
13	Microwave Assisted Direct Nucleation Control for Batch Crystallization: Crystal Size Control with Reduced Batch Time. Crystal Growth and Design, 2016, 16, 440-446.	3.0	24
14	Multiparameter Investigation of Laser-Induced Nucleation of Supersaturated Aqueous KCl Solutions. Crystal Growth and Design, 2018, 18, 312-317.	3.0	22
15	Application of ultrasound for startâ€up of evaporative batch crystallization of ammonium sulfate in a 75â€L crystallizer. AICHE Journal, 2011, 57, 3367-3377.	3.6	19
16	Rapid Crystallization Process Development Strategy from Lab to Industrial Scale with PAT Tools in Skid Configuration. Organic Process Research and Development, 2012, 16, 769-780.	2.7	19
17	Determination of kinetics in batch cooling crystallization processes—A sequential parameter estimation approach. AICHE Journal, 2016, 62, 3992-4012.	3.6	18
18	Screening Approach for Identifying Cocrystal Types and Resolution Opportunities in Complex Chiral Multicomponent Systems. Crystal Growth and Design, 2021, 21, 112-124.	3.0	16

HERMAN J M KRAMER

#	Article	IF	CITATIONS
19	Influence of Laser Parameters and Experimental Conditions on Nonphotochemical Laser-Induced Nucleation of Glycine Polymorphs. Crystal Growth and Design, 2021, 21, 631-641.	3.0	14
20	A Task-Based Synthesis Approach toward the Design of Industrial Crystallization Process Units. Industrial & Engineering Chemistry Research, 2007, 46, 3979-3996.	3.7	12
21	Novel Design Integrating a Microwave Applicator into a Crystallizer for Rapid Temperature Cycling. A Direct Nucleation Control Study. Crystal Growth and Design, 2017, 17, 3766-3774.	3.0	11
22	A Combined Experimental and Modelling Study on Solubility of Calcium Oxalate Monohydrate at Physiologically Relevant pH and Temperatures. Crystals, 2020, 10, 924.	2.2	10
23	Solid Separation from a Mixed Suspension through Electricâ€Fieldâ€Enhanced Crystallization. Angewandte Chemie - International Edition, 2016, 55, 16088-16091.	13.8	9
24	Nucleation kinetics of calcium oxalate monohydrate as a function of pH, magnesium, and osteopontin concentration quantified with droplet microfluidics. Biomicrofluidics, 2021, 15, 064103.	2.4	7
25	Solid Separation from a Mixed Suspension through Electricâ€Fieldâ€Enhanced Crystallization. Angewandte Chemie, 2016, 128, 16322-16325.	2.0	4
26	Role of Hyaluronic Acid on the Nucleation Kinetics of Calcium Oxalate Hydrates in Artificial Urine Quantified with Droplet Microfluidics. Crystal Growth and Design, 0, , .	3.0	4
27	Microfluidic Platform with Serpentine Geometry Providing Chaotic Mixing in Induction Time Experiments. Crystal Growth and Design, 2022, 22, 4072-4085.	3.0	4
28	In-Line Process Refractometer for Concentration Measurement in Sugar Crystallizers. , 0, , 71-79.		1