Massimo Oddone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8895009/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A pre-Columbian obsidian trade from secondary fluvial sources supported by new geochemical data from the Alto Coca Reserve and Sumaco sites (Napo Province, Ecuador). Archaeological and Anthropological Sciences, 2022, 14, 1.	0.7	0
2	The <i>k</i> ₀ -INRIM software: a tool to compile uncertainty budgets in neutron activation analysis based on <i>k</i> ₀ -standardisation. Measurement Science and Technology, 2020, 31, 017002.	1.4	1
3	A method to deal with correlations affecting <i>Ĵ³</i> counting efficiencies in analytical chemistry measurements performed by <i>k</i> ₀ -NAA. Measurement Science and Technology, 2020, 31, 074006.	1.4	5
4	Chronological and chemical approaches to obsidians from Bakla Tepe and Liman Tepe, Western Anatolia. Journal of Archaeological Science: Reports, 2020, 32, 102458.	0.2	2
5	Prehistorical Obsidian Sources in the Island of Lipari (Aeolian Islands). Open Archaeology, 2020, 6, 393-402.	0.3	5
6	Measurement of the neutron flux parameters f and $\hat{I}\pm$ at the Pavia TRIGA Mark II reactor. Journal of Radioanalytical and Nuclear Chemistry, 2017, 312, 75-80.	0.7	13
7	Impurities in a ²⁸ Si-Enriched Single Crystal Produced for the Realization of the Redefined Kilogram. Analytical Chemistry, 2017, 89, 6314-6317.	3.2	5
8	Measurement of the ³⁰ Si Mole Fraction in the New Avogadro Silicon Material by Neutron Activation and High-Resolution γ-Spectrometry. Analytical Chemistry, 2017, 89, 6726-6730.	3.2	9
9	Long-distance provenance for obsidian artifacts of Mesoamerica Preclassic and Early Classic periods found in the Los Naranjos Archaeological Park (Honduras). Archaeological and Anthropological Sciences, 2017, 9, 555-566.	0.7	4
10	A new low-uncertainty measurement of the ³¹ Si half-life. Metrologia, 2017, 54, 410-416.	0.6	5
11	The linkup of mono-elemental solutions to the SI using INAA: a measurement procedure and the achievable uncertainty. Journal of Radioanalytical and Nuclear Chemistry, 2016, 309, 777.	0.7	2
12	Quantification of the Void Volume in Single-Crystal Silicon. Analytical Chemistry, 2016, 88, 11678-11683.	3.2	5
13	Purity of ²⁸ Si-Enriched Silicon Material Used for the Determination of the Avogadro Constant. Analytical Chemistry, 2016, 88, 6881-6888.	3.2	10
14	³⁰ Si Mole Fraction of a Silicon Material Highly Enriched in ²⁸ Si Determined by Instrumental Neutron Activation Analysis. Analytical Chemistry, 2015, 87, 5716-5722.	3.2	12
15	Use of Instrumental Neutron Activation Analysis to investigate the distribution of trace elements among subsamples of solid materials. Metrologia, 2014, 51, 48-53.	0.6	2
16	Instrumental neutron activation analysis of an enriched 28Si single-crystal. Journal of Radioanalytical and Nuclear Chemistry, 2014, 299, 277-282.	0.7	7
17	Neutron activation analysis of the ³⁰ Si content of highly enriched ²⁸ Si: proof of concept and estimation of the achievable uncertainty. Metrologia, 2014, 51, 354-360.	0.6	5
18	The detection of signals hidden in noise. Metrologia, 2013, 50, 269-276.	0.6	4

MASSIMO ODDONE

#	Article	IF	CITATIONS
19	Elemental characterization of the Avogadro silicon crystal WASO 04 by neutron activation analysis. Metrologia, 2012, 49, 696-701.	0.6	14
20	Microwave technology for the biodiesel production: Analytical assessments. Fuel, 2012, 95, 108-112.	3.4	30
21	Increasing data (INAA) on Ecuadorian obsidian artifacts: preliminary provenance and a clue for pre-Columbian eastward trade. Journal of Archaeological Science, 2010, 37, 1753-1760.	1.2	10
22	An expanded Cretaceousâ^'Tertiary transition in a pelagic setting of the Southern Alps (central-western Tethys). Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 255, 98-131.	1.0	41
23	New Constraints on Ages of Glasses Proposed as Reference Materials for Fission-Track Dating. Geostandards and Geoanalytical Research, 2007, 31, 105-124.	2.0	20
24	A map ofÂtheÂMonte Arci (Sardinia Island, Western Mediterranean) obsidian primary toÂsecondary sources. Implications forÂNeolithic provenance studies. Comptes Rendus - Palevol, 2006, 5, 995-1003.	0.1	28
25	Presence and geodynamic significance of Cambro-Ordovician series of SE Karakoram (N Pakistan). Geodinamica Acta, 2002, 15, 1-21.	2.2	20
26	Timing of neotectonic fracturing by fission track dating of obsidian in-filling faults in the Ikizdere-Rize area, NE Black Sea region, Turkey. Terra Nova, 2002, 14, 169-174.	0.9	26
27	Fission track dating obsidians in Central and Northern Anatolia. Bulletin of Volcanology, 1993, 55, 588-595.	1.1	62
28	AN ION PROBE CONTRIBUTION TO RARE EARTH ELEMENT INVESTIGATION OF GABBRO GOG-1 USING SECONDARY ION MASS SPECTROMETRY. Geostandards and Geoanalytical Research, 1992, 16, 13-19.	1.7	4
29	40Ar-39Ar and K-Ar dating of K-rich rocks from the Roccamonfina Volcano, Roman comagmatic Region, Italy. Geochimica Et Cosmochimica Acta, 1988, 52, 1435-1441.	1.6	41
30	Rare-earth elements in the NBS standard reference materials spinach, orchard leaves, pine needles and bovine liver. Science of the Total Environment, 1987, 64, 13-20.	3.9	11
31	Plasma and tissue levels of some lanthanide elements in malignant and non-malignant human tissues. Science of the Total Environment, 1986, 50, 55-63.	3.9	18
32	The distribution of arsenic and cobalt in patients with laryngeal carcinoma. Journal of Applied Toxicology, 1986, 6, 287-289.	1.4	11