François Berthod

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8894802/publications.pdf Version: 2024-02-01

EDANÃSOIS REDTHOD

#	Article	IF	CITATIONS
1	Repair of peripheral nerve injuries using a prevascularized cell-based tissue-engineered nerve conduit. Biomaterials, 2022, 280, 121269.	5.7	23
2	Moyamoya Disease Susceptibility Gene <i>RNF213</i> Regulates Endothelial Barrier Function. Stroke, 2022, 53, 1263-1275.	1.0	26
3	Tissueâ€engineered in vitro modeling of the impact of Schwann cells in amyotrophic lateral sclerosis. Biotechnology and Bioengineering, 2022, 119, 1938-1948.	1.7	3
4	Neuropeptide Substance P Released from a Nonswellable Laponite-Based Hydrogel Enhances Wound Healing in a Tissue-Engineered Skin In Vitro. ACS Applied Polymer Materials, 2020, 2, 5790-5797.	2.0	11
5	Prevascularized Tissue-Engineered Human Vaginal Mucosa: In Vitro Optimization and In Vivo Validation. Tissue Engineering - Part A, 2020, 26, 811-822.	1.6	19
6	Lifting the veil on the keratinocyte contribution to cutaneous nociception. Protein and Cell, 2020, 11, 239-250.	4.8	42
7	Cutaneous nociception: Role of keratinocytes. Experimental Dermatology, 2019, 28, 1466-1469.	1.4	35
8	Development of an innervated tissue-engineered skin with human sensory neurons and Schwann cells differentiated from iPS cells. Acta Biomaterialia, 2018, 82, 93-101.	4.1	66
9	Biotechnological Management of Skin Burn Injuries: Challenges and Perspectives in Wound Healing and Sensory Recovery. Tissue Engineering - Part B: Reviews, 2017, 23, 59-82.	2.5	46
10	High yield extraction of pure spinal motor neurons, astrocytes and microglia from single embryo and adult mouse spinal cord. Scientific Reports, 2015, 5, 16763.	1.6	35
11	InÂvitro glycation of an endothelialized and innervated tissue-engineered skin to screen anti-AGE molecules. Biomaterials, 2015, 51, 216-225.	5.7	19
12	Early detection of structural abnormalities and cytoplasmic accumulation of TDP-43 in tissue-engineered skins derived from ALS patients. Acta Neuropathologica Communications, 2015, 3, 5.	2.4	47
13	The Relation between ALS and the Skin: A Novel Human In Vitro Model to Identify New Biomarkers. Journal of Molecular Biomarkers & Diagnosis, 2015, 06, .	0.4	0
14	Sensory Neurons Accelerate Skin Reepithelialization via Substance P in an Innervated Tissue-Engineered Wound Healing Model. Tissue Engineering - Part A, 2014, 20, 2180-2188.	1.6	46
15	A Longitudinal Low Dose <i>μ</i> CT Analysis of Bone Healing in Mice: A Pilot Study. Advances in Orthopedics, 2014, 2014, 1-9.	0.4	2
16	Concise Review: Tissue-Engineered Skin and Nerve Regeneration in Burn Treatment. Stem Cells Translational Medicine, 2013, 2, 545-551.	1.6	83
17	Nerve Growth Factor, Brain-Derived Neurotrophic Factor, Neurotrophin-3 and Glial-Derived Neurotrophic Factor Enhance Angiogenesis in a Tissue-Engineered <i>In Vitro</i> Model. Tissue Engineering - Part A, 2013, 19, 1655-1664.	1.6	52
18	Spontaneous fibroblastâ€derived pericyte recruitment in a human tissueâ€engineered angiogenesis model in vitro. Journal of Cellular Physiology, 2012, 227, 2130-2137.	2.0	32

François Berthod

#	Article	IF	CITATIONS
19	Hair Follicles Guide Nerve Migration In Vitro and In Vivo in Tissue-Engineered Skin. Journal of Investigative Dermatology, 2011, 131, 1375-1378.	0.3	25
20	Potential of Tissue Engineering and Neural Stem Cells in the Understanding and Treatment of Neurodegenerative Diseases. , 2011, , 321-345.		0
21	Comparative study of bovine, porcine and avian collagens for the production of a tissue engineered dermis. Acta Biomaterialia, 2011, 7, 3757-3765.	4.1	82
22	Normal Human Epithelial Cells Regulate the Size and Morphology of Tissue-Engineered Capillaries. Tissue Engineering - Part A, 2010, 16, 1457-1468.	1.6	45
23	Collagen-Based Biomaterials for Tissue Engineering Applications. Materials, 2010, 3, 1863-1887.	1.3	953
24	Vasculature Guides Migrating Neuronal Precursors in the Adult Mammalian Forebrain via Brain-Derived Neurotrophic Factor Signaling. Journal of Neuroscience, 2009, 29, 4172-4188.	1.7	310
25	Improvement of Nerve Regeneration in Tissue-Engineered Skin Enriched with Schwann Cells. Journal of Investigative Dermatology, 2009, 129, 2895-2900.	0.3	59
26	Threeâ€dimensional engineering of the nervous system. FASEB Journal, 2009, 23, 418.4.	0.2	0
27	<i>In vitro</i> study of axonal migration and myelination of motor neurons in a threeâ€dimensional tissueâ€engineered model. Glia, 2008, 56, 354-364.	2.5	88
28	Cutaneous Myiasis: Diagnosis, Treatment, and Prevention. Journal of Oral and Maxillofacial Surgery, 2008, 66, 560-568.	0.5	36
29	Differentiation of human adult skin-derived neuronal precursors into mature neurons. Journal of Cellular Physiology, 2007, 210, 498-506.	2.0	70
30	Optimized protocols for isolation of primary motor neurons, astrocytes and microglia from embryonic mouse spinal cord. Journal of Neuroscience Methods, 2007, 163, 111-118.	1.3	84
31	Quantitative Method to Evaluate the Functionality of the Trigeminal Nerve. Journal of Oral and Maxillofacial Surgery, 2007, 65, 2254-2259.	0.5	20
32	Tissueengineered skin and the treatment of burns: Skin doctor. Biochemist, 2007, 29, 4-6.	0.2	0
33	In vitro reconstruction of a tissue-engineered endothelialized bladder from a single porcine biopsy. Journal of Pediatric Urology, 2006, 2, 261-270.	0.6	47
34	In vivo enhancement of sensory perception recovery in a tissue-engineered skin enriched with laminin. Biomaterials, 2006, 27, 2988-2993.	5.7	35
35	Extracellular matrix deposition by fibroblasts is necessary to promote capillary-like tube formation in vitro. Journal of Cellular Physiology, 2006, 207, 491-498.	2.0	130
36	Inosculation of Tissue-Engineered Capillaries with the Host's Vasculature in a Reconstructed Skin Transplanted on Mice. American Journal of Transplantation, 2005, 5, 1002-1010.	2.6	335

François Berthod

#	Article	IF	CITATIONS
37	In Vitro Evaluation of the Angiostatic Potential of Drugs Using an Endothelialized Tissue-Engineered Connective Tissue. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 510-516.	1.3	40
38	Tissueâ€engineered skin substitutes: from <i>in vitro</i> constructs to <i>in vivo</i> applications. Biotechnology and Applied Biochemistry, 2004, 39, 263-275.	1.4	128
39	Nerve regeneration in a collagen–chitosan tissue-engineered skin transplanted on nude mice. Biomaterials, 2003, 24, 1653-1661.	5.7	137
40	A tissue-engineered endothelialized dermis to study the modulation of angiogenic and angiostatic molecules on capillary-like tube formation in vitro. British Journal of Dermatology, 2003, 148, 1094-1104.	1.4	125
41	In vitro development of a tissueâ€engineered model of peripheral nerve regeneration to study neurite growth. FASEB Journal, 2003, 17, 1-16.	0.2	50
42	Principles of Living Organ Reconstruction by Tissue Engineering. , 2003, , .		2
43	Collagen fibril network and elastic system remodeling in a reconstructed skin transplanted on nude mice. Matrix Biology, 2001, 20, 463-473.	1.5	81
44	Tissue-engineered human skin substitutes developed from collagen-populated hydrated gels: clinical and fundamental applications. Medical and Biological Engineering and Computing, 1998, 36, 801-812.	1.6	117
45	<i>In vitro</i> reconstruction of a human capillaryâ€like network in a tissueâ€engineered skin equivalent. FASEB Journal, 1998, 12, 1331-1340.	0.2	412
46	Use ofin VitroReconstructed Skin To Cover Skin Flap Donor Site. Journal of Surgical Research, 1997, 73, 143-148.	0.8	18
47	<i>In vitro</i> reconstructed skin models for wound coverage in deep burns. British Journal of Dermatology, 1997, 136, 809-816.	1.4	46
48	Differential Expression of Collagens XII and XIV in Human Skin and in Reconstructed Skin. Journal of Investigative Dermatology, 1997, 108, 737-742.	0.3	91
49	Deposition of collagen fibril bundles by long-term culture of fibroblasts in a collagen sponge. , 1996, 32, 87-94.		55
50	Mesenchymal-epithelial interactions regulate gene expression of type VII collagen and kalinin in keratinocytes and dermal-epidermal junction formation in a skin equivalent model. Wound Repair and Regeneration, 1996, 4, 93-102.	1.5	37
51	Optimization of thickness, pore size and mechanical properties of a biomaterial designed for deep burn coverage. Clinical Materials, 1994, 15, 259-265.	0.5	90
52	A dermal substrate made of collagen-GA-chitosan for deep burn coverage: First clinical uses. Clinical Materials, 1994, 15, 273-276.	0.5	68
53	Collagen synthesis by fibroblasts cultured within a collagen sponge. Biomaterials, 1993, 14, 749-754.	5.7	113
54	Reconstructed skin from co-cultured human keratinocytes and fibroblasts on a chitosane cross-linked collagen-GAG matrix. Journal of Materials Science: Materials in Medicine, 1991, 2, 222-226.	1.7	33

#	Article	IF	CITATIONS
55	Characterization of Skin Reconstructed on a Chitosan-Cross-Linked Collagen-Glycosaminoglycan Matrix. Skin Pharmacology and Physiology, 1990, 3, 107-114.	1.1	92