
Susan E Carlson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8894360/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prenatal docosahexaenoic acid effect on maternal-infant DHA-equilibrium and fetal neurodevelopment: a randomized clinical trial. Pediatric Research, 2022, 92, 255-264.	1.1	7
2	Preliminary Study of Clinical Practice and Prenatal Nutrition in Rural Kansas. Kansas Journal of Medicine, 2022, 15, 55-58.	0.1	1
3	Abstract P2-11-17: Feasibility of microbiome analysis from random periareolar fine needle aspiration in premenopausal women at increased risk for breast cancer. Cancer Research, 2022, 82, P2-11-17-P2-11-17.	0.4	0
4	Nutrition Literacy Among Latina/x People During Pregnancy is Associated with Socioeconomic Position. Journal of the Academy of Nutrition and Dietetics, 2022, , .	0.4	2
5	Early Added Sugars and Fructose Intake and Child Body Composition. Current Developments in Nutrition, 2022, 6, 644.	0.1	0
6	Dietary and Supplemental Iodine Intake and Urinary Iodine Concentration in a Large Pregnancy Cohort in the United States. Current Developments in Nutrition, 2022, 6, 651.	0.1	0
7	lodine Status, Fluoride Exposure, and Thyroid Function in Pregnant Women in the United States. Current Developments in Nutrition, 2022, 6, 652.	0.1	1
8	Developmental effects on sleep–wake patterns in infants receiving a cow's milk-based infant formula with an added prebiotic blend: a Randomized Controlled Trial. Pediatric Research, 2021, 89, 1222-1231.	1.1	8
9	Dietary Reference Intakes based on chronic disease endpoints: outcomes from a case study workshop for omega 3's EPA and DHA. Applied Physiology, Nutrition and Metabolism, 2021, 46, 530-539.	0.9	6
10	Higher dose docosahexaenoic acid supplementation during pregnancy and early preterm birth: A randomised, double-blind, adaptive-design superiority trial. EClinicalMedicine, 2021, 36, 100905.	3.2	32
11	Perspective: Moving Toward Desirable Linoleic Acid Content in Infant Formula. Advances in Nutrition, 2021, 12, 2085-2098.	2.9	14
12	Change in Blood and Benign Breast Biomarkers in Women Undergoing a Weight-Loss Intervention Randomized to High-Dose I‰-3 Fatty Acids versus Placebo. Cancer Prevention Research, 2021, 14, 893-904.	0.7	2
13	Science-based policy: targeted nutrition for all ages and the role of bioactives. European Journal of Nutrition, 2021, 60, 1-17.	1.8	10
14	Innovative Bayesian EMAX model with a mixture of normal distributions for dose–response in clinical trials. Contemporary Clinical Trials, 2021, 110, 106571.	0.8	0
15	DHA and Cognitive Development. Journal of Nutrition, 2021, 151, 3265-3266.	1.3	3
16	Larger brain volumes at term-equivalent age in infants born preterm: an alternative explanation. Pediatric Research, 2021, 90, 1110-1111.	1.1	0
17	The Successful Synchronized Orchestration of an Investigator-Initiated Multicenter Trial Using a Clinical Trial Management System and Team Approach: Design and Utility Study. JMIR Formative Research, 2021, 5, e30368.	0.7	1
18	Higher-Dose DHA Supplementation Modulates Immune Responses in Pregnancy and Is Associated with Decreased Preterm Birth. Nutrients, 2021, 13, 4248.	1.7	6

#	Article	IF	CITATIONS
19	Should formula for infants provide arachidonic acid along with DHA? A position paper of the European Academy of Paediatrics and the Child Health Foundation. American Journal of Clinical Nutrition, 2020, 111, 10-16.	2.2	88
20	The effect of high dietary fiber intake on gestational weight gain, fat accrual, and postpartum weight retention: a randomized clinical trial. BMC Pregnancy and Childbirth, 2020, 20, 319.	0.9	15
21	Prenatal docosahexaenoic acid supplementation has long-term effects on childhood behavioral and brain responses during performance on an inhibitory task. Nutritional Neuroscience, 2020, , 1-11.	1.5	6
22	Relationships between seafood consumption during pregnancy and childhood and neurocognitive development: Two systematic reviews. Prostaglandins Leukotrienes and Essential Fatty Acids, 2019, 151, 14-36.	1.0	75
23	An abundance of seafood consumption studies presents new opportunities to evaluate effects on neurocognitive development. Prostaglandins Leukotrienes and Essential Fatty Acids, 2019, 151, 8-13.	1.0	14
24	The Kansas University DHA Outcomes Study (KUDOS) clinical trial: long-term behavioral follow-up of the effects of prenatal DHA supplementation. American Journal of Clinical Nutrition, 2019, 109, 1380-1392.	2.2	41
25	Effect of Prenatal Docosahexaenoic Acid Supplementation on Blood Pressure in Children With Overweight Condition or Obesity. JAMA Network Open, 2019, 2, e190088.	2.8	10
26	Critical and Sensitive Periods in Development and Nutrition. Annals of Nutrition and Metabolism, 2019, 75, 34-42.	1.0	25
27	Longâ€chain polyunsaturated fatty acid supplementation in the first year of life affects brain function, structure, and metabolism at age nine years. Developmental Psychobiology, 2019, 61, 5-16.	0.9	42
28	Intrauterine DHA exposure and child body composition at 5 y: exploratory analysis of a randomized controlled trial of prenatal DHA supplementation. American Journal of Clinical Nutrition, 2018, 107, 35-42.	2.2	16
29	Perioperative Immunonutrition Modulates Inflammatory Response after Radical Cystectomy: Results of a Pilot Randomized Controlled Clinical Trial. Journal of Urology, 2018, 200, 292-301.	0.2	40
30	Dose–response relationship between docosahexaenoic acid (DHA) intake and lower rates of early preterm birth, low birth weight and very low birth weight. Prostaglandins Leukotrienes and Essential Fatty Acids, 2018, 138, 1-5.	1.0	14
31	Maternal Vitamin D Status and Infant Infection. Nutrients, 2018, 10, 111.	1.7	12
32	A Nutritionist's Perspective on Behavioral Assessment. Nestle Nutrition Institute Workshop Series, 2018, 89, 131-142.	1.5	0
33	Diet and polycystic kidney disease: A pilot intervention study. Clinical Nutrition, 2017, 36, 458-466.	2.3	25
34	An empirically derived dietary pattern associated with breast cancer risk is validated in a nested case-control cohort from a randomized primary prevention trial. Clinical Nutrition ESPEN, 2017, 17, 8-17.	0.5	10
35	Assessment of DHA on reducing early preterm birth: the ADORE randomized controlled trial protocol. BMC Pregnancy and Childbirth, 2017, 17, 62.	0.9	27
36	Docosahexaenoic acid (DHA) and arachidonic acid (ARA) balance in developmental outcomes. Prostaglandins Leukotrienes and Essential Fatty Acids, 2017, 121, 52-56.	1.0	49

#	Article	IF	CITATIONS
37	Personalized medicine enrichment design for DHA supplementation clinical trial. Contemporary Clinical Trials Communications, 2017, 5, 116-122.	0.5	0
38	Subgroup identification of early preterm birth (ePTB): informing a future prospective enrichment clinical trial design. BMC Pregnancy and Childbirth, 2017, 17, 18.	0.9	13
39	Comparison of dichotomized and distributional approaches in rare event clinical trial design: a fixed Bayesian design. Journal of Applied Statistics, 2017, 44, 1466-1478.	0.6	5
40	Eventâ€related potential differences in children supplemented with longâ€chain polyunsaturated fatty acids during infancy. Developmental Science, 2017, 20, e12455.	1.3	31
41	Long-Chain Polyunsaturated Fatty Acids in the Developing Central Nervous System. , 2017, , 380-389.e4.		Ο
42	Experiences and Perspectives of Polycystic Kidney Disease Patients following a Diet of Reduced Osmoles, Protein, and Acid Precursors Supplemented with Water: A Qualitative Study. PLoS ONE, 2016, 11, e0161043.	1.1	9
43	Prenatal DHA supplementation and infant attention. Pediatric Research, 2016, 80, 656-662.	1.1	40
44	Formula with longâ€chain polyunsaturated fatty acids reduces incidence of allergy in early childhood. Pediatric Allergy and Immunology, 2016, 27, 156-161.	1.1	47
45	Dietary patterns of early childhood and maternal socioeconomic status in a unique prospective sample from a randomized controlled trial of Prenatal DHA Supplementation. BMC Pediatrics, 2016, 16, 191.	0.7	12
46	Commensurate Priors on a Finite Mixture Model for Incorporating Repository Data in Clinical Trials. Statistics in Biopharmaceutical Research, 2016, 8, 151-160.	0.6	9
47	Positive Selection on a Regulatory Insertion–Deletion Polymorphism in <i>FADS2</i> Influences Apparent Endogenous Synthesis of Arachidonic Acid. Molecular Biology and Evolution, 2016, 33, 1726-1739.	3.5	76
48	Dietary Associations with a Breast Cancer Risk Biomarker Depend on Menopause Status. Nutrition and Cancer, 2016, 68, 1115-1122.	0.9	3
49	Early docosahexaenoic and arachidonic acid supplementation in extremely-low-birth-weight infants. Pediatric Research, 2016, 80, 505-510.	1.1	11
50	Docosahexaenoic Acid and Arachidonic Acid Nutrition in Early Development. Advances in Pediatrics, 2016, 63, 453-471.	0.5	102
51	Reducing Iron Deficiency in 18–36-months-old US Children: Is the Solution Less Calcium?. Maternal and Child Health Journal, 2016, 20, 1798-1803.	0.7	2
52	Working group reports: evaluation of the evidence to support practice guidelines for nutritional care of preterm infants—the Pre-B Project. American Journal of Clinical Nutrition, 2016, 103, 648S-678S.	2.2	37
53	Renal formulas pretreated with medications alters the nutrient profile. Pediatric Nephrology, 2015, 30, 1815-1823.	0.9	27
54	Abdominal visceral adiposity influences CD4+ T cell cytokine production in pregnancy. Cytokine, 2015, 71, 405-408.	1.4	7

#	Article	IF	CITATIONS
55	Omega-3 and Omega-6 Fatty Acids in Blood and Breast Tissue of High-Risk Women and Association with Atypical Cytomorphology. Cancer Prevention Research, 2015, 8, 359-364.	0.7	20
56	Relationship of circulating adipokines to body composition in pregnant women. Adipocyte, 2015, 4, 44-49.	1.3	21
57	Should Infant Formula Provide Both Omega-3 DHA and Omega-6 Arachidonic Acid?. Annals of Nutrition and Metabolism, 2015, 66, 137-138.	1.0	48
58	Modulation of Breast Cancer Risk Biomarkers by High-Dose Omega-3 Fatty Acids: Phase II Pilot Study in Premenopausal Women. Cancer Prevention Research, 2015, 8, 912-921.	0.7	25
59	Modulation of Breast Cancer Risk Biomarkers by High-Dose Omega-3 Fatty Acids: Phase II Pilot Study in Postmenopausal Women. Cancer Prevention Research, 2015, 8, 922-931.	0.7	33
60	Omega-3-Acid Ethyl Esters Block the Protumorigenic Effects of Obesity in Mouse Models of Postmenopausal Basal-like and Claudin-Low Breast Cancer. Cancer Prevention Research, 2015, 8, 796-806.	0.7	19
61	Increase in Adipose Tissue Linoleic Acid of US Adults in the Last Half Century. Advances in Nutrition, 2015, 6, 660-664.	2.9	51
62	Typical Prenatal Vitamin D Supplement Intake Does Not Prevent Decrease of Plasma 25-Hydroxyvitamin D at Birth. Journal of the American College of Nutrition, 2014, 33, 394-399.	1.1	8
63	Current Information and Asian Perspectives on Long-Chain Polyunsaturated Fatty Acids in Pregnancy, Lactation, and Infancy: Systematic Review and Practice Recommendations from an Early Nutrition Academy Workshop. Annals of Nutrition and Metabolism, 2014, 65, 49-80.	1.0	131
64	Docosahexaenoic acid and human brain development: Evidence that aÂdietary supply is needed for optimal development. Journal of Human Evolution, 2014, 77, 99-106.	1.3	140
65	Dietary Sialic Acid and Cholesterol Influence Cortical Composition in Developing Rats. Journal of Nutrition, 2013, 143, 132-135.	1.3	19
66	Long-term effects of LCPUFA supplementation on childhood cognitive outcomes. American Journal of Clinical Nutrition, 2013, 98, 403-412.	2.2	150
67	DHA supplementation and pregnancy outcomes. American Journal of Clinical Nutrition, 2013, 97, 808-815.	2.2	255
68	Effect Of Maternal Cigarette Smoking On Newborn Iron Stores. Blood, 2013, 122, 4671-4671.	0.6	12
69	High-dose omega-3 fatty acid supplementation to modulate breast tissue biomarkers in premenopausal women at high risk for development of breast cancer Journal of Clinical Oncology, 2013, 31, 1515-1515.	0.8	2
70	Comparison of visceral fat measured by magnetic resonance imaging and dualâ€energy Xâ€ray absorptiometry in women. FASEB Journal, 2013, 27, 852.9.	0.2	0
71	Leptin and resistin are influenced by increased body fat measurements in pregnant women. FASEB Journal, 2013, 27, 109.2.	0.2	0
72	Is the Measure the Message: The BSID and Nutritional Interventions. Pediatrics, 2012, 129, 1166-1167.	1.0	43

#	Article	IF	CITATIONS
73	BMI, race, supplementation, season, and gestation affect vitamin D status in pregnancy in Kansas City (latitude 39° N). FASEB Journal, 2012, 26, lb393.	0.2	1
74	Long-Chain Polyunsaturated Fatty Acid Supplementation in Infancy Reduces Heart Rate and Positively Affects Distribution of Attention. Pediatric Research, 2011, 70, 406-410.	1.1	78
75	Maternal fatty acid status during pregnancy and lactation and relation to newborn and infant status. Maternal and Child Nutrition, 2011, 7, 41-58.	1.4	113
76	Long-Chain Fatty Acids in the Developing Retina and Brain. , 2011, , 497-508.		0
77	The DIAMOND (DHA Intake And Measurement Of Neural Development) Study: a double-masked, randomized controlled clinical trial of the maturation of infant visual acuity as a function of the dietary level of docosahexaenoic acid. American Journal of Clinical Nutrition, 2010, 91, 848-859.	2.2	196
78	Toddler formula supplemented with docosahexaenoic acid (DHA) improves DHA status and respiratory health in a randomized, double-blind, controlled trial of US children less than 3 years of age. Prostaglandins Leukotrienes and Essential Fatty Acids, 2010, 82, 287-293.	1.0	41
79	Early determinants of development: a lipid perspective. American Journal of Clinical Nutrition, 2009, 89, 1523S-1529S.	2.2	62
80	Maternal DHA Levels and Toddler Free-Play Attention. Developmental Neuropsychology, 2009, 34, 159-174.	1.0	45
81	Docosahexaenoic acid supplementation in pregnancy and lactation. American Journal of Clinical Nutrition, 2009, 89, 678S-684S.	2.2	109
82	Omega-3 fatty acids and multiple sclerosis: relationship to depression. Journal of Behavioral Medicine, 2008, 31, 127-135.	1.1	23
83	Docosahexaenoic acid and cognitive function: Is the link mediated by the autonomic nervous system?. Prostaglandins Leukotrienes and Essential Fatty Acids, 2008, 79, 135-140.	1.0	23
84	Nutrient requirements and fetal development: recommendations for best outcomes. Journal of Family Practice, 2007, 56, S1-6; quiz S7-8.	0.2	34
85	Role of omega-3 fatty acids in brain development and function: Potential implications for the pathogenesis and prevention of psychopathology. Prostaglandins Leukotrienes and Essential Fatty Acids, 2006, 75, 329-349.	1.0	438
86	nâ^'3 Fatty acids and cognitive and visual acuity development: methodologic and conceptual considerations. American Journal of Clinical Nutrition, 2006, 83, 1458S-1466S.	2.2	120
87	Maternal DHA and the Development of Attention in Infancy and Toddlerhood. Child Development, 2004, 75, 1254-1267.	1.7	244
88	Long Chain Fatty Acids in the Developing Retina and Brain. , 2004, , 429-440.		0
89	High-DHA eggs: Feasibility as a means to enhance circulating DHA in mother and infant. Lipids, 2003, 38, 407-414.	0.7	66
90	Decreased brain docosahexaenoic acid during development alters dopamine-related behaviors in adult rats that are differentially affected by dietary remediation. Behavioural Brain Research, 2003, 152, 49-57.	1.2	108

#	Article	IF	CITATIONS
91	A randomized trial of docosahexaenoic acid supplementation during the third trimester of pregnancy. Obstetrics and Gynecology, 2003, 101, 469-479.	1.2	140
92	A Randomized Trial of Docosahexaenoic Acid Supplementation During the Third Trimester of Pregnancy. Obstetrics and Gynecology, 2003, 101, 469-479.	1.2	119
93	Docosahexaenoic acid and arachidonic acid in infant development. Seminars in Fetal and Neonatal Medicine, 2001, 6, 437-449.	2.8	119
94	Polyunsaturated fatty acids and infant growth. Lipids, 2001, 36, 901-911.	0.7	54
95	Behavioral methods used in the study of long-chain polyunsaturated fatty acid nutrition in primate infants. American Journal of Clinical Nutrition, 2000, 71, 268S-274S.	2.2	25
96	Considerations of statistical power in infant studies of visual acuity development and docosahexaenoic acid status. American Journal of Clinical Nutrition, 2000, 71, 1-2.	2.2	35
97	PUFA in infant nutrition: Consensus and controversies. Lipids, 1999, 34, 129-130.	0.7	1
98	Polyunsaturated fatty acid status and neurodevelopment: A summary and critical analysis of the literature. Lipids, 1999, 34, 171-178.	0.7	138
99	Postnatal Development of Bone Mineral Status During Infancy. Journal of the American College of Nutrition, 1998, 17, 65-70.	1.1	86
100	Lower Incidence of Necrotizing Enterocolitis in Infants Fed a Preterm Formula with Egg Phospholipids. Pediatric Research, 1998, 44, 491-498.	1.1	109
101	Long-chain Polyunsaturated Fatty Acid Supplementation of Preterm Infants. , 1997, , 41-102.		10
102	Arachidonic Acid Status of Human Infants: Influence of Gestational Age at Birth and Diets with Very Long Chain n-3 and n-6 Fatty Acids. Journal of Nutrition, 1996, 126, 1092S-1098S.	1.3	81
103	A randomized trial of visual attention of preterm infants fed docosahexaenoic acid until two months. Lipids, 1996, 31, 85-90.	0.7	274
104	A randomized trial of visual attention of preterm infants fed docosahexaenoic acid until nine months. Lipids, 1996, 31, 91-97.	0.7	241
105	Visual Acuity and Fatty Acid Status of Term Infants Fed Human Milk and Formulas with and without Docosahexaenoate and Arachidonate from Egg Yolk Lecithin1. Pediatric Research, 1996, 39, 882-888.	1.1	237
106	Insulin-Like Growth Factor (IGF)-I and IGF-Binding Protein 3 during the First Year in Term and Preterm Infants. Pediatric Research, 1995, 37, 581-585.	1.1	49
107	Nutrient Needs of the Preterm Infant. Nutrition in Clinical Practice, 1993, 8, 226-232.	1.1	9
108	Effect of vegetable and marine oils in preterm infant formulas on blood arachidonic and docosahexaenoic acids. Journal of Pediatrics, 1992, 120, S159-S167.	0.9	60

#	Article	IF	CITATIONS
109	First year growth of preterm infants fed standard compared to marine oil nâ^'3 supplemented formula. Lipids, 1992, 27, 901-907.	0.7	333
110	Long-Term Feeding of Formulas High in Linolenic Acid and Marine Oil to Very Low Birth Weight Infants: Phospholipid Fatty Acids. Pediatric Research, 1991, 30, 404-412.	1.1	166
111	Effect of Fish Oil Supplementation on the n-3 Fatty Acid Content of Red Blood Cell Membranes in Preterm Infants. Pediatric Research, 1987, 21, 507-510.	1.1	131
112	Increase in Plasma Phospholipid Docosahexaenoic and Eicosapentaenoic Acids as a Reflection of their Intake and Mode of Administration. Pediatric Research, 1987, 22, 292-296.	1.1	68
113	High Fat Diets Varying in Ratios of Polyunsaturated to Saturated Fatty Acid and Linoleic to Linolenic Acid: A Comparison of Rat Neural and Red Cell Membrane Phospholipids. Journal of Nutrition, 1986, 116, 718-725.	1.3	148
114	Oral and Intraperitoneal Administration of N-Acetylneuraminic Acid: Effect on Rat Cerebral and Cerebellar N-Acetylneuraminic Acid. Journal of Nutrition, 1986, 116, 881-886.	1.3	63
115	Effect of Infant Diets with Different Polyunsaturated to Saturated Fat Ratios on Circulating High-Density Lipoproteins. Journal of Pediatric Gastroenterology and Nutrition, 1982, 1, 303-310.	0.9	39