Chuanhao Yao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/889427/publications.pdf

Version: 2024-02-01

41 papers

3,004 citations

147801 31 h-index 302126 39 g-index

41 all docs

41 docs citations

times ranked

41

2463 citing authors

#	Article	IF	CITATIONS
1	Recent Advances in Flexible Zn–Air Batteries: Materials for Electrodes and Electrolytes. Small Methods, 2022, 6, e2101116.	8.6	21
2	The Design and Bioimaging Applications of NIR Fluorescent Organic Dyes with High Brightness. Advanced Optical Materials, 2022, 10, .	7.3	45
3	The Factors Dictating Properties of Atomically Precise Metal Nanocluster Electrocatalysts. Small, 2022, 18, e2200812.	10.0	25
4	Identifying the Real Chemistry of the Synthesis and Reversible Transformation of AuCd Bimetallic Clusters. Journal of the American Chemical Society, 2022, 144, 14248-14257.	13.7	23
5	Ordered clustering of single atomic Te vacancies in atomically thin PtTe2 promotes hydrogen evolution catalysis. Nature Communications, 2021, 12, 2351.	12.8	83
6	Zeroâ€Valent Palladium Singleâ€Atoms Catalysts Confined in Black Phosphorus for Efficient Semiâ€Hydrogenation. Advanced Materials, 2021, 33, e2008471.	21.0	55
7	Design, synthesis and evaluation of protein disulfide isomerase inhibitors with nitric oxide releasing activity. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126898.	2.2	2
8	Atomically-precise dopant-controlled single cluster catalysis for electrochemical nitrogen reduction. Nature Communications, 2020, 11, 4389.	12.8	110
9	Engineering Local and Global Structures of Single Co Atoms for a Superior Oxygen Reduction Reaction. ACS Catalysis, 2020, 10, 5862-5870.	11.2	126
10	Polydatin protects SH-SY5Y in models of Parkinson's disease by promoting Atg5-mediated but parkin-independent autophagy. Neurochemistry International, 2020, 134, 104671.	3.8	41
11	Giant Emission Enhancement of Solidâ€State Gold Nanoclusters by Surface Engineering. Angewandte Chemie, 2020, 132, 8347-8353.	2.0	15
12	Giant Emission Enhancement of Solidâ€State Gold Nanoclusters by Surface Engineering. Angewandte Chemie - International Edition, 2020, 59, 8270-8276.	13.8	63
13	Janus electrochemical exfoliation of two-dimensional materials. Journal of Materials Chemistry A, 2019, 7, 25691-25711.	10.3	41
14	The Fourth Alloying Mode by Way of Antiâ€Galvanic Reaction. Angewandte Chemie - International Edition, 2018, 57, 4500-4504.	13.8	81
15	Excited-State Behaviors of M $<$ sub $>1sub>Au<sub>24sub>(SR)<sub>18sub> Nanoclusters: The Number of Valence Electrons Matters. Journal of Physical Chemistry C, 2018, 122, 13435-13442.$	3.1	44
16	Ultrafast Electrochemical Expansion of Black Phosphorus toward High-Yield Synthesis of Few-Layer Phosphorene. Chemistry of Materials, 2018, 30, 2742-2749.	6.7	132
17	Is the kernel–staples match a key–lock match?. Chemical Science, 2018, 9, 2437-2442.	7.4	48
18	Frontispiz: The Fourth Alloying Mode by Way of Antiâ€Galvanic Reaction. Angewandte Chemie, 2018, 130, .	2.0	O

#	Article	IF	Citations
19	A Silver Nanocluster Containing Interstitial Sulfur and Unprecedented Chemical Bonds. Angewandte Chemie, 2018, 130, 11443-11447.	2.0	24
20	The Fourth Alloying Mode by Way of Anti-Galvanic Reaction. Angewandte Chemie, 2018, 130, 4590-4594.	2.0	20
21	A Silver Nanocluster Containing Interstitial Sulfur and Unprecedented Chemical Bonds. Angewandte Chemie - International Edition, 2018, 57, 11273-11277.	13.8	57
22	Atomic engineering of high-density isolated Co atoms on graphene with proximal-atom controlled reaction selectivity. Nature Communications, 2018, 9, 3197.	12.8	146
23	Frontispiece: The Fourth Alloying Mode by Way of Antiâ€Galvanic Reaction. Angewandte Chemie - International Edition, 2018, 57, .	13.8	0
24	A novel double-helical-kernel evolution pattern of gold nanoclusters: alternate single-stranded growth at both ends. Nanoscale, 2017, 9, 3742-3746.	5.6	58
25	Crystal and Solution Photoluminescence of MAg ₂₄ (SR) ₁₈ (M = Ag/Pd/Pt/Au) Nanoclusters and Some Implications for the Photoluminescence Mechanisms. Journal of Physical Chemistry C, 2017, 121, 13848-13853.	3.1	120
26	The fourth crystallographic closest packing unveiled in the gold nanocluster crystal. Nature Communications, 2017, 8, 14739.	12.8	151
27	The fcc structure isomerization in gold nanoclusters. Nanoscale, 2017, 9, 14809-14813.	5.6	62
28	Structures and magnetism of mono-palladium and mono-platinum doped Au ₂₅ (PET) ₁₈ nanoclusters. Chemical Communications, 2016, 52, 9873-9876.	4.1	120
29	Quantitatively Monitoring the Size-Focusing of Au Nanoclusters and Revealing What Promotes the Size Transformation from Au ₄₄ (TBBT) ₂₈ to Au ₃₆ (TBBT) ₂₄ . Analytical Chemistry, 2016, 88, 11297-11301.	6.5	48
30	Structure of Chiral Au ₄₄ (2,4-DMBT) ₂₆ Nanocluster with an 18-Electron Shell Closure. Journal of the American Chemical Society, 2016, 138, 10425-10428.	13.7	149
31	Transition-sized Au ₉₂ nanoparticle bridging non-fcc-structured gold nanoclusters and fcc-structured gold nanocrystals. Chemical Communications, 2016, 52, 12036-12039.	4.1	54
32	Fluorescent Gold Nanoclusters with Interlocked Staples and a Fully Thiolateâ€Bound Kernel. Angewandte Chemie, 2016, 128, 11739-11743.	2.0	42
33	Fluorescent Gold Nanoclusters with Interlocked Staples and a Fully Thiolateâ€Bound Kernel. Angewandte Chemie - International Edition, 2016, 55, 11567-11571.	13.8	159
34	Adding Two Active Silver Atoms on Au ₂₅ Nanoparticle. Nano Letters, 2015, 15, 1281-1287.	9.1	171
35	Mono-Mercury Doping of Au ₂₅ and the HOMO/LUMO Energies Evaluation Employing Differential Pulse Voltammetry. Journal of the American Chemical Society, 2015, 137, 9511-9514.	13.7	206
36	lon-precursor and ion-dose dependent anti-galvanic reduction. Chemical Communications, 2015, 51, 11773-11776.	4.1	35

Снианнао Үао

#	Article	IF	CITATIONS
37	Synthesis of fluorescent phenylethanethiolated gold nanoclusters via pseudo-AGR method. Nanoscale, 2015, 7, 16200-16203.	5.6	41
38	Mono-cadmium vs Mono-mercury Doping of Au ₂₅ Nanoclusters. Journal of the American Chemical Society, 2015, 137, 15350-15353.	13.7	211
39	Chemicoâ€Physical Synthesis of Surfactant†and Ligandâ€Free Gold Nanoparticles and Their Antiâ€Galvanic Reduction Property. Chemistry - an Asian Journal, 2014, 9, 1006-1010.	3.3	52
40	Reduction-resistant and reduction-catalytic double-crown nickel nanoclusters. Nanoscale, 2014, 6, 14195-14199.	5.6	33
41	Fiber-like nanostructured Ti4O7 used as durable fuel cell catalyst support in oxygen reduction catalysis. Journal of Materials Chemistry, 2012, 22, 16560.	6.7	90