Panos Soultanas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8894080/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pyruvate kinase, a metabolic sensor powering glycolysis, drives the metabolic control of DNA replication. BMC Biology, 2022, 20, 87.	1.7	8
2	The HelQ human DNA repair helicase utilizes a PWI-like domain for DNA loading through interaction with RPA, triggering DNA unwinding by the HelQ helicase core. NAR Cancer, 2021, 3, zcaa043.	1.6	11
3	DNA replication initiation in <i>Bacillus subtilis</i> : structural and functional characterization of the essential DnaA–DnaD interaction. Nucleic Acids Research, 2019, 47, 2101-2112.	6.5	17
4	Evaluation of in-field efficacy of dietary ferric tyrosine on performance, intestinal health and meat quality of broiler chickens exposed to natural Campylobacter jejuni challenge. Livestock Science, 2019, 221, 44-51.	0.6	15
5	TYPLEX® Chelate, a novel feed additive, inhibits Campylobacter jejuni biofilm formation and cecal colonization in broiler chickens. Poultry Science, 2018, 97, 1391-1399.	1.5	20
6	Dietary supplementation with ferric tyrosine improves zootechnical performance and reduces caecal <i>Campylobacter</i> spp. load in broilers. British Poultry Science, 2018, 59, 646-653.	0.8	5
7	Replicative DNA Helicases and Primases. , 2018, , 1062-1069.		0
8	Helicase and Primase Interactions with Replisome Components and Accessory Factors. , 2018, , 510-515.		0
9	Interactions of the <i>Bacillus subtilis</i> DnaE polymerase with replisomal proteins modulate its activity and fidelity. Open Biology, 2017, 7, 170146.	1.5	23
10	DNA binding and unwinding by Hel308 helicase requires dual functions of a winged helix domain. DNA Repair, 2017, 57, 125-132.	1.3	16
11	Remodeling and Control of Homologous Recombination by DNA Helicases and Translocases that Target Recombinases and Synapsis. Genes, 2016, 7, 52.	1.0	8
12	Primase is required for helicase activity and helicase alters the specificity of primase in the enteropathogen <i>Clostridium difficile</i> . Open Biology, 2016, 6, 160272.	1.5	14
13	SilE is an intrinsically disordered periplasmic "molecular sponge―involved in bacterial silver resistance. Molecular Microbiology, 2016, 101, 731-742.	1.2	38
14	Defining the Intrinsically Disordered C-Terminal Domain of SSB Reveals DNA-Mediated Compaction. Journal of Molecular Biology, 2016, 428, 357-364.	2.0	12
15	Engineering a reagentless biosensor for single-stranded DNA to measure real-time helicase activity in Bacillus. Biosensors and Bioelectronics, 2014, 61, 579-586.	5.3	6
16	Helicase and Primase Interactions with Replisome Components and Accessory Factors. , 2014, , 1-7.		1
17	Replicative DNA Helicases and Primases. , 2014, , 1-9.		0
18	Insights into the structure and assembly of the Bacillus subtilis clamp-loader complex and its interaction with the replicative belicase. Nucleic Acids Research, 2013, 41, 5115-5126	6.5	12

PANOS SOULTANAS

#	Article	IF	CITATIONS
19	Functional interplay of DnaE polymerase, DnaG primase and DnaC helicase within a ternary complex, and primase to polymerase hand-off during lagging strand DNA replication in Bacillus subtilis. Nucleic Acids Research, 2013, 41, 5303-5320.	6.5	34
20	Untwisting of the DNA helix stimulates the endonuclease activity of Bacillus subtilis Nth at AP sites. Nucleic Acids Research, 2012, 40, 739-750.	6.5	17
21	Chromosomal Replication Initiation Machinery of Low-G+C-Content Firmicutes. Journal of Bacteriology, 2012, 194, 5162-5170.	1.0	65
22	Loading mechanisms of ring helicases at replication origins. Molecular Microbiology, 2012, 84, 6-16.	1.2	61
23	Co-directional replication–transcription conflicts lead to replication restart. Nature, 2011, 470, 554-557.	13.7	162
24	The replication-transcription conflict. Transcription, 2011, 2, 140-144.	1.7	14
25	DnaB proteolysis in vivo regulates oligomerization and its localization at oriC in Bacillus subtilis. Nucleic Acids Research, 2010, 38, 2851-2864.	6.5	15
26	Class-specific restrictions define primase interactions with DNA template and replicative helicase. Nucleic Acids Research, 2010, 38, 7167-7178.	6.5	16
27	When simple sequence comparison fails: the cryptic case of the shared domains of the bacterial replication initiation proteins DnaB and DnaD. Nucleic Acids Research, 2010, 38, 6930-6942.	6.5	26
28	RepD-mediated recruitment of PcrA helicase at the Staphylococcus aureus pC221 plasmid replication origin, oriD. Nucleic Acids Research, 2010, 38, 1874-1888.	6.5	13
29	Allosteric regulation of the primase (DnaG) activity by the clampâ€loader (Ï,,) <i>in vitro</i> . Molecular Microbiology, 2009, 72, 537-549.	1.2	8
30	Conserved residues of the Câ€ŧerminal p16 domain of primase are involved in modulating the activity of the bacterial primosome. Molecular Microbiology, 2008, 68, 360-371.	1.2	16
31	Structure of the N-Terminal Oligomerization Domain of DnaD Reveals a Unique Tetramerization Motif and Provides Insights into Scaffold Formation. Journal of Molecular Biology, 2008, 376, 1237-1250.	2.0	26
32	Single-Molecule Atomic Force Spectroscopy Reveals that DnaD Forms Scaffolds and Enhances Duplex Melting. Journal of Molecular Biology, 2008, 377, 706-714.	2.0	39
33	Autoregulation of the Escherichia coli melR promoter: repression involves four molecules of MelR. Nucleic Acids Research, 2008, 36, 2667-2676.	6.5	12
34	Directional Loading and Stimulation of PcrA Helicase by the Replication Initiator Protein RepD. Journal of Molecular Biology, 2007, 371, 336-348.	2.0	47
35	Crystallization and X-ray diffraction analysis of the DNA-remodelling protein DnaD fromBacillus subtilis. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 110-113.	0.7	4
36	Domain swapping reveals that the C- and N-terminal domains of DnaG and DnaB, respectively, are functional homologues. Molecular Microbiology, 2007, 63, 1629-1639.	1.2	15

PANOS SOULTANAS

#	Article	IF	CITATIONS
37	The DNA-remodelling activity of DnaD is the sum of oligomerization and DNA-binding activities on separate domains. Molecular Microbiology, 2006, 60, 917-924.	1.2	33
38	Helicase binding to Dnal exposes a cryptic DNA-binding site during helicase loading in Bacillus subtilis. Nucleic Acids Research, 2006, 34, 5247-5258.	6.5	50
39	The Bacillus subtilis Primosomal Protein DnaD Untwists Supercoiled DNA. Journal of Bacteriology, 2006, 188, 5487-5493.	1.0	37
40	In the Bacillus stearothermophilus DnaB-DnaG Complex, the Activities of the Two Proteins Are Modulated by Distinct but Overlapping Networks of Residues. Journal of Bacteriology, 2006, 188, 1534-1539.	1.0	29
41	Discovery of Antagonist Peptides against Bacterial Helicase-Primase Interaction in B. stearothermophilus by Reverse Yeast Three-Hybrid. Chemistry and Biology, 2005, 12, 595-604.	6.2	8
42	Solution Structure of the Helicase-Interaction Domain of the Primase DnaG. Structure, 2005, 13, 609-616.	1.6	45
43	The Bacterial Helicase-Primase Interaction: A Common Structural/Functional Module. Structure, 2005, 13, 839-844.	1.6	40
44	The Bacillus subtilis DnaD and DnaB Proteins Exhibit Different DNA Remodelling Activities. Journal of Molecular Biology, 2005, 351, 66-75.	2.0	60
45	RPA alleviates the inhibitory effect of vinylphosphonate internucleotide linkages on DNA unwinding by BLM and WRN helicases. Nucleic Acids Research, 2004, 32, 3771-3778.	6.5	22
46	DnaG interacts with a linker region that joins the N- and C-domains of DnaB and induces the formation of 3-fold symmetric rings. Nucleic Acids Research, 2004, 32, 2977-2986.	6.5	38
47	Synapsis and DNA cleavage in ÂC31 integrase-mediated site-specific recombination. Nucleic Acids Research, 2004, 32, 2607-2617.	6.5	68
48	TheBacillus subtilisDnaD protein: a putative link between DNA remodeling and initiation of DNA replication. FEBS Letters, 2004, 577, 460-464.	1.3	26
49	The Clamp-loader–Helicase Interaction in Bacillus . Atomic Force Microscopy Reveals the Structural Organisation of the DnaB–Ï,, Complex in Bacillus. Journal of Molecular Biology, 2004, 336, 381-393.	2.0	26
50	Molecular dynamics simulations of a helicase. Proteins: Structure, Function and Bioinformatics, 2003, 52, 254-262.	1.5	11
51	Effects of Vinylphosphonate Internucleotide Linkages on the Cleavage Specificity of Exonuclease III and on the Activity of DNA Polymerase Iâ€. Biochemistry, 2003, 42, 3239-3246.	1.2	12
52	Clampâ^'Loaderâ^'Helicase Interaction in Bacillus. Leucine 381 Is Critical for Pentamerization and Helicase Binding of the Bacillus Ï,, Protein. Biochemistry, 2003, 42, 10955-10964.	1.2	8
53	A functional interaction between the putative primosomal protein Dnal and the main replicative DNA helicase DnaB in Bacillus. Nucleic Acids Research, 2002, 30, 966-974.	6.5	42
54	Site-directed mutagenesis reveals roles for conserved amino acid residues in the hexameric DNA helicase DnaB from Bacillus stearothermophilus. Nucleic Acids Research, 2002, 30, 4051-4060.	6.5	31

PANOS SOULTANAS

#	Article	IF	CITATIONS
55	Vinylphosphonate Internucleotide Linkages Inhibit the Activity of PcrA DNA Helicase. Biochemistry, 2002, 41, 7725-7731.	1.2	21
56	The beta-propeller protein YxaL increases the processivity of the PcrA helicase. Molecular Genetics and Genomics, 2002, 267, 391-400.	1.0	20
57	Unwinding the â€~Gordian knot' of helicase action. Trends in Biochemical Sciences, 2001, 26, 47-54.	3.7	112
58	Defining the roles of individual residues in the single-stranded DNA binding site of PcrA helicase. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 8381-8387.	3.3	95
59	DNA helicases: â€~inching forward'. Current Opinion in Structural Biology, 2000, 10, 124-128.	2.6	102
60	Uncoupling DNA translocation and helicase activity in PcrA: direct evidence for an active mechanism. EMBO Journal, 2000, 19, 3799-3810.	3.5	141
61	Mapping Proteinâ^'Protein Interactions within a Stable Complex of DNA Primase and DnaB Helicase from Bacillus stearothermophilus. Biochemistry, 2000, 39, 171-182.	1.2	103
62	Site-directed mutagenesis of motif III in PcrA helicase reveals a role in coupling ATP hydrolysis to strand separation. Nucleic Acids Research, 1999, 27, 3310-3317.	6.5	89
63	Plasmid replication initiator protein RepD increases the processivity of PcrA DNA helicase. Nucleic Acids Research, 1999, 27, 1421-1428.	6.5	70
64	Crystal Structures of Complexes of PcrA DNA Helicase with a DNA Substrate Indicate an Inchworm Mechanism. Cell, 1999, 97, 75-84.	13.5	756
65	DNA binding mediates conformational changes and metal ion coordination in the active site of PcrA helicase 1 1Edited by A. R. Fersht. Journal of Molecular Biology, 1999, 290, 137-148.	2.0	110
66	Escherichia coli ribosomal protein L3 stimulates the helicase activity of the Bacillus stearothermophilus PcrA helicase. Nucleic Acids Research, 1998, 26, 2374-2379.	6.5	22
67	Site-specific Recombination atresSites Containing DNA-binding Sequences for both Tn21 and Tn3 Resolvases. Journal of Molecular Biology, 1995, 245, 208-218.	2.0	20
68	Site-specific recombination atresSites Containing DNA-binding sequences for both Tn21 Resolvase and CAP. Journal of Molecular Biology, 1995, 245, 219-227.	2.0	7
69	Modulation of human DNA methyltransferase activity and mRNA levels in the monoblast cell line U937 induced to differentiate with dibutyryl cyclic AMP and phorbol ester. Journal of Molecular Endocrinology, 1993, 11, 191-200.	1.1	3