John W Calvert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/889396/publications.pdf Version: 2024-02-01

ΙΟΗΝ Μ/ CALVERT

#	Article	IF	CITATIONS
1	A phospholipid mimetic targeting LRH-1 ameliorates colitis. Cell Chemical Biology, 2022, 29, 1174-1186.e7.	5.2	8
2	Remuscularization with triiodothyronine and \hat{l}^21 -blocker therapy reverses post-ischemic left ventricular dysfunction and adverse remodeling. Scientific Reports, 2022, 12, .	3.3	2
3	Mitochondrial H ₂ S Regulates BCAA Catabolism in Heart Failure. Circulation Research, 2022, 131, 222-235.	4.5	31
4	Harnessing the Benefits of Endogenous Hydrogen Sulfide to Reduce Cardiovascular Disease. Antioxidants, 2021, 10, 383.	5.1	12
5	Important Role of Concomitant Lymphangiogenesis for Reparative Angiogenesis in Hindlimb Ischemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2006-2018.	2.4	9
6	Adverse Effect of Circadian Rhythm Disorder on Reparative Angiogenesis in Hind Limb Ischemia. Journal of the American Heart Association, 2021, 10, e020896.	3.7	10
7	Dynamic Regulation of Cysteine Oxidation and Phosphorylation in Myocardial Ischemia–Reperfusion Injury. Cells, 2021, 10, 2388.	4.1	7
8	DJ-1 attenuates the glycation of mitochondrial complex I and complex III in the post-ischemic heart. Scientific Reports, 2021, 11, 19408.	3.3	7
9	Thyroid hormone plus dual-specificity phosphatase-5 siRNA increases the number of cardiac muscle cells and improves left ventricular contractile function in chronic doxorubicin-injured hearts. Theranostics, 2021, 11, 4790-4808.	10.0	8
10	Guidelines for in vivo mouse models of myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H1056-H1073.	3.2	53
11	Role of DJâ€1 in Modulating Glycative Stress in Heart Failure. Journal of the American Heart Association, 2020, 9, e014691.	3.7	26
12	DUSP5 expression in left ventricular cardiomyocytes of young hearts regulates thyroid hormone (T3)-induced proliferative ERK1/2 signaling. Scientific Reports, 2020, 10, 21918.	3.3	13
13	Abstract 412: DJ-1 Deficiency Impairs Post-Ischemic Cardiac Fatty Acid Oxidation. Circulation Research, 2020, 127, .	4.5	0
14	Development of the First Low Nanomolar Liver Receptor Homolog-1 Agonist through Structure-guided Design. Journal of Medicinal Chemistry, 2019, 62, 11022-11034.	6.4	21
15	Redox activation of JNK2α2 mediates thyroid hormone-stimulated proliferation of neonatal murine cardiomyocytes. Scientific Reports, 2019, 9, 17731.	3.3	17
16	Hydrogen sulfide regulates cardiac mitochondrial biogenesis via the activation of AMPK. Journal of Molecular and Cellular Cardiology, 2018, 116, 29-40.	1.9	64
17	Cardiac hypertrophy limits infarct expansion after myocardial infarction in mice. Scientific Reports, 2018, 8, 6114.	3.3	13
18	Inducing Expression of the Cleaved Form of DJ-1 Attenuates Ischemic-Induced Heart Failure. Journal of Molecular and Cellular Cardiology, 2018, 124, 116.	1.9	0

#	Article	IF	CITATIONS
19	Impact of Lymphangiogenesis on Cardiac Remodeling After Ischemia and Reperfusion Injury. Journal of the American Heart Association, 2018, 7, e009565.	3.7	43
20	PPARγ attenuates hypoxiaâ€ i nduced hypertrophic transcriptional pathways in the heart. Pulmonary Circulation, 2017, 7, 98-107.	1.7	8
21	Diallyl Trisulfide Augments Ischemia-Induced Angiogenesis via an Endothelial Nitric Oxide Synthase-Dependent Mechanism. Circulation Journal, 2017, 81, 870-878.	1.6	42
22	Exercise training provides cardioprotection by activating and coupling endothelial nitric oxide synthaseviaa β3-adrenergic receptor-AMP-activated protein kinase signaling pathway. Medical Gas Research, 2017, 7, 1.	2.3	16
23	Recycling K _{ATP} channels for cardioprotection. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H1381-H1382.	3.2	3
24	Hydrogen Sulfide Is a Novel Regulator of Bone Formation Implicated in the Bone Loss Induced by Estrogen Deficiency. Journal of Bone and Mineral Research, 2016, 31, 949-963.	2.8	91
25	Sodium Sulfide Attenuates Ischemic-Induced Heart Failure by Enhancing Proteasomal Function in an Nrf2-Dependent Manner. Circulation: Heart Failure, 2016, 9, e002368.	3.9	51
26	Leukocyte-Expressed β ₂ -Adrenergic Receptors Are Essential for Survival After Acute Myocardial Injury. Circulation, 2016, 134, 153-167.	1.6	53
27	DJ-1 protects the heart against ischemia–reperfusion injury by regulating mitochondrial fission. Journal of Molecular and Cellular Cardiology, 2016, 97, 56-66.	1.9	79
28	IGF-1 degradation by mouse mast cell protease 4 promotes cell death and adverse cardiac remodeling days after a myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6949-6954.	7.1	36
29	Adipose-Derived Stem Cells Induce Angiogenesis via Microvesicle Transport of miRNA-31. Stem Cells Translational Medicine, 2016, 5, 440-450.	3.3	176
30	Angiotensin type 2-receptor (AT2R) activation induces hypotension in apolipoprotein E-deficient mice by activating peroxisome proliferator-activated receptor-Î ³ . American Journal of Cardiovascular Disease, 2016, 6, 118-28.	0.5	5
31	Adipose-Derived Regenerative Cells for Cardiovascular Regeneration – A Novel Therapy for the Cardiac Conduction System –. Circulation Journal, 2015, 79, 2555-2556.	1.6	3
32	Hydrogen sulfide attenuates high fat diet-induced cardiac dysfunction via the suppression of endoplasmic reticulum stress. Nitric Oxide - Biology and Chemistry, 2015, 46, 145-156.	2.7	84
33	Therapeutic potential of sustained-release sodium nitrite for critical limb ischemia in the setting of metabolic syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H82-H92.	3.2	15
34	Cardiomyocytes Replicate and their Numbers Increase in Young Hearts. Cell, 2015, 163, 783-784.	28.9	14
35	Hydrogen sulfide provides cardioprotection against myocardial/ischemia reperfusion injury in the diabetic state through the activation of the RISK pathway. Medical Gas Research, 2014, 4, 20.	2.3	36
36	Treating Percutaneous Coronary Intervention-Related Myocardial Injury with Metformin. Cardiology, 2014, 127, 130-132.	1.4	0

#	Article	IF	CITATIONS
37	Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase-nitric oxide dependent. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3182-3187.	7.1	301
38	Ischemic Heart Disease and its Consequences. , 2014, , 79-100.		4
39	The Cardioprotective Actions of Hydrogen Sulfide in Acute Myocardial Infarction and Heart Failure. Scientifica, 2014, 2014, 1-8.	1.7	72
40	Nox2 targets SERCA in response to a high fat high sugar diet. Journal of Molecular and Cellular Cardiology, 2014, 72, 228-230.	1.9	0
41	A Proliferative Burst during Preadolescence Establishes the Final Cardiomyocyte Number. Cell, 2014, 157, 795-807.	28.9	233
42	Nitrite Therapy Improves Left Ventricular Function During Heart Failure via Restoration of Nitric Oxide–Mediated Cytoprotective Signaling. Circulation Research, 2014, 114, 1281-1291.	4.5	63
43	Discoveries of Hydrogen Sulfide as a Novel Cardiovascular Therapeutic. Circulation Journal, 2014, 78, 2111-2118.	1.6	30
44	The summer of hydrogen sulfide: highlights from two international conferences. Medical Gas Research, 2013, 3, 5.	2.3	4
45	Hydrogen sulfide preconditions the <i>db/db</i> diabetic mouse heart against ischemia-reperfusion injury by activating Nrf2 signaling in an Erk-dependent manner. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H1215-H1224.	3.2	149
46	Role of β-Adrenergic Receptors and Nitric Oxide Signaling in Exercise-Mediated Cardioprotection. Physiology, 2013, 28, 216-224.	3.1	31
47	Chronic exercise downregulates myocardial myoglobin and attenuates nitrite reductase capacity during ischemia–reperfusion. Journal of Molecular and Cellular Cardiology, 2013, 64, 1-10.	1.9	16
48	H ₂ S Protects Against Pressure Overload–Induced Heart Failure via Upregulation of Endothelial Nitric Oxide Synthase. Circulation, 2013, 127, 1116-1127.	1.6	302
49	Hydrogen Sulfide Attenuates Cardiac Dysfunction After Heart Failure Via Induction of Angiogenesis. Circulation: Heart Failure, 2013, 6, 1077-1086.	3.9	146
50	Thioredoxin 1 Is Essential for Sodium Sulfide–Mediated Cardioprotection in the Setting of Heart Failure. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 744-751.	2.4	54
51	Ablation of Calcineurin Aβ Reveals Hyperlipidemia and Signaling Cross-talks with Phosphodiesterases. Journal of Biological Chemistry, 2013, 288, 3477-3488.	3.4	16
52	Regulation and Maintenance of Vascular Tone and Patency in Cardiovascular Health and Disease. International Journal of Vascular Medicine, 2012, 2012, 1-2.	1.0	5
53	Bax regulates primary necrosis through mitochondrial dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6566-6571.	7.1	250
54	Exercise Protects Against Myocardial Ischemia–Reperfusion Injury via Stimulation of β ₃ -Adrenergic Receptors and Increased Nitric Oxide Signaling: Role of Nitrite and Nitrosothiols. Circulation Research, 2011, 108, 1448-1458.	4.5	179

#	Article	IF	CITATIONS
55	Beta3-Adrenoreceptor Stimulation Ameliorates Myocardial Ischemia-Reperfusion Injury Via Endothelial Nitric Oxide Synthase and Neuronal Nitric Oxide Synthase Activation. Journal of the American College of Cardiology, 2011, 58, 2683-2691.	2.8	111
56	Nitrite supplementation reverses vascular endothelial dysfunction and large elastic artery stiffness with aging. Aging Cell, 2011, 10, 429-437.	6.7	180
57	Exercise to the rescue. Journal of Physiology, 2011, 589, 5919-5920.	2.9	1
58	Acute erythropoietin cardioprotection is mediated by endothelial response. Basic Research in Cardiology, 2011, 106, 343-354.	5.9	59
59	Emergent role of gasotransmitters in ischemia-reperfusion injury. Medical Gas Research, 2011, 1, 3.	2.3	46
60	Cardioprotective effects of nitrite during exercise. Cardiovascular Research, 2011, 89, 499-506.	3.8	41
61	Acute Humanin Therapy Attenuates Myocardial Ischemia and Reperfusion Injury in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1940-1948.	2.4	131
62	Novel Insights Into Hydrogen Sulfide–Mediated Cytoprotection. Antioxidants and Redox Signaling, 2010, 12, 1203-1217.	5.4	272
63	Evolutionarily Conserved Role of Calcineurin in Phosphodegron-Dependent Degradation of Phosphodiesterase 4D. Molecular and Cellular Biology, 2010, 30, 4379-4390.	2.3	26
64	Clinical translation of nitrite therapy for cardiovascular diseases. Nitric Oxide - Biology and Chemistry, 2010, 22, 91-97.	2.7	68
65	Genetic and Pharmacologic Hydrogen Sulfide Therapy Attenuates Ischemia-Induced Heart Failure in Mice. Circulation, 2010, 122, 11-19.	1.6	285
66	Hydrogen sulfide and ischemia–reperfusion injury. Pharmacological Research, 2010, 62, 289-297.	7.1	139
67	Nitrite supplementation reverses vascular endothelial dysfunction in old mice via improved nitric oxide bioavailability. FASEB Journal, 2010, 24, 1039.6.	0.5	Ο
68	Hydrogen Sulfide Mediates Cardioprotection Through Nrf2 Signaling. Circulation Research, 2009, 105, 365-374.	4.5	652
69	Activation of AMP-Activated Protein Kinase by Metformin Improves Left Ventricular Function and Survival in Heart Failure. Circulation Research, 2009, 104, 403-411.	4.5	357
70	Developmental programming resulting from maternal obesity in mice: effects on myocardial ischaemia–reperfusion injury. Experimental Physiology, 2009, 94, 805-814.	2.0	22
71	Myocardial protection by nitrite. Cardiovascular Research, 2009, 83, 195-203.	3.8	71
72	Dietary nitrite restores NO homeostasis and is cardioprotective in endothelial nitric oxide synthase-deficient mice. Free Radical Biology and Medicine, 2008, 45, 468-474.	2.9	144

#	Article	IF	CITATIONS
73	Acute Metformin Therapy Confers Cardioprotection Against Myocardial Infarction Via AMPK-eNOS–Mediated Signaling. Diabetes, 2008, 57, 696-705.	0.6	373
74	Nitric oxide promotes distant organ protection: Evidence for an endocrine role of nitric oxide. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11430-11435.	7.1	126
75	Hydrogen sulfide attenuates hepatic ischemia-reperfusion injury: role of antioxidant and antiapoptotic signaling. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H801-H806.	3.2	272
76	Abstract 1599: Hydrogen Sulfide Mediates Myocardial Preconditioning via Upregulation of Antioxidant and Anti-Apoptotic Signaling Pathways. Circulation, 2008, 118, .	1.6	2
77	Abstract 3878: Glucagon-Like Peptide-1 Metabolite Protects the Myocardium Against Ischemia-Reperfusion Injury in Diabetes Mellitus. Circulation, 2008, 118, .	1.6	Ο
78	Dietary nitrite supplementation protects against myocardial ischemia-reperfusion injury. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19144-19149.	7.1	306
79	Thrombopoietin emerges as a new haematopoietic cytokine that confers cardioprotection against acute myocardial infarction. Cardiovascular Research, 2007, 77, 2-3.	3.8	1
80	Cytoprotective effects of <i>N</i> , <i>N</i> , <i>N</i> -trimethylsphingosine during ischemia- reperfusion injury are lost in the setting of obesity and diabetes. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H2462-H2471.	3.2	20
81	The Apoptosis Inhibitor ARC Undergoes Ubiquitin-Proteasomal-mediated Degradation in Response to Death Stimuli. Journal of Biological Chemistry, 2007, 282, 5522-5528.	3.4	52
82	Hyperbaric oxygen and cerebral physiology. Neurological Research, 2007, 29, 132-141.	1.3	83
83	Inhibition of <i>N</i> -Ethylmaleimide–Sensitive Factor Protects Against Myocardial Ischemia/Reperfusion Injury. Circulation Research, 2007, 101, 1247-1254.	4.5	29
84	Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. Journal of Experimental Medicine, 2007, 204, 2089-2102.	8.5	492
85	Oxygen treatment restores energy status following experimental neonatal hypoxia-ischemia. Pediatric Critical Care Medicine, 2007, 8, 165-173.	0.5	22
86	P53 MAY PLAY AN ORCHESTRATING ROLE IN APOPTOTIC CELL DEATH AFTER EXPERIMENTAL SUBARACHNOID HEMORRHAGE. Neurosurgery, 2007, 60, 531-545.	1,1	64
87	Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15560-15565.	7.1	996
88	Abstract 251: Endogenous Endocrine Function of Cardiac-derived Nitric Oxide Yields Distant Organ Protection Against Ischemic Injury. Circulation, 2007, 116, .	1.6	0
89	Abstract 843: Cardiomyocyte Overexpression of the Hydrogen Sulfide Producing Enzyme Cystathioine gamma-Lyase Attenuates Myocardial Ischemia-Reperfusion Injury. Circulation, 2007, 116, .	1.6	0
90	Oxygen treatment after experimental hypoxia-ischemia in neonatal rats alters the expression of HIF-1α and its downstream target genes. Journal of Applied Physiology, 2006, 101, 853-865.	2.5	73

#	Article	IF	CITATIONS
91	Statin therapy and myocardial no-reflow. British Journal of Pharmacology, 2006, 149, 229-231.	5.4	17
92	Mechanisms of Early Brain Injury after Subarachnoid Hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 1341-1353.	4.3	536
93	Neurovascular and neuronal protection by E64d after focal cerebral ischemia in rats. Journal of Neuroscience Research, 2006, 84, 832-840.	2.9	39
94	Vasospasm and p53-Induced Apoptosis in an Experimental Model of Subarachnoid Hemorrhage. Stroke, 2006, 37, 1868-1874.	2.0	97
95	Inhibition of Integrin αvβ3 Ameliorates Focal Cerebral Ischemic Damage in the Rat Middle Cerebral Artery Occlusion Model. Stroke, 2006, 37, 1902-1909.	2.0	70
96	Genetic overexpression of eNOS attenuates hepatic ischemia-reperfusion injury. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H2980-H2986.	3.2	73
97	Limited Role of Inducible Nitric Oxide Synthase in Blood–Brain Barrier Function after Experimental Subarachnoid Hemorrhage. Journal of Neurotrauma, 2006, 23, 1874-1882.	3.4	35
98	Technical note: preliminary results in development of a novel intracisternal penicillin seizure model in the rat. Frontiers in Bioscience - Landmark, 2005, 10, 3009.	3.0	1
99	Electroconvulsive therapy for seizure control: preliminary data in a new seizure generation and control model. Frontiers in Bioscience - Landmark, 2005, 10, 3013.	3.0	4
100	Role of c-Jun N-Terminal Kinase in Cerebral Vasospasm After Experimental Subarachnoid Hemorrhage. Stroke, 2005, 36, 1538-1543.	2.0	60
101	Neonatal Hypoxia/Ischemia Is Associated With Decreased Inflammatory Mediators After Erythropoietin Administration. Stroke, 2005, 36, 1672-1678.	2.0	188
102	One-Stage Anterior Approach for Four-Vessel Occlusion in Rat. Stroke, 2005, 36, 2212-2214.	2.0	36
103	Pathophysiology of an hypoxic–ischemic insult during the perinatal period. Neurological Research, 2005, 27, 246-260.	1.3	109
104	Multiple effects of hyperbaric oxygen on the expression of HIF-1α and apoptotic genes in a global ischemia–hypotension rat model. Experimental Neurology, 2005, 191, 198-210.	4.1	86
105	Neurovascular Protection Reduces Early Brain Injury After Subarachnoid Hemorrhage. Stroke, 2004, 35, 2412-2417.	2.0	264
106	New lumbar method for monitoring cerebrospinal fluid pressure in rats. Journal of Neuroscience Methods, 2004, 135, 121-127.	2.5	26
107	Transient exposure of rat pups to hyperoxia at normobaric and hyperbaric pressures does not cause retinopathy of prematurity. Experimental Neurology, 2004, 189, 150-161.	4.1	22
108	A possible role of RhoA/Rho-kinase in experimental spinal cord injury in rat. Brain Research, 2003, 959, 29-38.	2.2	109

#	Article	IF	CITATIONS
109	Inhibition of Apoptosis by Hyperbaric Oxygen in a Rat Focal Cerebral Ischemic Model. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 855-864.	4.3	158
110	Effect of hyperbaric oxygen on apoptosis in neonatal hypoxia-ischemia rat model. Journal of Applied Physiology, 2003, 95, 2072-2080.	2.5	75
111	Upregulation of small GTPase RhoA in the basilar artery from diabetic (mellitus) rats. Life Sciences, 2002, 71, 1175-1185.	4.3	29
112	Hyperbaric oxygenation prevented brain injury induced by hypoxia–ischemia in a neonatal rat model. Brain Research, 2002, 951, 1-8.	2.2	96
113	Age-related RhoA expression in blood vessels of rats. Mechanisms of Ageing and Development, 2001, 122, 1757-1770.	4.6	45