
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8893580/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanofluidics, from bulk to interfaces. Chemical Society Reviews, 2010, 39, 1073-1095.	18.7	1,121
2	Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature, 2013, 494, 455-458.	13.7	937
3	Large Slip Effect at a Nonwetting Fluid-Solid Interface. Physical Review Letters, 1999, 82, 4671-4674.	2.9	710
4	Molecular Origin of Fast Water Transport in Carbon Nanotube Membranes: Superlubricity versus Curvature Dependent Friction. Nano Letters, 2010, 10, 4067-4073.	4.5	666
5	Dynamic Clustering in Active Colloidal Suspensions with Chemical Signaling. Physical Review Letters, 2012, 108, 268303.	2.9	602
6	Flow boundary conditions from nano- to micro-scales. Soft Matter, 2007, 3, 685.	1.2	537
7	Massive radius-dependent flow slippage in carbon nanotubes. Nature, 2016, 537, 210-213.	13.7	537
8	Low-friction flows of liquid at nanopatterned interfaces. Nature Materials, 2003, 2, 237-240.	13.3	536
9	Interfacial Water at Hydrophobic and Hydrophilic Surfaces: Slip, Viscosity, and Diffusion. Langmuir, 2009, 25, 10768-10781.	1.6	433
10	Sedimentation and Effective Temperature of Active Colloidal Suspensions. Physical Review Letters, 2010, 105, 088304.	2.9	424
11	Slippage of Water Past Superhydrophobic Carbon Nanotube Forests in Microchannels. Physical Review Letters, 2006, 97, 156104.	2.9	396
12	Achieving large slip with superhydrophobic surfaces: Scaling laws for generic geometries. Physics of Fluids, 2007, 19, .	1.6	394
13	Water Slippage versus Contact Angle: A Quasiuniversal Relationship. Physical Review Letters, 2008, 101, 226101.	2.9	383
14	New avenues for the large-scale harvesting of blue energy. Nature Reviews Chemistry, 2017, 1, .	13.8	383
15	Moisture-induced ageing in granular media and the kinetics of capillary condensation. Nature, 1998, 396, 735-737.	13.7	362
16	Spatial cooperativity in soft glassy flows. Nature, 2008, 454, 84-87.	13.7	344
17	Making a splash with water repellency. Nature Physics, 2007, 3, 180-183.	6.5	335
18	Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids. Physical Review E, 1994, 49, 3079-3092.	0.8	291

LYDERIC BOCQUET

#	Article	IF	CITATIONS
19	Kinetic Theory of Plastic Flow in Soft Glassy Materials. Physical Review Letters, 2009, 103, 036001.	2.9	285
20	Particle Dynamics in Sheared Granular Matter. Physical Review Letters, 2000, 85, 1428-1431.	2.9	259
21	Hydrodynamics within the Electric Double Layer on Slipping Surfaces. Physical Review Letters, 2004, 93, 257805.	2.9	256
22	Nanofluidics coming of age. Nature Materials, 2020, 19, 254-256.	13.3	255
23	Influence of wetting properties on hydrodynamic boundary conditions at a fluid/solid interface. Faraday Discussions, 1999, 112, 119-128.	1.6	243
24	Subcontinuum mass transport of condensed hydrocarbons in nanoporous media. Nature Communications, 2015, 6, 6949.	5.8	239
25	A smooth future?. Nature Materials, 2011, 10, 334-337.	13.3	238
26	Boosting migration of large particles by solute contrasts. Nature Materials, 2008, 7, 785-789.	13.3	236
27	Linking Rheology and Printability for Dense and Strong Ceramics by Direct Ink Writing. Scientific Reports, 2017, 7, 6017.	1.6	234
28	Dynamics of simple liquids at heterogeneous surfaces: Molecular-dynamics simulations and hydrodynamic description. European Physical Journal E, 2004, 15, 427-438.	0.7	224
29	Granular shear flow dynamics and forces: Experiment and continuum theory. Physical Review E, 2001, 65, 011307.	0.8	204
30	Shear Localization in a Model Glass. Physical Review Letters, 2003, 90, 095702.	2.9	203
31	Giant Amplification of Interfacially Driven Transport by Hydrodynamic Slip: Diffusio-Osmosis and Beyond. Physical Review Letters, 2006, 96, 186102.	2.9	197
32	Dynamics of transient cavities. Journal of Fluid Mechanics, 2007, 591, 1-19.	1.4	194
33	Optimizing water permeability through the hourglass shape of aquaporins. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16367-16372.	3.3	194
34	Nanofluidics in the Debye Layer at Hydrophilic and Hydrophobic Surfaces. Physical Review Letters, 2008, 101, 114503.	2.9	186
35	A study of the static yield stress in a binary Lennard-Jones glass. Journal of Chemical Physics, 2004, 120, 2788-2801.	1.2	183
36	Liquid friction on charged surfaces: From hydrodynamic slippage to electrokinetics. Journal of Chemical Physics, 2006, 125, 204716.	1.2	178

LYDERIC BOCQUET

#	Article	IF	CITATIONS
37	Osmosis, from molecular insights to large-scale applications. Chemical Society Reviews, 2019, 48, 3102-3144.	18.7	177
38	Elastic consequences of a single plastic event: A step towards the microscopic modeling of the flow of yield stress fluids. European Physical Journal E, 2004, 15, 371-381.	0.7	174
39	Fluids at the Nanoscale: From Continuum to Subcontinuum Transport. Annual Review of Fluid Mechanics, 2021, 53, 377-410.	10.8	172
40	Molecular streaming and its voltage control in ångström-scale channels. Nature, 2019, 567, 87-90.	13.7	170
41	Intrusion and extrusion of water in hydrophobic mesopores. Journal of Chemical Physics, 2004, 120, 4927-4938.	1.2	165
42	Scaling Behavior for Ionic Transport and its Fluctuations in Individual Carbon Nanotubes. Physical Review Letters, 2016, 116, 154501.	2.9	158
43	Contact angle measurements on superhydrophobic carbon nanotube forests: Effect of fluid pressure. Europhysics Letters, 2005, 71, 104-109.	0.7	156
44	Colloidal Motility and Pattern Formation under Rectified Diffusiophoresis. Physical Review Letters, 2010, 104, 138302.	2.9	148
45	Slow flows of yield stress fluids: Complex spatiotemporal behavior within a simple elastoplastic model. Physical Review E, 2005, 71, 010501.	0.8	147
46	Large Apparent Electric Size of Solid-State Nanopores Due to Spatially Extended Surface Conduction. Nano Letters, 2012, 12, 4037-4044.	4.5	143
47	Pairwise frictional profile between particles determines discontinuous shear thickening transition in non-colloidal suspensions. Nature Communications, 2017, 8, 15633.	5.8	142
48	Probing the Nanohydrodynamics at Liquid-Solid Interfaces Using Thermal Motion. Physical Review Letters, 2006, 96, 046101.	2.9	139
49	Physics and technological aspects of nanofluidics. Lab on A Chip, 2014, 14, 3143-3158.	3.1	135
50	Effective charge saturation in colloidal suspensions. Journal of Chemical Physics, 2002, 117, 8138-8152.	1.2	133
51	Nonequilibrium Equation of State in Suspensions of Active Colloids. Physical Review X, 2015, 5, .	2.8	131
52	Nanoscale capillary freezing of ionic liquids confined between metallic interfaces and the role of electronic screening. Nature Materials, 2017, 16, 634-639.	13.3	125
53	Alexander's Prescription for Colloidal Charge Renormalization. Langmuir, 2003, 19, 4027-4033.	1.6	124
54	Aqueous Electrolytes near Hydrophobic Surfaces:  Dynamic Effects of Ion Specificity and Hydrodynamic Slip. Langmuir, 2008, 24, 1442-1450.	1.6	118

4

#	Article	IF	CITATIONS
55	Metastability and Nucleation in Capillary Condensation. Physical Review Letters, 2000, 84, 2433-2436.	2.9	117
56	Simple model for heterogeneous flows of yield stress fluids. Physical Review E, 2002, 66, 051501.	0.8	113
57	Simple Approach for Charge Renormalization in Highly Charged Macroions. Physical Review Letters, 2002, 89, 248301.	2.9	112
58	Ultralow Liquid/Solid Friction in Carbon Nanotubes: Comprehensive Theory for Alcohols, Alkanes, OMCTS, and Water. Langmuir, 2012, 28, 14261-14272.	1.6	110
59	Activated desorption at heterogeneous interfaces and long-time kinetics of hydrocarbon recovery from nanoporous media. Nature Communications, 2016, 7, 11890.	5.8	100
60	Spontaneous formation of permanent shear bands in a mesoscopic model of flowing disordered matter. Soft Matter, 2012, 8, 4197.	1.2	97
61	Ultrahigh interlayer friction in multiwalled boron nitride nanotubes. Nature Materials, 2014, 13, 688-693.	13.3	97
62	Fluctuation-induced quantum friction in nanoscale water flows. Nature, 2022, 602, 84-90.	13.7	97
63	Effective charge versus bare charge: an analytical estimate for colloids in the infinite dilution limit. Journal of Physics A, 2003, 36, 5835-5840.	1.6	95
64	Water at polar and nonpolar solid walls (Review). Biointerphases, 2008, 3, FC23-FC39.	0.6	93
65	How does a soft glassy material flow: finite size effects, non local rheology, and flow cooperativity. Soft Matter, 2010, 6, 2668.	1.2	93
66	Chemisorption of Hydroxide on 2D Materials from DFT Calculations: Graphene versus Hexagonal Boron Nitride. Journal of Physical Chemistry Letters, 2016, 7, 4695-4700.	2.1	92
67	Origins of Negative Gas Adsorption. CheM, 2016, 1, 873-886.	5.8	89
68	Modeling of emergent memory and voltage spiking in ionic transport through angstrom-scale slits. Science, 2021, 373, 687-691.	6.0	89
69	Hydrodynamic boundary conditions and correlation functions of confined fluids. Physical Review Letters, 1993, 70, 2726-2729.	2.9	86
70	Large permeabilities of hourglass nanopores: From hydrodynamics to single file transport. Journal of Chemical Physics, 2014, 141, 18C526.	1.2	86
71	Secrets of successful stone-skipping. Nature, 2004, 427, 29-29.	13.7	85
72	Probability distributions for the run-and-tumble bacterial dynamics: An analogy to the Lorentz model. European Physical Journal E, 2012, 35, 84.	0.7	85

#	Article	IF	CITATIONS
73	Osmotic Flow through Fully Permeable Nanochannels. Physical Review Letters, 2014, 112, 244501.	2.9	85
74	Electrohydraulic Power Conversion in Planar Nanochannels. Physical Review Letters, 2009, 103, 144503.	2.9	83
75	Transport and dispersion across wiggling nanopores. Nature Physics, 2018, 14, 1108-1113.	6.5	81
76	Osmotic traps for colloids and macromolecules based on logarithmic sensing in salt taxis. Soft Matter, 2012, 8, 980-994.	1.2	79
77	Connecting Diffusion and Dynamical Heterogeneities in Actively Deformed Amorphous Systems. Physical Review Letters, 2011, 106, 156001.	2.9	77
78	On the Green-Kubo relationship for the liquid-solid friction coefficient. Journal of Chemical Physics, 2013, 139, 044704.	1.2	76
79	Nanofluidic Osmotic Diodes: Theory and Molecular Dynamics Simulations. Physical Review Letters, 2013, 111, 244501.	2.9	75
80	Ion-Specific Anomalous Electrokinetic Effects in Hydrophobic Nanochannels. Physical Review Letters, 2007, 98, 177801.	2.9	74
81	Massive Amplification of Surface-Induced Transport at Superhydrophobic Surfaces. Physical Review Letters, 2008, 101, 064503.	2.9	74
82	Osmotic manipulation of particles for microfluidic applications. New Journal of Physics, 2009, 11, 075022.	1.2	72
83	Shear thinning in non-Brownian suspensions. Soft Matter, 2018, 14, 879-893.	1.2	69
84	Microscale Rheology of a Soft Glassy Material Close to Yielding. Physical Review Letters, 2012, 108, 148301.	2.9	67
85	Skipping stones. Journal of Fluid Mechanics, 2005, 543, 137.	1.4	65
86	Physics of humid granular media. Comptes Rendus Physique, 2002, 3, 207-215.	0.3	64
87	Mechanically activated ionic transport across single-digit carbon nanotubes. Nature Materials, 2020, 19, 1057-1061.	13.3	64
88	Confined flows of a polymer microgel. European Physical Journal E, 2013, 36, 30.	0.7	62
89	High friction limit of the Kramers equation: The multiple time-scale approach. American Journal of Physics, 1997, 65, 140-144.	0.3	60
90	Wetting Controls Separation of Inertial Flows from Solid Surfaces. Physical Review Letters, 2010, 104, 084503.	2.9	60

#	Article	IF	CITATIONS
91	Sub-additive ionic transport across arrays of solid-state nanopores. Physics of Fluids, 2014, 26, .	1.6	57
92	Hydrodynamic Model for a Dynamical Jammed-to-Flowing Transition in Gravity Driven Granular Media. Physical Review Letters, 2002, 89, 184301.	2.9	55
93	Inhomogeneous shear flows in soft jammed materials with tunable attractive forces. Physical Review E, 2012, 85, 021503.	0.8	55
94	Intrusion and extrusion of water in highly hydrophobic mesoporous materials: effect of the pore texture. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 241, 265-272.	2.3	54
95	Beyond the Tradeoff: Dynamic Selectivity in Ionic Transport and Current Rectification. Journal of Physical Chemistry B, 2019, 123, 1171-1185.	1.2	53
96	Labyrinthine water flow across multilayer graphene-based membranes: Molecular dynamics versus continuum predictions. Journal of Chemical Physics, 2016, 144, 234701.	1.2	51
97	Ionic Coulomb blockade as a fractional Wien effect. Nature Nanotechnology, 2019, 14, 573-578.	15.6	51
98	Carbon membranes for efficient water-ethanol separation. Journal of Chemical Physics, 2016, 145, 124708.	1.2	50
99	Dripplons as localized and superfast ripples of water confined between graphene sheets. Nature Communications, 2018, 9, 1496.	5.8	50
100	Effective interactions and phase behaviour for a model clay suspension in an electrolyte. Journal of Physics Condensed Matter, 2002, 14, 9339-9352.	0.7	49
101	Dramatic pressure-sensitive ion conduction in conical nanopores. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4063-4068.	3.3	48
102	Electrokinetics at Aqueous Interfaces without Mobile Charges. Langmuir, 2010, 26, 12614-12625.	1.6	47
103	Thermal Fluctuations in Nanofluidic Transport. Physical Review Letters, 2012, 109, 024501.	2.9	46
104	Destabilization of a flow focused suspension of magnetotactic bacteria. Physical Review Fluids, 2016, 1, .	1.0	45
105	The interplay between screening properties and colloid anisotropy: Towards a reliable pair potential for disc-like charged particles. European Physical Journal E, 2004, 15, 345-357.	0.7	44
106	A molecular dynamics study of non-local effects in the flow of soft jammed particles. Soft Matter, 2013, 9, 7489.	1.2	43
107	Anomalous capillary filling and wettability reversal in nanochannels. Physical Review E, 2016, 93, 033123.	0.8	43
108	Comment on "Large Slip of Aqueous Liquid Flow over a Nanoengineered Superhydrophobic Surface― Physical Review Letters, 2006, 97, 109601; discussion 109602.	2.9	42

#	Article	IF	CITATIONS
109	Osmotic and diffusio-osmotic flow generation at high solute concentration. I. Mechanical approaches. Journal of Chemical Physics, 2017, 146, 194701.	1.2	41
110	A kinetic elasto-plastic model exhibiting viscosity bifurcation in soft glassy materials. Soft Matter, 2011, 7, 5524.	1.2	40
111	Universal and non-universal features in coarse-grained models of flow in disordered solids. Soft Matter, 2014, 10, 4648-4661.	1.2	39
112	Boundary conditions for soft glassy flows: slippage and surface fluidization. Soft Matter, 2014, 10, 6984-6989.	1.2	38
113	The physics of stone skipping. American Journal of Physics, 2003, 71, 150-155.	0.3	37
114	Enhanced nanofluidic transport in activated carbon nanoconduits. Nature Materials, 2022, 21, 696-702.	13.3	36
115	On the Brownian motion of a massive sphere suspended in a hard-sphere fluid. II. Molecular dynamics estimates of the friction coefficient. Journal of Statistical Physics, 1994, 76, 527-548.	0.5	35
116	On the Brownian motion of a massive sphere suspended in a hard-sphere fluid. I. Multiple-time-scale analysis and microscopic expression for the friction coefficient. Journal of Statistical Physics, 1994, 76, 505-526.	0.5	34
117	Multiple time scale derivation of the Fokker-Planck equation for two Brownian spheres suspended in a hard sphere fluid. Physica A: Statistical Mechanics and Its Applications, 1995, 218, 125-144.	1.2	34
118	Osmotic and diffusio-osmotic flow generation at high solute concentration. II. Molecular dynamics simulations. Journal of Chemical Physics, 2017, 146, 194702.	1.2	34
119	Humidity effect on static aging of dry friction. Europhysics Letters, 1999, 47, 562-567.	0.7	32
120	On the fluid–fluid phase separation in charged-stabilized colloidal suspensions. Journal of Physics Condensed Matter, 2003, 15, S3523-S3536.	0.7	32
121	Theory and simulations of water flow through carbon nanotubes: prospects and pitfalls. Journal of Physics Condensed Matter, 2011, 23, 184110.	0.7	32
122	Comment on "Pumping of Confined Water in Carbon Nanotubes by Rotation-Translation Coupling― Physical Review Letters, 2010, 105, 209401; author reply 209402.	2.9	31
123	Scaling laws for slippage on superhydrophobic fractal surfaces. Physics of Fluids, 2012, 24, .	1.6	31
124	Soft Nanofluidic Transport in a Soap Film. Physical Review Letters, 2013, 110, 054502.	2.9	31
125	Interaction between charged anisotropic macromolecules: Application to rod-like polyelectrolytes. Journal of Chemical Physics, 2004, 120, 3969-3982.	1.2	30
126	Dynamical Flow Arrest in Confined Gravity Driven Flows of Soft Jammed Particles. Physical Review Letters, 2012, 109, 036001.	2.9	30

#	Article	IF	CITATIONS
127	Diffusion in pores and its dependence on boundary conditions. Journal of Physics Condensed Matter, 2005, 17, S4075-S4090.	0.7	28
128	Hydrodynamic properties of confined fluids. Journal of Physics Condensed Matter, 1996, 8, 9297-9300.	0.7	27
129	Crossover of the Power-Law Exponent for Carbon Nanotube Conductivity as a Function of Salinity. Journal of Physical Chemistry B, 2018, 122, 2992-2997.	1.2	27
130	Thermal fluctuations of hydrodynamic flows in nanochannels. Physical Review E, 2013, 88, 012106.	0.8	26
131	Nanorheology of Interfacial Water during Ice Gliding. Physical Review X, 2019, 9, .	2.8	26
132	Diffusion-controlled reactions: A revisit of Noyes' theory. Journal of Chemical Physics, 2001, 114, 6265-6275.	1.2	25
133	Where does a cohesive granular heap break?. European Physical Journal E, 2004, 14, 177-183.	0.7	25
134	Interfacial transport with mobile surface charges and consequences for ionic transport in carbon nanotubes. European Physical Journal E, 2018, 41, 148.	0.7	25
135	Adsorption Kinetics in Open Nanopores as a Source of Low-Frequency Noise. Nano Letters, 2019, 19, 7265-7272.	4.5	25
136	Diffusive Motion in Confined Fluids: Mode-Coupling Results and Molecular-Dynamics Calculations. Europhysics Letters, 1995, 31, 455-460.	0.7	24
137	Slow kinetics of capillary condensation in confined geometry: experiment and theory. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 206, 69-77.	2.3	23
138	Experiments on Tracer Diffusion in Thin Free-Standing Liquid-Crystal Films. Physical Review Letters, 1997, 79, 4922-4925.	2.9	22
139	Electrostatic potential around charged finite rodlike macromolecules: nonlinear Poisson–Boltzmann theory. Journal of Colloid and Interface Science, 2005, 285, 609-618.	5.0	22
140	Electronic screening using a virtual Thomas–Fermi fluid for predicting wetting and phase transitions of ionic liquids at metal surfaces. Nature Materials, 2022, 21, 237-245.	13.3	22
141	Amorphization of a substitutional binary alloy: a computer 'experiment'. Journal of Physics Condensed Matter, 1992, 4, 2375-2387.	0.7	21
142	Microscopic derivation of non-Markovian thermalization of a Brownian particle. Journal of Statistical Physics, 1997, 87, 1005-1035.	0.5	21
143	Nucleation in Hydrophobic Cylindrical Pores: A Lattice Modelâ€. Journal of Physical Chemistry B, 2005, 109, 6520-6526.	1.2	21
144	Size Dependence of Tracer Diffusion in a Laponite Colloidal Gel. Langmuir, 2009, 25, 12048-12055.	1.6	20

#	Article	lF	CITATIONS
145	How a "pinch of salt―can tune chaotic mixing of colloidal suspensions. Soft Matter, 2014, 10, 4795.	1.2	20
146	Friction tensor for a pair of Brownian particles: Spurious finite-size effects and molecular dynamics estimates. Journal of Statistical Physics, 1997, 89, 321-346.	0.5	19
147	Polymer and surface roughness effects on the drag crisis for falling spheres. European Physical Journal B, 2007, 60, 469-476.	0.6	19
148	Using surface force apparatus, diffusion and velocimetry to measure slip lengths. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 1455-1468.	1.6	19
149	Entrance effects in concentration-gradient-driven flow through an ultrathin porous membrane. Journal of Chemical Physics, 2019, 151, 044705.	1.2	19
150	Velocity Condensation for Magnetotactic Bacteria. Physical Review Letters, 2016, 116, 168101.	2.9	18
151	Analytical estimation of effective charges at saturation in PoissonÂBoltzmann cell models. Journal of Physics Condensed Matter, 2003, 15, S291-S296.	0.7	16
152	Electrostatic interactions between ions near Thomas–Fermi substrates and the surface energy of ionic crystals at imperfect metals. Faraday Discussions, 2017, 199, 129-158.	1.6	16
153	The anatomy of a crease, from folding to ironing. Soft Matter, 2012, 8, 3342.	1.2	15
154	Flows in one-dimensional and two-dimensional carbon nanochannels: Fast and curious. MRS Bulletin, 2017, 42, 278-282.	1.7	15
155	Dynamics of Fakir Liquids: from Slip to Splash. Journal of Adhesion Science and Technology, 2008, 22, 335-351.	1.4	13
156	Phonon modes for faster flow. Nature Nanotechnology, 2015, 10, 657-658.	15.6	13
157	Atomic rheology of gold nanojunctions. Nature, 2019, 569, 393-397.	13.7	13
158	Local and global force balance for diffusiophoretic transport. Journal of Fluid Mechanics, 2020, 892,	1.4	13
159	Tasting edge effects. American Journal of Physics, 2007, 75, 148-150.	0.3	12
160	Reduction of dimensionality in a diffusion search process and kinetics of gene expression. Physica A: Statistical Mechanics and Its Applications, 2000, 277, 71-82.	1.2	11
161	Electrostatic interaction of neutral semi-permeable membranes. Journal of Chemical Physics, 2012, 136, 034902.	1.2	11
162	Ultrafast photomechanical transduction through thermophoretic implosion. Nature Communications, 2020, 11, 50.	5.8	11

#	Article	lF	CITATIONS
163	Soft matter principles of microfluidics. Soft Matter, 2012, 8, 10527.	1.2	10
164	Bubbles as osmotic membranes. Nature Nanotechnology, 2014, 9, 249-251.	15.6	10
165	Chemisorbed vs physisorbed surface charge and its impact on electrokinetic transport: Carbon vs boron nitride surface. Journal of Chemical Physics, 2022, 156, 044703.	1.2	10
166	Influence of wetting properties on diffusion in a confined fluid. European Physical Journal Special Topics, 2000, 10, Pr7-27-Pr7-31.	0.2	9
167	Ultra-sensitive flow measurement in individual nanopores through pressure – driven particle translocation. Nanoscale, 2015, 7, 7965-7970.	2.8	9
168	The Landau–Squire plume. Journal of Fluid Mechanics, 2017, 826, .	1.4	9
169	Active Osmotic Exchanger for Efficient Nanofiltration Inspired by the Kidney. Physical Review X, 2016, 6, .	2.8	8
170	Active sieving across driven nanopores for tunable selectivity. Journal of Chemical Physics, 2017, 147, 154701.	1.2	8
171	Nanotribology of Ionic Liquids: Transition to Yielding Response in Nanometric Confinement with Metallic Surfaces. Physical Review X, 2020, 10, .	2.8	8
172	Phenomenological Study of Hysteresis in Quasistatic Friction. Journal De Physique, I, 1997, 7, 1603-1625.	1.2	8
173	Thermally activated dynamics of capillary condensation. Journal of Physics Condensed Matter, 2000, 12, A419-A424.	0.7	6
174	MicroMegascope. Nanotechnology, 2018, 29, 355501.	1.3	6
175	MicroMegascope based dynamic surface force apparatus. Nanotechnology, 2019, 30, 195502.	1.3	6
176	Studying polymer diffusiophoresis with non-equilibrium molecular dynamics. Journal of Chemical Physics, 2020, 152, 164901.	1.2	6
177	Resonant osmosis across active switchable membranes. Journal of Chemical Physics, 2020, 152, 054704.	1.2	5
178	Blocking of metastable phase formation by an external field. Physical Review E, 1994, 49, 1883-1887.	0.8	4
179	The mystery of the skipping stone. Physics World, 2006, 19, 29-31.	0.0	4
180	Effets Électrocinétiques sur Surfaces Glissantes. Houille Blanche, 2006, 92, 53-58.	0.3	4

LYDERIC BOCQUET

#	Article	IF	CITATIONS
181	A kinetic model for Brownian motion. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1994, 16, 981-991.	0.4	3
182	A flux monitoring method for easy and accurate flow rate measurement in pressure-driven flows. Lab on A Chip, 2012, 12, 872.	3.1	3
183	Electrotunable wetting, and micro- and nanofluidics: general discussion. Faraday Discussions, 2017, 199, 195-237.	1.6	2
184	From Paris to Lyon, and from simple to complex liquids: a view on Jean-Pierre Hansen's contribution. Molecular Physics, 2015, 113, 2378-2382.	0.8	1
185	Life on the osmotic slopes. Nature Physics, 2021, 17, 763-764.	6.5	1
186	Dynamics of Colloidal Systems: Beyond the Stochastic Approach. , 2000, , 1-16.		1
187	Un moteur à l'eau de mer pour déplacer des particules micrométriques. , 2013, , 10-15.	0.1	1
188	Hydrodynamic slippage of water at surfaces. , 2017, , .		1
189	Humidity Effects and Aging Behavior in Granular Media. Materials Research Society Symposia Proceedings, 1998, 543, 363.	0.1	0
190	Stress fluctuations, static yield stress, and shear banding in a flowing Lennard-Jones glass. , 2004, 5469, 209.		0
191	Tracer Diffusion in a Soft Glassy Material. AIP Conference Proceedings, 2008, , .	0.3	0
192	FIB Design for Nanofluidic Applications. Lecture Notes in Nanoscale Science and Technology, 2013, , 373-389.	0.4	0
193	Nanotribology and voltage-controlled friction: general discussion. Faraday Discussions, 2017, 199, 349-376.	1.6	0
194	Nanohydrodynamique près d'une surface solideÂ: caractérisation expérimentale à l'équilibre. Hou Blanche, 2008, 94, 83-90.	uille 0.3	0
195	Dynamics Of Fakir Liquids: From Slip To Splash. , 0, , 73-90.		0