List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8893385/publications.pdf

Version: 2024-02-01



Ιμανι Ι Νουολ

| #  | Article                                                                                                                                                                                                                                                                                           | IF            | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|
| 1  | Origin of the magnetic couplings for the weak ferromagnet Li+[TCNE]•- (TCNEÂ=ÂTetracyanoethylene).<br>Polyhedron, 2022, 221, 115871.                                                                                                                                                              | 2.2           | 0         |
| 2  | Insights into the magnetism and phase transitions of organic radical-based materials. Journal of<br>Materials Chemistry C, 2021, 9, 10624-10646.                                                                                                                                                  | 5.5           | 27        |
| 3  | Pitfalls on evaluating pair exchange interactions for modelling molecule-based magnetism. Journal of<br>Materials Chemistry C, 2021, 9, 10647-10660.                                                                                                                                              | 5.5           | 7         |
| 4  | Low temperature structures and magnetic interactions in the organic-based ferromagnetic and<br>metamagnetic polymorphs of decamethylferrocenium 7,7,8,8-tetracyano-p-quinodimethanide,<br>[FeCp*2]Ë™+[TCNQ]Ë™â^'. Dalton Transactions, 2021, 50, 11228-11242.                                     | 3.3           | 6         |
| 5  | Assessing Cu2L2X4 dimeric moieties as ferromagnetic building blocks in double halide-bridged<br>polymers (XÂ=ÂClâ^', Brâ^' and LÂ=Âbenzamide). An experimental and computational study. Polyhedron, 2020,<br>185, 114603.                                                                         | 2.2           | 2         |
| 6  | Two different mechanisms of stabilization of regular ï€-stacks of radicals in switchable<br>dithiazolyl-based materials. Journal of Materials Chemistry C, 2020, 8, 5437-5448.                                                                                                                    | 5.5           | 7         |
| 7  | Reorganization of Intermolecular Interactions in the Polymorphic Phase Transition of a Prototypical Dithiazolyl-Based Bistable Material. Crystal Growth and Design, 2019, 19, 2329-2339.                                                                                                          | 3.0           | 7         |
| 8  | The magnetic fingerprint of dithiazolyl-based molecule magnets. Physical Chemistry Chemical Physics, 2018, 20, 20406-20416.                                                                                                                                                                       | 2.8           | 16        |
| 9  | Understanding room-temperature π-dimerisation of radical ions: intramolecular<br>Ï€-[TTF] <sub>2</sub> <sup>2+</sup> in functionalised calix[4]arenes. Physical Chemistry Chemical<br>Physics, 2017, 19, 3807-3819.                                                                               | 2.8           | 7         |
| 10 | Bistability in Organic Magnetic Materials: A Comparative Study of the Key Differences between<br>Hysteretic and Nonâ€hysteretic Spin Transitions in Dithiazolyl Radicals. Chemistry - A European Journal,<br>2017, 23, 3479-3489.                                                                 | 3.3           | 26        |
| 11 | Ferromagnetic Exchange in Bichloride Bridged Cu(II) Chains: Magnetostructural Correlations between Ordered and Disordered Systems. Inorganic Chemistry, 2017, 56, 5441-5454.                                                                                                                      | 4.0           | 10        |
| 12 | Origin of Bistability in the Butyl‣ubstituted Spirobiphenalenylâ€Based Neutral Radical Material.<br>Chemistry - A European Journal, 2017, 23, 7772-7784.                                                                                                                                          | 3.3           | 10        |
| 13 | Formation of Long, Multicenter Ï€â€{TCNE] <sub>2</sub> <sup>2â^'</sup> Dimers in Solution: Solvation<br>and Stability Assessed through Molecular Dynamics Simulations. Chemistry - A European Journal, 2016,<br>22, 17037-17046.                                                                  | 3.3           | 7         |
| 14 | The Tetracyanopyridinide Dimer Dianion, Ïfâ€{TCNPy] 2 2â^'. Chemistry - A European Journal, 2016, 22,<br>12312-12315.                                                                                                                                                                             | 3.3           | 3         |
| 15 | A New Conformation With an Extraordinarily Long, 3.04â€Ã Twoâ€Electron, Sixâ€Center Bond Observed for<br>the Ï€â€{TCNE] <sub>2</sub> csup>2â^² Dimer in [NMe <sub>4</sub> ] <sub>2</sub> [TCNE] <sub>2</sub><br>(TCNE=Tetracyanoethylene). Chemistry - A European Journal, 2015, 21, 13240-13245. | 9 3.3         | 9         |
| 16 | Orientational Preference of Long, Multicenter Bonds in Radical Anion Dimers: A Case Study of<br>ï€â€{TCNB] <sub>2</sub> <sup>2â^'</sup> and ï€â€{TCNP] <sub>2</sub> <sup>2â^'</sup> . Chemistry - A Europe<br>Journal, 2015, 21, 6420-6432.                                                       | a <b>s.</b> 3 | 14        |
| 17 | Electronic Excitation Energies in Dimers between Radical Ions Presenting Long, Multicenter Bonding.<br>Journal of Chemical Theory and Computation, 2015, 11, 2651-2660.                                                                                                                           | 5.3           | 6         |
| 18 | The nature of the C–Brâ<-Br–C intermolecular interactions found in molecular crystals: a general theoretical-database study. CrystEngComm, 2015, 17, 3354-3365.                                                                                                                                   | 2.6           | 32        |

| #  | Article                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Unravelling the Key Driving Forces of the Spin Transition in π-Dimers of Spiro-biphenalenyl-Based<br>Radicals. Journal of the American Chemical Society, 2015, 137, 12843-12855.                                                                             | 13.7 | 20        |
| 20 | Dynamical effects on the magnetic properties of dithiazolyl bistable materials. Chemical Science, 2015, 6, 2371-2381.                                                                                                                                        | 7.4  | 34        |
| 21 | Elucidating the 2D Magnetic Topology of the â€~Metal–Radical' TTTAâ‹Cu(hfac) <sub>2</sub> System.<br>Chemistry - A European Journal, 2014, 20, 7083-7090.                                                                                                    | 3.3  | 16        |
| 22 | On the Importance of Thermal Effects and Crystalline Disorder in the Magnetism of<br>Benzotriazinylâ€Đerived Organic Radicals. Chemistry - an Asian Journal, 2014, 9, 3612-3622.                                                                             | 3.3  | 14        |
| 23 | <i>S</i> =1/2 Oneâ€Dimensional Randomâ€Exchange Ferromagnetic Zigzag Ladder, Which Exhibits Competing<br>Interactions in a Critical Regime. Chemistry - A European Journal, 2014, 20, 8355-8362.                                                             | 3.3  | 15        |
| 24 | Multistep Ï€ Dimerization of Tetrakis( <i>n</i> â€decyl)heptathienoacene Radical Cations: A Combined<br>Experimental and Theoretical Study. Chemistry - A European Journal, 2014, 20, 10351-10359.                                                           | 3.3  | 12        |
| 25 | Insights into the crystal-packing effects on the spin crossover of<br>[Fe <sup>II</sup> (1-bpp)] <sup>2+</sup> -based materials. Physical Chemistry Chemical Physics, 2014, 16,<br>27012-27024.                                                              | 2.8  | 57        |
| 26 | Diradicals acting through diamagnetic phenylene vinylene bridges: Raman spectroscopy as a probe to characterize spin delocalization. Journal of Chemical Physics, 2014, 140, 164903.                                                                         | 3.0  | 6         |
| 27 | The nature of the C–Clâ< Cl–C intermolecular interactions found in molecular crystals: a general theoretical-database study covering the 2.75–4.0 à range. CrystEngComm, 2014, 16, 8232-8242.                                                                | 2.6  | 34        |
| 28 | The polymorphism of a triarylphosphine oxide: a case of missing isomers. CrystEngComm, 2014, 16, 8214-8223.                                                                                                                                                  | 2.6  | 1         |
| 29 | Assessing the Performance of CASPT2 and DFT Methods for the Description of Long, Multicenter<br>Bonding in Dimers between Radical Ions. Journal of Chemical Theory and Computation, 2014, 10,<br>650-658.                                                    | 5.3  | 29        |
| 30 | The key role of vibrational entropy in the phase transitions of dithiazolyl-based bistable magnetic materials. Nature Communications, 2014, 5, 4411.                                                                                                         | 12.8 | 55        |
| 31 | Structure and Properties of Nitrogen-Rich 1,4-Dicyanotetrazine, C <sub>4</sub> N <sub>6</sub> : A<br>Comparative Study with Related Tetracyano Electron Acceptors. Journal of Organic Chemistry, 2014,<br>79, 8189-8201.                                     | 3.2  | 5         |
| 32 | The Origin of the Room-Temperature Stability of [TTF].+â‹â‹â‹[TTF].+Long, Multicenter Bonds Found in<br>Functionalized π-[R-TTF]22+Dimers Included in the Cucurbit[8]uril Cavity. Chemistry - A European<br>Journal, 2014, 20, 7784-7795.                    | 3.3  | 12        |
| 33 | A theoretical analysis of the magnetic properties of the low-dimensional<br>copper(II)X2(2-X-3-methylpyridine)2 (X = Cl and Br) complexes. Highlights in Theoretical Chemistry, 2014,<br>, 219-230.                                                          | 0.0  | Ο         |
| 34 | Preface to the ESPA-2012 special issue. Theoretical Chemistry Accounts, 2013, 132, 1.                                                                                                                                                                        | 1.4  | 0         |
| 35 | Keys for the Existence of Stable Dimers of Bis-tetrathiafulvalene (bis-TTF)-Functionalized Molecular<br>Clips Presenting [TTF]•+··Î[TTF]•+ Long, Multicenter Bonds at Room Temperature. Journal of the<br>American Chemical Society, 2013, 135, 13814-13826. | 13.7 | 30        |
| 36 | Dividing the Spoils: Role of Pyrazine Ligands and Perchlorate Counterions in the Magnetic Properties of Bis(pyrazine)diperchloratecopper(II), [Cu(pz) <sub>2</sub> ](ClO <sub>4</sub> ) <sub>2</sub> .<br>Inorganic Chemistry, 2013, 52, 12923-12932.        | 4.0  | 22        |

| #  | Article                                                                                                                                                                                                                                                          | IF                 | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------|
| 37 | A theoretical analysis of the magnetic properties of the low-dimensional<br>copper(II)X2(2-X-3-methylpyridine)2 (XÂ=ÂCl and Br) complexes. Theoretical Chemistry Accounts, 2013, 132,<br>1.                                                                      | 1.4                | 4         |
| 38 | A theoretical analysis of the magnetic properties of the low dimensional<br>bis(2-chloropyrazine)dichlorocopper(II) molecule-based magnet. Polyhedron, 2013, 64, 163-171.                                                                                        | 2.2                | 2         |
| 39 | Assigning the dimensionality in low-dimensional materials: A rigorous study of the dimensionality of (2,5-dimethylpyrazine)CuCl2. Polyhedron, 2013, 52, 699-705.                                                                                                 | 2.2                | 6         |
| 40 | Impact of short and long-range effects on the magnetic interactions in neutral organic radical-based materials. Physical Chemistry Chemical Physics, 2013, 15, 6982.                                                                                             | 2.8                | 18        |
| 41 | Evidence for Multicenter Bonding in Dianionic Tetracyanoethylene Dimers by Raman Spectroscopy.<br>Angewandte Chemie - International Edition, 2013, 52, 6421-6425.                                                                                                | 13.8               | 33        |
| 42 | Evidence for Multicenter Bonding in Dianionic Tetracyanoethylene Dimers by Raman Spectroscopy.<br>Angewandte Chemie, 2013, 125, 6549-6553.                                                                                                                       | 2.0                | 13        |
| 43 | Are the phenyl embrace motifs between Ph <sub>4</sub> P <sup>+</sup> cations in crystals attractive?<br>An accurate theoretical evaluation. CrystEngComm, 2012, 14, 792-798.                                                                                     | 2.6                | 9         |
| 44 | Synthesis, Structure, Magnetic Behavior, and Theoretical Analysis of Diazine-Bridged Magnetic<br>Ladders: Cu(quinoxoline)X2 and Cu(2,3-dimethylpyrazine)X2 (X = Cl, Br). Inorganic Chemistry, 2012, 51,<br>6315-6325.                                            | 4.0                | 27        |
| 45 | Tracing the Sources of the Different Magnetic Behavior in the Two Phases of the Bistable<br>(BDTA) <sub>2</sub> [Co(mnt) <sub>2</sub> ] Compound. Inorganic Chemistry, 2012, 51, 8646-8648.                                                                      | 4.0                | 12        |
| 46 | The Nature of the [TTF] <sup>.+</sup> â‹â‹[TTF] <sup>.+</sup> Interactions in the<br>[TTF] <sub>2</sub> <sup>2+</sup> Dimers Embedded in Charged [3]Catenanes: Roomâ€Temperature<br>Multicenter Long Bonds. Chemistry - A European Journal, 2012, 18, 5335-5344. | 3.3                | 22        |
| 47 | Substituent and counterion effects on the formation of ï€-dimer dications of end-capped heptathienoacenes. Chemical Communications, 2011, 47, 12622.                                                                                                             | 4.1                | 14        |
| 48 | Tunneling versus Hopping in Mixed-Valence Oligo- <i>p</i> -phenylenevinylene Polychlorinated<br>Bis(triphenylmethyl) Radical Anions. Journal of the American Chemical Society, 2011, 133, 5818-5833.                                                             | 13.7               | 81        |
| 49 | Cation–Anion Hydrogen Bonds: A New Class of Hydrogen Bonds That Extends Their Strength beyond<br>the Covalent Limit. A Theoretical Characterization. Journal of Physical Chemistry A, 2011, 115,<br>13114-13123.                                                 | 2.5                | 23        |
| 50 | Calculation of microscopic exchange interactions and modelling of macroscopic magnetic properties in molecule-based magnets. Chemical Society Reviews, 2011, 40, 3182.                                                                                           | 38.1               | 77        |
| 51 | Theoretical evaluation of the nature and strength of the F···F intermolecular interactions present in<br>fluorinated hydrocarbons. Theoretical Chemistry Accounts, 2011, 128, 541-553.                                                                           | 1.4                | 58        |
| 52 | Unusually Long, Multicenter, Cation <sup>δ+</sup> â‹â‹â‹Anion <sup>δâ~'</sup> Bonding Observed for Seve<br>Polymorphs of [TTF][TCNE]. Chemistry - A European Journal, 2011, 17, 9326-9341.                                                                       | ral <sub>3.3</sub> | 18        |
| 53 | Design and Preparation of Coâ€crystals Utilizing the \${{f R}{{ f 2hfill atop f 4hfill}}}\$(8)<br>Hydrogenâ€Bonding Motif. Chemistry - A European Journal, 2010, 16, 9047-9055.                                                                                  | 3.3                | 12        |
| 54 | Studying the Origin of the Antiferromagnetic to Spinâ€Canting Transition in the<br>βâ€ <i>p</i> â€NCC <sub>6</sub> F <sub>4</sub> CNSSN <sup>.</sup> Molecular Magnet. Chemistry - A Europea<br>Iournal. 2010. 16. 2741-2750.                                    | n 3.3              | 51        |

| #  | Article                                                                                                                                                                                                                                         | IF                | CITATIONS          |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|
| 55 | First-Principles Bottom-Up Study of 1D to 3D Magnetic Transformation in the Copper Pyrazine Dinitrate<br>S = 1/2 Antiferromagnetic Crystal. Inorganic Chemistry, 2010, 49, 1750-1760.                                                           | 4.0               | 33                 |
| 56 | The Magnetism of (5MAP) <sub>2</sub> CuBr <sub>4</sub> [5MAP = 5-Methyl-2-aminopyridinium]: A<br>Quasi-2D or a 3D Magnetic System?. Inorganic Chemistry, 2010, 49, 8017-8024.                                                                   | 4.0               | 13                 |
| 57 | Origin of the Magnetic Bistability in Molecule-Based Magnets: A First-Principles Bottom-Up Study of the TTTA Crystal. Journal of the American Chemical Society, 2010, 132, 17817-17830.                                                         | 13.7              | 61                 |
| 58 | A theoretical investigation of the oxidation states of palladium complexes and their role in the carbonylation reaction. Molecular Physics, 2010, 108, 1619-1640.                                                                               | 1.7               | 5                  |
| 59 | Oxidation of End apped Pentathienoacenes and Characterization of Their Radical Cations. Chemistry -<br>A European Journal, 2009, 15, 12346-12361.                                                                                               | 3.3               | 17                 |
| 60 | Long, multicenter bonding in π-[terthiophene] 2 2+ dimers. Theoretical Chemistry Accounts, 2009, 123,<br>137-143.                                                                                                                               | 1.4               | 8                  |
| 61 | The origin of the bistability in the thiazyl radical 1,3,5-trithia-2,4,6-triazapentalenyl (TTTA): A first principles bottom-up investigation of the magnetic properties of its high temperature polymorph. Polyhedron, 2009, 28, 1614-1619.     | 2.2               | 10                 |
| 62 | On the existence of temperature induced changes in the magnetic topology of crystals that show no first-order crystallographic phase transitions. Polyhedron, 2009, 28, 1965-1971.                                                              | 2.2               | 17                 |
| 63 | Theoretical Study of the Electronic Structure of [TCNQ] <sub>2</sub> <sup>2â^'</sup> (TCNQ =) Tj ETQq1 1 0.3<br>Solution and the Solid State. Journal of Physical Chemistry A, 2009, 113, 7124-7132.                                            | 784314 rgE<br>2.5 | 3T /Overlock<br>39 |
| 64 | Structure and Magnetic Interactions in the Organic-Based Ferromagnet Decamethylferrocenium<br>Tetracyanoethenide, [FeCp*2]•+[TCNE]•â^'. Inorganic Chemistry, 2009, 48, 3296-3307.                                                               | 4.0               | 34                 |
| 65 | The Tetracyanopyrazinide Dimer Dianion, [TCNP] <sub>2</sub> <sup>2â^`</sup> . 2-Electron 8-Center<br>Bonding. Journal of the American Chemical Society, 2009, 131, 9070-9075.                                                                   | 13.7              | 41                 |
| 66 | Comparative Analysis of the Multicenter, Long Bond in [TCNE] <sup>·â^'</sup> and Phenalenyl Radical<br>Dimers: A Unified Description of Multicenter, Long Bonds. Journal of the American Chemical Society,<br>2009, 131, 7699-7707.             | 13.7              | 122                |
| 67 | Theoretical Study of the Electronic Structure of [Tetrathiafulvalene]22+ Dimers and Their Long,<br>Intradimer Multicenter Bonding in Solution and the Solid State. Journal of Physical Chemistry A, 2009,<br>113, 484-492.                      | 2.5               | 55                 |
| 68 | Strong through-space two-halide magnetic exchange of â^'234 K in (2,5-dimethylpyrazine)copper(ii)<br>bromide. Chemical Communications, 2009, , 1359.                                                                                            | 4.1               | 35                 |
| 69 | Metallocenium Salts of Nickel Bis(α-thiophenedithiolate) [M(Cp*)2][Ni(α-tpdt)2] (M = Fe, Mn, Cr) -<br>Metamagnetism and Magnetic Frustration. European Journal of Inorganic Chemistry, 2008, 2008,<br>5327-5337.                                | 2.0               | 14                 |
| 70 | Study of the magnetic exchange within the cluster polymer [NaCu6(gly)8(ClO4)3(H2O)]n(ClO4)2n.<br>Inorganica Chimica Acta, 2008, 361, 3919-3925.                                                                                                 | 2.4               | 10                 |
| 71 | A first-principles bottom-up study of the magnetic interaction mechanism in the bulk ferromagnet p-O2N-C6F4-CNSSN. Inorganica Chimica Acta, 2008, 361, 3586-3592.                                                                               | 2.4               | 7                  |
| 72 | On the hydrogen bond nature of the C–Hâ< <sup>-</sup> F interactions in molecular crystals. An exhaustive<br>investigation combining a crystallographic database search and ab initio theoretical calculations.<br>CrystEngComm, 2008, 10, 423. | 2.6               | 121                |

| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | [Cyanil]22â^ dimers possess long, two-electron ten-center (2eâ^ /10c) multicenter bonding. Physical<br>Chemistry Chemical Physics, 2008, 10, 4106.                                                                                               | 2.8  | 31        |
| 74 | From Bonds to Packing: An Energy-Based Crystal Packing Analysis for Molecular Crystals Packing<br>Analysis for Molecular Crystals. NATO Science for Peace and Security Series B: Physics and Biophysics,<br>2008, , 307-332.                     | 0.3  | 2         |
| 75 | Synthesis, Structure, and Magnetic Properties of an Antiferromagnetic Spin-Ladder Complex:Â<br>Bis(2,3-dimethylpyridinium) Tetrabromocuprate. Journal of the American Chemical Society, 2007, 129,<br>952-959.                                   | 13.7 | 121       |
| 76 | Structure and Stability of the [TCNE] <sub>2</sub> <sup>2-</sup> Dimers in Dichloromethane Solution:<br>A Computational Study. Journal of Physical Chemistry A, 2007, 111, 8020-8027.                                                            | 2.5  | 39        |
| 77 | Four-Center Carbonâ^'Carbon Bonding. Accounts of Chemical Research, 2007, 40, 189-196.                                                                                                                                                           | 15.6 | 164       |
| 78 | The mechanism for the reversible oxygen addition to heme. A theoretical CASPT2 study. Chemical Communications, 2007, , 3160.                                                                                                                     | 4.1  | 40        |
| 79 | Synthesis, Structure, and Magnetic Behavior of Bis(2-amino-5-fluoropyridinium)<br>Tetrachlorocuprate(II). Inorganic Chemistry, 2007, 46, 11254-11265.                                                                                            | 4.0  | 57        |
| 80 | Control of Two-Electron Four-Center (2e-/4c) Câ^'C Bond Formation Observed for Tetracyanoethenide<br>Dimerization, [TCNE]22 Inorganic Chemistry, 2007, 46, 103-107.                                                                              | 4.0  | 17        |
| 81 | The origin of the two-electron/four-centers Cī£¿C bond in Ï€-TCNE22â^' dimers: Electrostatic or dispersion?. Journal of Computational Chemistry, 2007, 28, 326-334.                                                                              | 3.3  | 37        |
| 82 | A theoretical study of the magnetism of the α-p-cyano-tetrafluorophenyl-dithiadiazolyl radical using a<br>first principles bottom-up procedure. Polyhedron, 2007, 26, 1949-1958.                                                                 | 2.2  | 32        |
| 83 | Theoretical study of the magnetism in molecular crystals using a first-principles bottom-up methodol.<br>Progress in Theoretical Chemistry and Physics, 2007, , 271-289.                                                                         | 0.2  | 15        |
| 84 | The Nature of the C–H·Â·Â·X Intermolecular Interactions in Molecular Crystals. A Theoretical<br>Perspective. , 2006, , 193-244.                                                                                                                  |      | 12        |
| 85 | A DFT computational study of the mechanism of butadiene carbonylation catalyzed by palladium complexes. Molecular Physics, 2006, 104, 805-831.                                                                                                   | 1.7  | 2         |
| 86 | Analysis of the magneto-structural correlations in the meso-tetraphenylporphyrinatomanganese(iii)<br>tetracyanoethenide family of molecule-based magnets. Journal of Materials Chemistry, 2006, 16,<br>2600-2611.                                | 6.7  | 33        |
| 87 | Bulk ferromagnetism in nitronyl nitroxide crystals: a first principles bottom-up comparative study of<br>four bulk nitronyl nitroxide ferromagnets (KAXHAS, YOMYII, LICMIT and YUJNEW). Molecular Physics,<br>2006, 104, 857-873.                | 1.7  | 20        |
| 88 | The mechanism of transition metal catalyzed carbonylation of allyl halides: A theoretical investigation. Journal of Organometallic Chemistry, 2006, 691, 4498-4507.                                                                              | 1.8  | 9         |
| 89 | The nature of the Aul Aul Interactions between Cationic [AuL2]+ Complexes in the Solid State.<br>Theoretical Chemistry Accounts, 2006, 116, 472-479.                                                                                             | 1.4  | 12        |
| 90 | Direct versus Mediated Through-Space Magnetic Interactions: A First Principles, Bottom-Up<br>Reinvestigation of the Magnetism of the Pyridyl-Verdazyl:Hydroquinone Molecular Co-Crystal.<br>Chemistry - A European Journal, 2006, 12, 3995-4005. | 3.3  | 59        |

| #   | Article                                                                                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Generalized Stone-Wales transformation as the possible origin of ferromagnetism in polymeric C60: A density-functional theory study. Journal of Chemical Physics, 2006, 125, 174312.                                                                                                                                                 | 3.0  | 4         |
| 92  | Ferromagnetism in pressed polymerizedC60solids induced byC60cage vacancies: A density-functional study. Physical Review B, 2006, 73, .                                                                                                                                                                                               | 3.2  | 9         |
| 93  | Quantitative analysis of the magnetism of the meta-(methoxy)phenyl nitronyl nitroxide crystal: A<br>bottom–up analysis of a crystal presenting competing ferro and antiferromagnetic interactions.<br>Polyhedron, 2005, 24, 2368-2376.                                                                                               | 2.2  | 5         |
| 94  | Solvent-mediated intermolecular bonds: cation–cation and anion–anion interactions in solution showing the signature of chemical bonds. Computational and Theoretical Chemistry, 2005, 727, 181-189.                                                                                                                                  | 1.5  | 15        |
| 95  | The Mechanism of Magnetic Interaction in Spin-Ladder Molecular Magnets: A First-Principles,<br>Bottom-Up, Theoretical Study of the Magnetism in the Two-Legged Spin-Ladder<br>Bis(2-amino-5-nitropyridinium) Tetrabromocuprate Monohydrate. European Journal of Inorganic<br>Chemistry, 2005, 2005, 4697-4706                        | 2.0  | 35        |
| 96  | Towards a Better Understanding of Magnetic Interactions withinm-Phenylene ?-Nitronyl Nitroxide and<br>Imino Nitroxide Based Radicals, Part III: Magnetic Exchange in a Series of Triradicals and Tetraradicals<br>Based on the Phenyl Acetylene and Biphenyl Coupling Units. Chemistry - A European Journal, 2005, 11,<br>2440-2454. | 3.3  | 30        |
| 97  | Substituted m-phenylene bridges as strong ferromagnetic couplers for Cuii–bridge–Cuii magnetic interactions: new perspectives. Chemical Communications, 2005, , 5172.                                                                                                                                                                | 4.1  | 65        |
| 98  | Broken Inter-C60Bonds as the Cause of Magnetism in Polymeric C60:Â A Density Functional Study Using<br>C60Dimers. Journal of Physical Chemistry A, 2005, 109, 4979-4982.                                                                                                                                                             | 2.5  | 2         |
| 99  | DFT Computational Study of the Mechanism of Allyl Chloride Carbonylation Catalyzed by Palladium<br>Complexes. Organometallics, 2005, 24, 2086-2096.                                                                                                                                                                                  | 2.3  | 16        |
| 100 | A First-Principles Analysis of the Magnetism of Cull Polynuclear Coordination Complexes: the Case of<br>[Cu4(bpy)4(aspartate)2(H2O)3](ClO4)4•2.5H2O. Molecules, 2004, 9, 757-770.                                                                                                                                                    | 3.8  | 12        |
| 101 | The Origin of the Magnetic Moments in Compressed Crystals of Polymeric C60. Angewandte Chemie -<br>International Edition, 2004, 43, 577-580.                                                                                                                                                                                         | 13.8 | 17        |
| 102 | The Origin of the Magnetic Moments in Compressed Crystals of Polymeric C60 ChemInform, 2004, 35, no.                                                                                                                                                                                                                                 | 0.0  | 0         |
| 103 | Supramolecular Photomagnetic Materials: Photoinduced Dimerization of Ferrocene-Based<br>Polychlorotriphenylmethyl Radicals. Chemistry - A European Journal, 2004, 10, 603-616.                                                                                                                                                       | 3.3  | 22        |
| 104 | The Nature of Intermolecular Culâ‹â‹â‹Cul Interactions: A Combined Theoretical and Structural Database<br>Analysis. Chemistry - A European Journal, 2004, 10, 2117-2132.                                                                                                                                                             | 3.3  | 139       |
| 105 | Magneto-Structural Characterization of Metallocene-Bridged Nitronyl Nitroxide Diradicals by X-Ray,<br>Magnetic Measurements, Solid-state NMR Spectroscopy, and Ab Initio Calculations. Chemistry - A<br>European Journal, 2004, 10, 1355-1365.                                                                                       | 3.3  | 22        |
| 106 | The Mechanism of Magnetic Interactions in the Bulk Ferromagnetpara-(Methylthio)Phenyl Nitronyl<br>Nitroxide (YUJNEW): A First Principles, Bottom-Up, Theoretical Study. Chemistry - A European Journal,<br>2004, 10, 6422-6432.                                                                                                      | 3.3  | 37        |
| 107 | Magneto-Structural Characterization of Metallocene-Bridged Nitronyl Nitroxide Diradicals by X-Ray,<br>Magnetic Measurements, Solid-state NMR Spectroscopy, and Ab Initio Calculations. Chemistry - A<br>European Journal, 2004, 10, 3354-3354.                                                                                       | 3.3  | 0         |
| 108 | Evaluation of the capability of C60-fullerene to act as a magnetic coupling unit. Journal of Physics and Chemistry of Solids, 2004, 65, 787-791.                                                                                                                                                                                     | 4.0  | 17        |

| #   | Article                                                                                                                                                                                                                                                                                                   | IF          | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| 109 | The strength–length relationship at the light of ab initio computations: does it really hold?.<br>CrystEngComm, 2004, 6, 367-376.                                                                                                                                                                         | 2.6         | 24        |
| 110 | A new tetrameric Cullcluster with square topology exhibiting ferro- and antiferromagnetic magnetic pathways : which is which?. Chemical Communications, 2004, , 1102-1103.                                                                                                                                | 4.1         | 38        |
| 111 | Choice of Coordination Number in d10Complexes of Group 11 Metals. Journal of the American Chemical Society, 2004, 126, 1465-1477.                                                                                                                                                                         | 13.7        | 198       |
| 112 | The mechanism of the magnetic interaction in the β phase of the p -(nitro)phenyl nitronyl nitroxide<br>(KAXHAS). A bottom-up study using only ab initio data. Polyhedron, 2003, 22, 1935-1944.                                                                                                            | 2.2         | 23        |
| 113 | Through space magnetic exchange in tetrabromocuprates: theoretical considerations. Polyhedron, 2003, 22, 2235-2239.                                                                                                                                                                                       | 2.2         | 15        |
| 114 | Chemical Reduction of 2,4,6-Tricyano-1,3,5-triazine and 1,3,5-Tricyanobenzene. Formation of Novel<br>4,4â€~,6,6â€~-Tetracyano-2,2â€~-bitriazine and Its Radical Anionâ€. Journal of Organic Chemistry, 2003, 68,<br>3367-3379.                                                                            | 3.2         | 46        |
| 115 | DFT Computational Study of the Mechanism of Allyl Halides Carbonylation Catalyzed by Nickel<br>Tetracarbonyl. Journal of the American Chemical Society, 2003, 125, 10412-10419.                                                                                                                           | 13.7        | 26        |
| 116 | First-principles study of the neutral molecular metalNi(tmdt)2. Physical Review B, 2002, 65, .                                                                                                                                                                                                            | 3.2         | 60        |
| 117 | Magnetic Properties of Organic Molecular Crystals via an Algebraic Heisenberg Hamiltonian.<br>Applications to WILVIW, TOLKEK, and KAXHAS Nitronyl Nitroxide Crystals. Journal of Physical<br>Chemistry A, 2002, 106, 1299-1315.                                                                           | 2.5         | 87        |
| 118 | On the existence of long C–C bonds between pairs of anions which repel: when and why? A test case<br>on the [TCNE]22â~'dimers found in ionic crystals. CrystEngComm, 2002, 4, 373-377.                                                                                                                    | 2.6         | 39        |
| 119 | Synthesis and structure of an asymmetric copper(i) dimer with two-coordinate and four-coordinate copper(i) sitesElectronic supplementary information (ESI) available: synthesis, NMR, computational details. See http://www.rsc.org/suppdata/cc/b2/b208865g/. Chemical Communications, 2002, , 3008-3009. | 4.1         | 14        |
| 120 | Oâ^'Hâ‹â‹ô Interactions Involving Doubly Charged Anions: Charge Compression in Carbonate–Bicarbor<br>Crystals Queries on the theoretical part should be addressed to Professor J. J. Novoa Chemistry - A<br>European Journal, 2002, 8, 1173.                                                              | nate<br>3.3 | 35        |
| 121 | Exceptionally Long (≥2.9 Ã) CC Bonding Interactions in Ï€-[TCNE]22 Dimers: Two-Electron Four-Center<br>Cation-Mediated CC Bonding Interactions Involving π* Electrons. Chemistry - A European Journal,<br>2002, 8, 4894-4908.                                                                             | 3.3         | 134       |
| 122 | Ligand effects and dimer formation in dicoordinated copper(I) complexes. International Journal of<br>Quantum Chemistry, 2002, 86, 100-105.                                                                                                                                                                | 2.0         | 14        |
| 123 | A general study of the spin population of α-nitronyl nitroxide radicals: radicals with crystals presenting dominant ferro or antiferromagnetic behavior. Synthetic Metals, 2001, 122, 477-483.                                                                                                            | 3.9         | 15        |
| 124 | On the charge delocalisation in partially deprotonated polycarboxylic acid anions and zwitterions<br>forming (â^')O–H···O(â~') interactions in the solid state. New Journal of Chemistry, 2001, 25, 226-230.                                                                                              | 2.8         | 19        |
| 125 | Synthesis, crystal structures, electronic structure and magnetic behaviour of the trithiatriazapentalenyl radical, C2S3N3. Journal of Materials Chemistry, 2001, 11, 1992-2003.                                                                                                                           | 6.7         | 123       |
| 126 | A First-Principles Computation of the Low-Energy Polymorphic Forms of the Acetic Acid Crystal. A Test of the Atomâ^'Atom Force Field Predictions. Journal of Physical Chemistry B, 2001, 105, 1710-1719.                                                                                                  | 2.6         | 12        |

| #   | Article                                                                                                                                                                                                                  | IF       | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|
| 127 | A CW-EPR and ESEEM spectroscopic study of the dithiadiazolyl radicals p-XC6F4CNSSN (X = CN, Br).<br>Applied Magnetic Resonance, 2001, 20, 231-247.                                                                       | 1.2      | 19        |
| 128 | Towards a Better Understanding of the Magnetic Interactions withinm-Phenyleneα-Nitronyl Imino<br>Nitroxide Based Biradicals. Chemistry - A European Journal, 2001, 7, 2466-2480.                                         | 3.3      | 68        |
| 129 | Exceptionally Long (≥2.9 Ã) Câ^'C Bonds between [TCNE]â^' Ions: Two-Electron, Four-Center ï€*-ï€* Câ^'C<br>Bonding in ï€-[TCNE]22â^. Angewandte Chemie - International Edition, 2001, 40, 2540-2545.                     | 13.8     | 164       |
| 130 | Metamagnetism in linear chain electron-transfer salts based on decamethylferrocenium and metal–bis(dichalcogenate) acceptors. Inorganica Chimica Acta, 2001, 326, 89-100.                                                | 2.4      | 13        |
| 131 | Hydrogen bonding and collective proton modes in clusters and periodic layers of squaric acid: A density functional study. Journal of Chemical Physics, 2001, 115, 6406-6417.                                             | 3.0      | 19        |
| 132 | The Mechanism of the Through-Space Magnetic Interactions in Purely Organic Molecular Magnets. , 2001, , 33-60.                                                                                                           |          | 30        |
| 133 | Exceptionally Long (>/=2.9 Ã) C-C Bonds between. Angewandte Chemie - International Edition, 2001, 40, 2540-2545.                                                                                                         | 13.8     | 2         |
| 134 | Stereochemistry of Phenylα-Nitronyl Nitroxide Radicals. Chemistry - A European Journal, 2000, 6,<br>2350-2361.                                                                                                           | 3.3      | 34        |
| 135 | Interanionic(â^')Oâ^'Hâ‹â‹O(â^') Interactions: A Solid-State and Computational Study of the Ring and Chai<br>Motifs. Chemistry - A European Journal, 2000, 6, 4536-4551.                                                 | n<br>3.3 | 44        |
| 136 | The C–Hâ‹ï€ bonds: strength, identification, and hydrogen-bonded nature: a theoretical study. Chemical<br>Physics Letters, 2000, 318, 345-354.                                                                           | 2.6      | 157       |
| 137 | The microscopic basis of the intermolecular magnetism. An ab initio study on molecular crystals.<br>Computational and Theoretical Chemistry, 2000, 506, 287-296.                                                         | 1.5      | 6         |
| 138 | A density functional study of crystalline acetic acid and its proton transfer polymorphic forms.<br>Journal of Chemical Physics, 2000, 113, 9208-9216.                                                                   | 3.0      | 33        |
| 139 | Spin Density Distribution of α-Nitronyl Aminoxyl Radicals from Experimental and ab Initio Calculated<br>ESR Isotropic Hyperfine Coupling Constants. Journal of the American Chemical Society, 2000, 122,<br>11393-11405. | 13.7     | 70        |
| 140 | Magnetic Coupling in End-to-End Azido-Bridged Copper and Nickel Binuclear Complexes:Â A Theoretical<br>Study. Inorganic Chemistry, 2000, 39, 3221-3229.                                                                  | 4.0      | 152       |
| 141 | Are all short O–H···O contacts hydrogen bonds? A quantitative look at the nature of O–H···O<br>intermolecular hydrogen bonds. New Journal of Chemistry, 2000, 24, 5-8.                                                   | 2.8      | 48        |
| 142 | Theoretical Study of the Mechanism of Carbonyl Insertion Reactions Catalyzed by Nickel Complexes.<br>Organometallics, 2000, 19, 2170-2178.                                                                               | 2.3      | 18        |
| 143 | Ligand Macrocycle Structural Effects on Copperâ^'Dioxygen Reactivity. Inorganic Chemistry, 2000, 39,<br>4059-4072.                                                                                                       | 4.0      | 116       |
| 144 | Does the McConnell-I Model Really Work? An ab Initio Study of the Magnetic Character of Some<br>Intermolecular Contacts. Molecular Crystals and Liquid Crystals, 1999, 335, 603-612.                                     | 0.3      | 8         |

| #   | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Modelling the crystal structure of the 2-hydronitronylnitroxide radical (HNN): observed and computer-generated polymorphs. Acta Crystallographica Section B: Structural Science, 1999, 55, 543-553.                                    | 1.8  | 15        |
| 146 | A computational study of the Dougherty model for the prediction of high-spin states in organic chemistry. Theoretical Chemistry Accounts, 1999, 102, 309-316.                                                                          | 1.4  | 5         |
| 147 | Structure-Magnetism Relationships inα-Nitronyl Nitroxide Radicals. Chemistry - A European Journal,<br>1999, 5, 1631-1642.                                                                                                              | 3.3  | 103       |
| 148 | Strength and Directionality of the Sâ‹â‹S Intermolecular Interactions Present in TTF-Based Molecular<br>Crystals. A Combined Statistical and Ab Initio Study. Chemistry - A European Journal, 1999, 5, 3689-3697.                      | 3.3  | 49        |
| 149 | Electrostatic compression on non-covalent interactions: the case of π stacks involving ions. New Journal of Chemistry, 1999, 23, 577-579.                                                                                              | 2.8  | 44        |
| 150 | Architecture of purely organic molecular magnets: Crystal packing rationalization of some α-nitronyl<br>nitroxides using the crystal packing functional group analysis. Synthetic Metals, 1999, 103, 2283-2286.                        | 3.9  | 6         |
| 151 | Determination of the Spin Distribution in Nitronylnitroxides by Solid-State 1H, 2H, and 13C NMR<br>Spectroscopy. Journal of the American Chemical Society, 1999, 121, 9659-9667.                                                       | 13.7 | 66        |
| 152 | Potential energy surface of weakly bonded intermolecular complexes: does one need counterpoise corrections for a proper representation? A numerical test using near complete basis sets. Chemical Physics Letters, 1998, 285, 186-197. | 2.6  | 14        |
| 153 | Are non-linear C–Hâ∂O contacts hydrogen bonds or Van der Waals interactions?. Chemical Physics<br>Letters, 1998, 290, 519-525.                                                                                                         | 2.6  | 65        |
| 154 | Structure-Magnetism Relationships in α-Nitronyl Nitroxide Radicals: Pitfalls and Lessons to be Learned.<br>Advanced Materials, 1998, 10, 1461-1466.                                                                                    | 21.0 | 48        |
| 155 | Association of two-coordinate copper(I) complexes: switching on and off Cu···Cu, ligand···ligand and<br>Cu–ligand interactions. Chemical Communications, 1998, , 1149-1150.                                                            | 4.1  | 28        |
| 156 | Inter-anion O–Hâ^'···Oâ^' hydrogen bond like interactions: the breakdown of the strength–length<br>analogy. Chemical Communications, 1998, , 1959-1960.                                                                                | 4.1  | 87        |
| 157 | C–H···O Hydrogen bonds in the mixed-valence salt [(η6-C6H6)2Cr]+[CrO3(OCH3)]- and the breakdown of the length/strength analogy. New Journal of Chemistry, 1998, 22, 755-757.                                                           | 2.8  | 37        |
| 158 | On the Validity of the McConnell-I Model of Ferromagnetic Interactions:  The [2.2]Paracyclophane<br>Example. Journal of Physical Chemistry A, 1998, 102, 8404-8412.                                                                    | 2.5  | 68        |
| 159 | Framework Bonding and Coordination Sphere Rearrangement in the M2X2Cores of Synthetic<br>Analogues of Oxyhemocyanin and Related Cu and Pt Complexes. Inorganic Chemistry, 1998, 37, 1202-1212.                                         | 4.0  | 35        |
| 160 | An analytical representation of the ground potential energy surface (2A′) of the H+Cl2→HCl+Cl and<br>Cl+HCl→HCl+Cl reactions, based on ab initio calculations. Journal of Chemical Physics, 1998, 108,<br>3168-3177.                   | 3.0  | 29        |
| 161 | Structure–Magnetism Relationships in α-Nitronyl Nitroxide Radicals: Pitfalls and Lessons to be<br>Learned. Advanced Materials, 1998, 10, 1461-1466.                                                                                    | 21.0 | 1         |
| 162 | High-Temperature Magnetic Ordering in a New Organic Magnet. Physical Review Letters, 1997, 79, 2336-2339.                                                                                                                              | 7.8  | 140       |

| #   | Article                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | A Theoretical Analysis of the Packing and Polymorphism of the 2-Hydro Nttronyl Nitroxide Crystal.<br>Molecular Crystals and Liquid Crystals, 1997, 305, 129-141. | 0.3 | 7         |

## Structure of the First Solvation Shell of the Hydroxide Anion. A Model Study Using OH-(H2O)n(n= 4, 5,) Tj ETQq0 0.0 rgBT /Oygrlock 10 2.5 rgBT /Oygrlock 10

| 165                                    | Theoretical Analysis of the Packing and Polimorphism of Molecular Crystals Using Quantum<br>Mechanical Methods: The Packing of the 2-Hydro Nitronyl Nitroxide. Molecular Crystals and Liquid<br>Crystals, 1997, 305, 143-156.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.3                                                                                        | 18                                                                                  |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 166                                    | Theoretical analysis of the crystal packing of nitronyl nitroxide radicals: the packing of the α-2-hydro<br>nitronyl nitroxide radical. Chemical Physics Letters, 1997, 265, 190-199.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.6                                                                                        | 25                                                                                  |
| 167                                    | Substituent effects in intermolecular C(sp3)-H â√ O(sp3) contacts: how strong can a C(sp3)-H â√ O(sp3)<br>hydrogen bond be?. Chemical Physics Letters, 1997, 266, 23-30.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.6                                                                                        | 57                                                                                  |
| 168                                    | Density functional computations on the structure and stability of OHâ^'(H2O)n (n = 1â^'3) clusters. A test study. Chemical Physics Letters, 1997, 269, 401-407.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.6                                                                                        | 36                                                                                  |
| 169                                    | Strength and directionality of the C(sp3)î—,Hâ∢S(sp3) interaction. An ab initio study using the H2Sâ∢CH4<br>model complex. Chemical Physics Letters, 1997, 279, 140-150.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.6                                                                                        | 32                                                                                  |
| 170                                    | A theoretical study of the ionic dissociation of HF, HCl, and H2S in water clusters. Journal of Chemical Physics, 1996, 104, 7081-7085.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.0                                                                                        | 148                                                                                 |
| 171                                    | An ab initio analytical potential energy surface for the O(3P)+CS(X 1Σ+)→CO(X 1Σ+)+S(3P) reaction u<br>for kinetic and dynamical studies. Journal of Chemical Physics, 1996, 105, 10999-11006.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sgful                                                                                      | 20                                                                                  |
| 172                                    | Kinetics of the Proton Transfer in X···(H2O)4Clusters (X = H2O, NH3, H2S, and HCl): Evidence of a<br>Concerted Mechanism. The Journal of Physical Chemistry, 1996, 100, 16495-16501.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.9                                                                                        | 66                                                                                  |
| 173                                    | The determinant role of water in the ionic dissociation of HO2. Computational and Theoretical Chemistry, 1996, 371, 143-152.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.5                                                                                        | 5                                                                                   |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                            |                                                                                     |
| 174                                    | near complete basis sets on H2O … HF, (H2O)2, (HF) 2 and CH4…H2O. Chemical Physics Letters, 1996, 251, 33-46.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.6                                                                                        | 88                                                                                  |
| 174<br>175                             | <ul> <li>On the userulness of the counterpoise method on hydrogen-bonded complexes: a numerical test using near complete basis sets on H2O … HF, (H2O)2, (HF) 2 and CH4…H2O. Chemical Physics Letters, 1996, 251, 33-46.</li> <li>Ionization of Bases in Water: Structure and Stability of the NH4+···OH-Ionic Forms in Ammoniaâ<sup>^</sup>Water Clusters. The Journal of Physical Chemistry, 1996, 100, 7398-7404.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.6<br>2.9                                                                                 | 88                                                                                  |
| 174<br>175<br>176                      | <ul> <li>On the userulness of the counterpoise method on hydrogen-bonded complexes: a numerical test using near complete basis sets on H2O … HF, (H2O)2, (HF) 2 and CH4…H2O. Chemical Physics Letters, 1996, 251, 33-46.</li> <li>Ionization of Bases in Water: Structure and Stability of the NH4+··ÔH-Ionic Forms in Ammoniaâ<sup>^</sup>Water Clusters. The Journal of Physical Chemistry, 1996, 100, 7398-7404.</li> <li>The symmetry breaking problem in the triflouride anion: A multireference approach. Journal of Chemical Physics, 1996, 105, 8777-8784.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul><li>2.6</li><li>2.9</li><li>3.0</li></ul>                                              | 88<br>41<br>25                                                                      |
| 174<br>175<br>176<br>177               | <ul> <li>On the userulness of the counterpoise method on hydrogen-bonded complexes: a numerical test using near complete basis sets on H2O … HF, (H2O)2, (HF) 2 and CH4…H2O. Chemical Physics Letters, 1996, 251, 33-46.</li> <li>Ionization of Bases in Water: Structure and Stability of the NH4+···OH-Ionic Forms in Ammoniaâ<sup>^</sup>Water Clusters. The Journal of Physical Chemistry, 1996, 100, 7398-7404.</li> <li>The symmetry breaking problem in the triflouride anion: A multireference approach. Journal of Chemical Physics, 1996, 105, 8777-8784.</li> <li>Organic Ferromagnets. Hydrogen Bonded Supramolecular Magnetic Organizations Derived from Hydroxylated Phenyl ?-Nitronyl Nitroxide Radicals. Journal De Physique, I, 1996, 6, 1967-1986.</li> </ul>                                                                                                                                                                                                                                               | <ul><li>2.6</li><li>2.9</li><li>3.0</li><li>1.2</li></ul>                                  | 88<br>41<br>25<br>18                                                                |
| 174<br>175<br>176<br>177<br>178        | On the UserUlness of the counterpoise method on hydrogen-bonded complexes: a numerical test using<br>near complete basis sets on H2O †  HF, (H2O)2, (HF) 2 and CH4†  H2O. Chemical Physics Letters, 1996, 251,<br>33-46.Ionization of Bases in Water: Structure and Stability of the NH4+··ÔH-Ionic Forms in Ammoniaâ <sup>-2</sup> Water<br>Clusters. The Journal of Physical Chemistry, 1996, 100, 7398-7404.The symmetry breaking problem in the triflouride anion: A multireference approach. Journal of<br>Chemical Physics, 1996, 105, 8777-8784.Organic Ferromagnets. Hydrogen Bonded Supramolecular Magnetic Organizations Derived from<br>Hydroxylated Phenyl ?-Nitronyl Nitroxide Radicals. Journal De Physique, I, 1996, 6, 1967-1986.CH†  S and S†  S: Two major forces in organic conductors. Advanced Materials, 1995, 7, 233-237.                                                                                                                                                                             | <ul> <li>2.6</li> <li>2.9</li> <li>3.0</li> <li>1.2</li> <li>21.0</li> </ul>               | <ul> <li>88</li> <li>41</li> <li>25</li> <li>18</li> <li>120</li> </ul>             |
| 174<br>175<br>176<br>177<br>178<br>179 | On the user liness of the counterpoise method on hydrogen-bonded complexes: a humerical test using near complete basis sets on H2O †  HF, (H2O)2, (HF) 2 and CH4†  H2O. Chemical Physics Letters, 1996, 251, 33-46.         Ionization of Bases in Water:Â Structure and Stability of the NH4+ÂÂÂ-OH-Ionic Forms in Ammoniaâ <sup>-3</sup> Water Clusters. The Journal of Physical Chemistry, 1996, 100, 7398-7404.         The symmetry breaking problem in the triflouride anion: A multireference approach. Journal of Chemical Physics, 1996, 105, 8777-8784.         Organic Ferromagnets. Hydrogen Bonded Supramolecular Magnetic Organizations Derived from Hydroxylated Phenyl ?-Nitronyl Nitroxide Radicals. Journal De Physique, I, 1996, 6, 1967-1986.         CH†  S and S†  S: Two major forces in organic conductors. Advanced Materials, 1995, 7, 233-237.         Bis(ethylenethio)tetrathiafulvalene (BET-TTF), an organic donor with high electrical conductivity. Advanced Materials, 1995, 7, 1023-1027. | <ul> <li>2.6</li> <li>2.9</li> <li>3.0</li> <li>1.2</li> <li>21.0</li> <li>21.0</li> </ul> | <ul> <li>88</li> <li>41</li> <li>25</li> <li>18</li> <li>120</li> <li>26</li> </ul> |

| #   | Article                                                                                                                                                                                                        | IF                             | CITATIONS           |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------|
| 181 | Ab Initio Computation of the Spin Population of Substituted α-Nitronyl Nitroxide Radicals. Molecular<br>Crystals and Liquid Crystals, 1995, 271, 79-90.                                                        | 0.3                            | 17                  |
| 182 | The Hydrogen Bonding Strategy. A New Approach Towards Purely Organic/Molecular Ferromagnets.<br>Molecular Crystals and Liquid Crystals, 1995, 271, 1-12.                                                       | 0.3                            | 26                  |
| 183 | Evidence of the existence of dissociated water molecules in water clusters. Journal of Chemical Physics, 1995, 103, 4360-4362.                                                                                 | 3.0                            | 48                  |
| 184 | Ab Initio Study of the Intermolecular Interactions in the Hofmann Clathrates. The Journal of Physical Chemistry, 1995, 99, 2296-2306.                                                                          | 2.9                            | 29                  |
| 185 | On the Bonding Nature of the M.cntdotcntdotcntdot.M Interactions in Dimers of Square-Planar<br>Pt(II) and Rh(I) Complexes. Journal of the American Chemical Society, 1995, 117, 7169-7171.                     | 13.7                           | 103                 |
| 186 | Evaluation of the Density Functional Approximation on the Computation of Hydrogen Bond<br>Interactions. The Journal of Physical Chemistry, 1995, 99, 15837-15845.                                              | 2.9                            | 332                 |
| 187 | Heterodox Bonding Effects between Transition Metal Atoms. , 1995, , 241-255.                                                                                                                                   |                                | 8                   |
| 188 | A comparative study on the structure of M2Se and M2I+ (M = Ag, Au) using pseudopotentials and full<br>Ab initio methods. International Journal of Quantum Chemistry, 1994, 52, 1-8.                            | 2.0                            | 13                  |
| 189 | Theoretical study of the structure and vibrational spectra of the (H2O)2?HF and H2O?(HF)2 molecular complexes. International Journal of Quantum Chemistry, 1994, 52, 177-189.                                  | 2.0                            | 11                  |
| 190 | Ab initio study of the lowest 3A′ and 3A″ potential energy surfaces involved in the O(3P) + CS(X1Σ+) → (                                                                                                       | CO(X) Tj E <sup>-</sup><br>2.6 | [Qq0 0 0 rgB]<br>11 |
| 191 | A numerical evaluation of the counterpoise method on hydrogen bond complexes using near complete basis sets. Chemical Physics Letters, 1994, 225, 240-246.                                                     | 2.6                            | 60                  |
| 192 | Accurate computation of the normal and reverse complexes between water and hydrogen fluoride.<br>Chemical Physics, 1994, 186, 175-183.                                                                         | 1.9                            | 11                  |
| 193 | On the Strength of the CH…O Hydrogen Bond and the Eclipsed Arrangement of the Methyl Group in<br>a Tricyclic Orthoamide Trihydrate. Angewandte Chemie International Edition in English, 1993, 32,<br>588-589. | 4.4                            | 17                  |
| 194 | Pyramidality and metal-metal multiple bonding: structural correlations and theoretical study.<br>Journal of the American Chemical Society, 1993, 115, 6216-6229.                                               | 13.7                           | 44                  |
| 195 | On the structures, stabilities and fragmentation patterns of carbon clusters including<br>Buckminsterfullerene. Inorganica Chimica Acta, 1992, 198-200, 133-138.                                               | 2.4                            | 5                   |
| 196 | Accurate calculation of the electron affinities of the group-13 atoms. Chemical Physics, 1992, 166, 77-84.                                                                                                     | 1.9                            | 29                  |
| 197 | Study of TTeF-TCNQ and related compounds. Synthetic Metals, 1991, 42, 2513.                                                                                                                                    | 3.9                            | 0                   |
| 198 | The nature of intramolecular hydrogen-bonded and non-hydrogen-bonded conformations of simple di-and triamides. Journal of the American Chemical Society, 1991, 113, 9017-9026.                                 | 13.7                           | 42                  |

| #   | Article                                                                                                                                                                                                                                                                    | IF           | CITATIONS      |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|
| 199 | Interaction energies associated with short intermolecular contacts of carbon-hydrogen bonds. 1. Ab<br>initio computational study of C-H.cntdotcntdotcntdot.anion interactions,<br>C-H.cntdotcntdotcntdot.X-(X- = I3-, IBr2-, ICl2-). Inorganic Chemistry, 1991, 30, 54-58. | 4.0          | 24             |
| 200 | Nature of short Li .bulbulbul. H-C contact interactions in organolithium compounds and its implication. Journal of Organic Chemistry, 1991, 56, 3181-3183.                                                                                                                 | 3.2          | 10             |
| 201 | Interactions energies associated with short intermolecular contacts of C–H bonds. II. Ab initio computational study of the C–Hâ‹â‹â‹H–C interactions in methane dimer. Journal of Chemical Physics, 394, 4835-4841.                                                        | 1990,        | 62             |
| 202 | New κ-phase materials, κ-(ET)2Cu[N(CN)2]X.X=Cl, Br and I. The synthesis, structure and superconductivity<br>above 11 K in the Cl (Tc = 12.8 K, 0.3 kbar) and Br(Tc = 11.6 K) salts. Synthetic Metals, 1991, 42, 1983-1990.                                                 | 3.9          | 108            |
| 203 | Strain index, lattice softness and superconductivity of organic donor-molecule salts. Physica C:<br>Superconductivity and Its Applications, 1991, 174, 475-486.                                                                                                            | 1.2          | 175            |
| 204 | Interaction energies associated with short intermolecular contacts of C—H bonds. Structure and energetics of the interaction between CH4 and CNâ^'. Chemical Physics Letters, 1991, 177, 483-490.                                                                          | 2.6          | 9              |
| 205 | Interaction energies associated with short intermolecular contacts of Cî—,H bonds. 4. Ab initio<br>computational study of Cî—,H…anion interactions in CH4…Xâ^' (X=F, Cl, Br, I). Chemical Physics Letters,<br>1991, 180, 241-248.                                          | 2.6          | 20             |
| 206 | Mono- and multireference Moller-Plesset computation of the electron affinity. A full configuration<br>interaction analysis on first-row atoms and their hydrides. The Journal of Physical Chemistry, 1991, 95,<br>3096-3105.                                               | 2.9          | 16             |
| 207 | Interaction energies associated with short intermolecular contacts of C–H bonds. Ab initio<br>computational study of the C–Hâ‹â‹ô contact interaction in CH4â‹â‹ô‹OH2. Journal of Chemical P<br>95, 5179-5186.                                                             | hyssiocs, 19 | 99 <b>þ</b> ,1 |
| 208 | A full-CI analysis of the single- and multi-reference MÃ,ller—Plesset methods for the computation of electron affinities. Chemical Physics Letters, 1990, 165, 503-512.                                                                                                    | 2.6          | 10             |
| 209 | Structural and Electronic Properties of TXF-TCNQ (X Ë-S, Se, Te). Molecular Crystals and Liquid<br>Crystals Incorporating Nonlinear Optics, 1990, 181, 43-58.                                                                                                              | 0.3          | 14             |
| 210 | The large range of chromium-chromium quadruple bond distances: structural and theoretical analysis. Journal of the American Chemical Society, 1990, 112, 8998-9000.                                                                                                        | 13.7         | 26             |
| 211 | Ab Initio Computational Study of the C-H…Donor and C-H…Anion Contact Interactions in Organic<br>Donor Salts. Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics, 1990, 181, 25-42.                                                                      | 0.3          | 6              |
| 212 | Recent Progress in the Development of Structure-Property Correlations for κ-Phase Organic<br>Superconductors. Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics, 1990, 181,<br>59-64.                                                                  | 0.3          | 2              |
| 213 | Jacobi Rotations: A General Procedure for Electronic Energy Optimization. Advances in Quantum<br>Chemistry, 1989, 20, 375-441.                                                                                                                                             | 0.8          | 10             |
| 214 | Similarities and differences in the structural and electronic properties of .kappaphase organic conducting and superconducting salts. Inorganic Chemistry, 1989, 28, 4516-4522.                                                                                            | 4.0          | 68             |
| 215 | Structure and stability of the X3- systems (X = fluoride, chloride, bromide, iodide) and their interaction with cations. The Journal of Physical Chemistry, 1988, 92, 6561-6566.                                                                                           | 2.9          | 54             |
| 216 | A quantum chemical study of the electroreduction of 2-cyclohexen-1-one. Computational and Theoretical Chemistry, 1988, 180, 283-295.                                                                                                                                       | 1.5          | 0              |

| #   | Article                                                                                                                                                                                          | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | Theoretical computation of the electronic affinity of the BO and BO2 molecules Computational and Theoretical Chemistry, 1988, 166, 153-158.                                                      | 1.5  | 14        |
| 218 | Potential energy surfaces for the X+â‹⁻CO2 (X = Na, K) systems. Computational and Theoretical<br>Chemistry, 1987, 149, 193-200.                                                                  | 1.5  | 2         |
| 219 | The diradical nature of ketocarbenes occurring in the Wolff rearrangement. An MC-SCF study.<br>Journal of the Chemical Society, Faraday Transactions 2, 1987, 83, 1629.                          | 1.1  | 14        |
| 220 | Structure and stability of tetraatomic bromine and ion, Br4 and Br42-, and their interaction with cations and transition metals. Journal of the American Chemical Society, 1987, 109, 6586-6591. | 13.7 | 17        |
| 221 | On the computation of molecular electronic affinities. Theoretica Chimica Acta, 1987, 72, 325-331.                                                                                               | 0.8  | 5         |
| 222 | Ab initiostudies on van der Waals molecules. A comparative study with several basis sets of the C2vHeLi2 system. Journal of Computational Chemistry, 1987, 8, 51-56.                             | 3.3  | 1         |
| 223 | Theoretical study of the vibrational-rotational spectra of diatomic molecules: A quantum chemistry experiment. Journal of Chemical Education, 1986, 63, 919.                                     | 2.3  | 4         |
| 224 | A quantum approach to the mechanism of electrochemical reductions. Canadian Journal of Chemistry, 1986, 64, 2359-2364.                                                                           | 1.1  | 9         |
| 225 | MINDO/3 computed proton affinities. Computational and Theoretical Chemistry, 1986, 136, 361-369.                                                                                                 | 1.5  | 3         |
| 226 | Accurate electron affinities of several diatomic and triatomic molecules. Chemical Physics Letters, 1986, 123, 399-401.                                                                          | 2.6  | 15        |
| 227 | Convergence of a multireference second-order mbpt method (CIPSI) using a zero-order wavefunction derived from an MS SCF calculation. Chemical Physics Letters, 1986, 126, 98-102.                | 2.6  | 19        |
| 228 | The mechanism of electrical conductivity along polyhalide chains. Chemical Physics Letters, 1986, 132, 531-534.                                                                                  | 2.6  | 12        |
| 229 | Electron affinities: Basis and correlation effects. Chemical Physics Letters, 1985, 119, 135-140.                                                                                                | 2.6  | 15        |
| 230 | Structure and stability of diprotonated formaldehyde. Computational and Theoretical Chemistry, 1985, 121, 29-36.                                                                                 | 1.5  | 1         |
| 231 | Energy, correlation energy and monoelectronic properties in the general contraction scheme.<br>Computational and Theoretical Chemistry, 1985, 133, 227-234.                                      | 1.5  | 0         |
| 232 | Multiconfigurational calculations using Elementary Jacobi Rotations. Computational and Theoretical Chemistry, 1985, 120, 357-363.                                                                | 1.5  | 5         |
| 233 | Theoretical Study of the Electronic Structure and Magnetic Interactions in Purely Organic Nitronyl Nitroxide Crystals. , 0, , 65-117.                                                            |      | 1         |