Paola Bonfante

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8893258/publications.pdf

Version: 2024-02-01

288 papers

22,333 citations

82 h-index 134 g-index

304 all docs

304 docs citations

times ranked

304

12945 citing authors

#	Article	IF	CITATIONS
1	Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nature Communications, 2010, 1, 48.	12.8	990
2	Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20117-20122.	7.1	717
3	Plants, Mycorrhizal Fungi, and Bacteria: A Network of Interactions. Annual Review of Microbiology, 2009, 63, 363-383.	7. 3	699
4	$P\tilde{A}$ ©rigord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature, 2010, 464, 1033-1038.	27.8	641
5	Bacterial–fungal interactions: ecology, mechanisms and challenges. FEMS Microbiology Reviews, 2018, 42, 335-352.	8.6	468
6	Shortâ€chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear <scp>C</scp> a ²⁺ spiking in <i><scp>M</scp>edicago truncatula</i> roots and their production is enhanced by strigolactone. New Phytologist, 2013, 198, 190-202.	7. 3	453
7	Arbuscular Mycorrhizal Fungi Elicit a Novel Intracellular Apparatus in Medicago truncatula Root Epidermal Cells before Infection[W]. Plant Cell, 2005, 17, 3489-3499.	6.6	441
8	Genomeâ€wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in <i>Lotus japonicus</i> . New Phytologist, 2009, 182, 200-212.	7. 3	318
9	Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a landâ€use gradient using a pyrosequencing approach. Environmental Microbiology, 2010, 12, 2165-2179.	3.8	313
10	The transcriptome of the arbuscular mycorrhizal fungus <i>Glomus intraradices</i> (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytologist, 2012, 193, 755-769.	7.3	305
11	A Mycorrhizal-Specific Ammonium Transporter from <i>Lotus japonicus</i> Acquires Nitrogen Released by Arbuscular Mycorrhizal Fungi. Plant Physiology, 2009, 150, 73-83.	4.8	303
12	Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective. Trends in Plant Science, 2008, 13, 492-498.	8.8	287
13	Prepenetration Apparatus Assembly Precedes and Predicts the Colonization Patterns of Arbuscular Mycorrhizal Fungi within the Root Cortex of Both <i>Medicago truncatula</i> and <i>Daucus carota</i> Â. Plant Cell, 2008, 20, 1407-1420.	6.6	283
14	Unique and common traits in mycorrhizal symbioses. Nature Reviews Microbiology, 2020, 18, 649-660.	28.6	277
15	Tansley Review No. 82. Strategies of arbuscular mycorrhizal fungi when infecting host plants. New Phytologist, 1995, 130, 3-21.	7.3	259
16	Symbiosis with an endobacterium increases the fitness of a mycorrhizal fungus, raising its bioenergetic potential. ISME Journal, 2016, 10, 130-144.	9.8	233
17	<i>Rhizobium</i> –legume symbiosis shares an exocytotic pathway required for arbuscule formation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8316-8321.	7.1	213
18	Laser Microdissection Reveals That Transcripts for Five Plant and One Fungal Phosphate Transporter Genes Are Contemporaneously Present in Arbusculated Cells. Molecular Plant-Microbe Interactions, 2007, 20, 1055-1062.	2.6	200

#	Article	IF	CITATIONS
19	Unravelling Soil Fungal Communities from Different Mediterranean Land-Use Backgrounds. PLoS ONE, 2012, 7, e34847.	2.5	194
20	â€~Candidatus Glomeribacter gigasporarum' gen. nov., sp. nov., an endosymbiont of arbuscular mycorrhizal fungi. International Journal of Systematic and Evolutionary Microbiology, 2003, 53, 121-124.	1.7	188
21	Truffles: much more than a prized and local fungal delicacy. FEMS Microbiology Letters, 2006, 260, 1-8.	1.8	177
22	The genome of the obligate endobacterium of an AM fungus reveals an interphylum network of nutritional interactions. ISME Journal, 2012, 6, 136-145.	9.8	176
23	Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseae. Mycorrhiza, 2005, 15, 620-627.	2.8	173
24	Chitinase in roots of mycorrhizal Allium porrum: regulation and localization. Planta, 1989, 177, 447-455.	3.2	171
25	Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytologist, 2007, 175, 417-424.	7.3	168
26	Independent recruitment of saprotrophic fungi as mycorrhizal partners by tropical achlorophyllous orchids. New Phytologist, 2009, 184, 668-681.	7.3	167
27	Arbuscular mycorrhizal hyphopodia and germinated spore exudates trigger Ca ²⁺ spiking in the legume and nonlegume root epidermis. New Phytologist, 2011, 189, 347-355.	7.3	165
28	A Diffusible Signal from Arbuscular Mycorrhizal Fungi Elicits a Transient Cytosolic Calcium Elevation in Host Plant Cells. Plant Physiology, 2007, 144, 673-681.	4.8	164
29	Detection and Identification of Bacterial Endosymbionts in Arbuscular Mycorrhizal Fungi Belonging to the Family Gigasporaceae. Applied and Environmental Microbiology, 2000, 66, 4503-4509.	3.1	156
30	Polymorphism at the ribosomal DNA ITS and its relation to postglacial reâ€colonization routes of the Perigord truffle Tuber melanosporum. New Phytologist, 2004, 164, 401-411.	7.3	153
31	Differential Expression of a Metallothionein Gene during the Presymbiotic versus the Symbiotic Phase of an Arbuscular Mycorrhizal Fungus. Plant Physiology, 2002, 130, 58-67.	4.8	152
32	The Mycorrhizal Fungus Gigaspora margarita Possesses a CuZn Superoxide Dismutase That Is Up-Regulated during Symbiosis with Legume Hosts. Plant Physiology, 2005, 137, 1319-1330.	4.8	151
33	From root to fruit: RNA-Seq analysis shows that arbuscular mycorrhizal symbiosis may affect tomato fruit metabolism. BMC Genomics, 2014, 15, 221.	2.8	149
34	Who lives in a fungus? The diversity, origins and functions of fungal endobacteria living in Mucoromycota. ISME Journal, 2017, 11, 1727-1735.	9.8	145
35	Glomeromycotean associations in liverworts: a molecular, cellular, and taxonomic analysis. American Journal of Botany, 2007, 94, 1756-1777.	1.7	141
36	Presymbiotic growth and sporal morphology are affected in the arbuscular mycorrhizal fungus Gigaspora margarita cured of its endobacteria. Cellular Microbiology, 2007, 9, 1716-1729.	2.1	140

#	Article	IF	CITATIONS
37	The obligate endobacteria of arbuscular mycorrhizal fungi are ancient heritable components related to the <i>Mollicutes</i> . ISME Journal, 2010, 4, 862-871.	9.8	136
38	The Lotus japonicus LjSym4 Gene Is Required for the Successful Symbiotic Infection of Root Epidermal Cells. Molecular Plant-Microbe Interactions, 2000, 13, 1109-1120.	2.6	135
39	ITS-1 versus ITS-2 pyrosequencing: a comparison of fungal populations in truffle grounds. Mycologia, 2011, 103, 1184-1193.	1.9	135
40	Dating in the dark: how roots respond to fungal signals to establish arbuscular mycorrhizal symbiosis. Current Opinion in Plant Biology, 2011, 14, 451-457.	7.1	135
41	Nitrogen Fixation Genes in an Endosymbiotic Burkholderia Strain. Applied and Environmental Microbiology, 2001, 67, 725-732.	3.1	134
42	Cephalanthera longifolia (Neottieae, Orchidaceae) is mixotrophic: a comparative study between green and nonphotosynthetic individuals. Canadian Journal of Botany, 2006, 84, 1462-1477.	1.1	133
43	Discrimination of truffle fruiting body versus mycelial aromas by stir bar sorptive extraction. Phytochemistry, 2007, 68, 2584-2598.	2.9	132
44	Cell wall remodeling in mycorrhizal symbiosis: a way towards biotrophism. Frontiers in Plant Science, 2014, 5, 237.	3.6	132
45	Detection of a novel intracellular microbiome hosted in arbuscular mycorrhizal fungi. ISME Journal, 2014, 8, 257-270.	9.8	128
46	Vertical Transmission of Endobacteria in the Arbuscular Mycorrhizal Fungus Gigaspora margarita through Generation of Vegetative Spores. Applied and Environmental Microbiology, 2004, 70, 3600-3608.	3.1	126
47	Amplification of genomic DNA of arbuscular-mycorrhizal (AM) fungi by PCR using short arbitrary primers. Mycological Research, 1993, 97, 1351-1357.	2.5	121
48	Molecular identification of mycorrhizal fungi by direct amplification of microsatellite regions. Mycological Research, 1997, 101, 425-432.	2.5	121
49	Transcriptome Analysis of Arbuscular Mycorrhizal Roots during Development of the Prepenetration Apparatus. Plant Physiology, 2007, 144, 1455-1466.	4.8	117
50	Molecular phylogeny and historical biogeography of the genus <i>Tuber,</i> the  true truffles'. Journal of Biogeography, 2008, 35, 815-829.	3.0	117
51	Arbuscular mycorrhizal dialogues: do you speak †plantish' or †fungish'?. Trends in Plant Science, 2015 20, 150-154.	5, 8.8	117
52	Morphological and molecular typing of the below-ground fungal community in a natural Tuber magnatum truffle-ground. FEMS Microbiology Letters, 2005, 245, 307-313.	1.8	115
53	Strigolactones cross the kingdoms: plants, fungi, and bacteria in the arbuscular mycorrhizal symbiosis. Journal of Experimental Botany, 2018, 69, 2175-2188.	4.8	115
54	CAROTENOID CLEAVAGE DIOXYGENASE 7 modulates plant growth, reproduction, senescence, and determinate nodulation in the model legume Lotus japonicus. Journal of Experimental Botany, 2013, 64, 1967-1981.	4.8	114

#	Article	IF	CITATIONS
55	The apocarotenoid metabolite zaxinone regulates growth and strigolactone biosynthesis in rice. Nature Communications, 2019, 10, 810.	12.8	113
56	Cellulose and pectin localization in roots of mycorrhizalAllium porrum: labelling continuity between host cell wall and interfacial material. Planta, 1990, 180, 537-547.	3.2	112
57	Mucoid Mutants of the Biocontrol Strain Pseudomonas fluorescens CHAO Show Increased Ability in Biofilm Formation on Mycorrhizal and Nonmycorrhizal Carrot Roots. Molecular Plant-Microbe Interactions, 2001, 14, 255-260.	2.6	112
58	Assessment of arbuscular mycorrhizal fungal diversity in roots of Solidago gigantea growing in a polluted soil in Northern Italy. Environmental Microbiology, 2006, 8, 971-983.	3.8	109
59	Identification and functional characterization of a sulfate transporter induced by both sulfur starvation and mycorrhiza formation in <i><scp>L</scp>otus japonicus</i> . New Phytologist, 2014, 204, 609-619.	7.3	108
60	Omics approaches revealed how arbuscular mycorrhizal symbiosis enhances yield and resistance to leaf pathogen in wheat. Scientific Reports, 2018, 8, 9625.	3.3	108
61	Multiple Exocytotic Markers Accumulate at the Sites of Perifungal Membrane Biogenesis in Arbuscular Mycorrhizas. Plant and Cell Physiology, 2012, 53, 244-255.	3.1	107
62	Intrasporal variability of ribosomal sequences in the endomycorrhizal fungusGigaspora margarita. Molecular Ecology, 1999, 8, 37-45.	3.9	104
63	Mosaic genome of endobacteria in arbuscular mycorrhizal fungi: Transkingdom gene transfer in an ancient mycoplasma-fungus association. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7785-7790.	7.1	103
64	Actin versus tubulin configuration in arbusculeâ€containing cells from mycorrhizal tobacco roots. New Phytologist, 1998, 140, 745-752.	7.3	102
65	Inhibition of fungal growth by plant chitinases and?-1,3-glucanases. Protoplasma, 1992, 171, 34-43.	2.1	99
66	The urgent need for microbiology literacy in society. Environmental Microbiology, 2019, 21, 1513-1528.	3.8	99
67	Isolation, Free-Living Capacities, and Genome Structure of "Candidatus Glomeribacter gigasporarum,― the Endocellular Bacterium of the Mycorrhizal Fungus Gigaspora margarita. Journal of Bacteriology, 2004, 186, 6876-6884.	2.2	98
68	The arbuscular mycorrhizal status has an impact on the transcriptome profile and amino acid composition of tomato fruit. BMC Plant Biology, 2012, 12, 44.	3.6	98
69	The phosphate transporters LjPT4 and MtPT4 mediate early root responses to phosphate status in non mycorrhizal roots. Plant, Cell and Environment, 2016, 39, 660-671.	5.7	98
70	Characterization of an Amino Acid Permease from the Endomycorrhizal Fungus <i>Glomus mosseae</i> Â Â. Plant Physiology, 2008, 147, 429-437.	4.8	97
71	Arbuscular mycorrhizal fungi reduce growth and infect roots of the nonâ€host plant <i>><scp>A</scp>rabidopsis thaliana</i> >. Plant, Cell and Environment, 2013, 36, 1926-1937.	5.7	97
72	Fungal association and utilization of phosphate by plants: success, limitations, and future prospects. Frontiers in Microbiology, 2015, 6, 984.	3.5	96

#	Article	IF	CITATIONS
73	Effects of different management practices on arbuscular mycorrhizal fungal diversity in maize fields by a molecular approach. Biology and Fertility of Soils, 2012, 48, 911-922.	4.3	95
74	Pezizomycetes genomes reveal the molecular basis of ectomycorrhizal truffle lifestyle. Nature Ecology and Evolution, 2018, 2, 1956-1965.	7.8	95
75	Storage and secretion processes in the spore of Gigaspora margarita Becker &Hall as revealed by highâ€pressure freezing and freeze substitution. New Phytologist, 1994, 128, 93-101.	7. 3	93
76	Native soils with their microbiotas elicit a state of alert in tomato plants. New Phytologist, 2018, 220, 1296-1308.	7.3	93
77	Ericoid mycorrhizal fungi from heavy metal polluted soils: their identification and growth in the presence of zinc ions. Mycological Research, 2000, 104, 338-344.	2.5	91
78	Impact of Biocontrol Pseudomonas fluorescens CHAO and a Genetically Modified Derivative on the Diversity of Culturable Fungi in the Cucumber Rhizosphere. Applied and Environmental Microbiology, 2001, 67, 1851-1864.	3.1	90
79	Arbuscular Mycorrhizal Symbiosis Requires a Phosphate Transceptor in the Gigaspora margarita Fungal Symbiont. Molecular Plant, 2016, 9, 1583-1608.	8.3	90
80	Bacterial associations with mycorrhizal fungi: Close and distant friends in the rhizosphere. Trends in Microbiology, 1997, 5, 496-501.	7.7	89
81	Host and non-host roots in rice: cellular and molecular approaches reveal differential responses to arbuscular mycorrhizal fungi. Frontiers in Plant Science, 2015, 6, 636.	3.6	89
82	Arbuscular mycorrhizal fungi: a specialised niche for rhizospheric and endocellular bacteria. Antonie Van Leeuwenhoek, 2002, 81, 365-371.	1.7	88
83	The expression of GintPT, the phosphate transporter of Rhizophagus irregularis, depends on the symbiotic status and phosphate availability. Planta, 2013, 237, 1267-1277.	3.2	88
84	Rice flooding negatively impacts root branching and arbuscular mycorrhizal colonization, but not fungal viability. Plant, Cell and Environment, 2014, 37, 557-572.	5.7	84
85	At the nexus of three kingdoms: the genome of the mycorrhizal fungus <i>Gigaspora margarita</i> provides insights into plant, endobacterial and fungal interactions. Environmental Microbiology, 2020, 22, 122-141.	3.8	84
86	454 Pyrosequencing Analysis of Fungal Assemblages from Geographically Distant, Disparate Soils Reveals Spatial Patterning and a Core Mycobiome. Diversity, 2013, 5, 73-98.	1.7	82
87	Transcriptional activation of a maize alpha-tubulin gene in mycorrhizal maize and transgenic tobacco plants. Plant Journal, 1996, 9, 737-743.	5.7	81
88	Differential location of ?-expansin proteins during the accommodation of root cells to an arbuscular mycorrhizal fungus. Planta, 2005, 220, 889-899.	3.2	81
89	The Arbuscular Mycorrhizal Symbiosis: Origin and Evolution of a Beneficial Plant Infection. PLoS Pathogens, 2012, 8, e1002600.	4.7	79
90	Ericoid mycorrhizal fungi: cellular and molecular bases of their interactions with the host plant. Canadian Journal of Botany, 1995, 73, 557-568.	1.1	78

#	Article	IF	Citations
91	Immunolocalization of hydrophobin HYDPtâ€1 from the ectomycorrhizal basidiomycete Pisolithus tinctorius during colonization of Eucalyptus globulus roots. New Phytologist, 2001, 149, 127-135.	7.3	78
92	Dual requirement of the LjSym4 gene for mycorrhizal development in epidermal and cortical cells of Lotus japonicus roots. New Phytologist, 2002, 154, 741-749.	7.3	78
93	Biotic and Abiotic Stimulation of Root Epidermal Cells Reveals Common and Specific Responses to Arbuscular Mycorrhizal Fungi Â. Plant Physiology, 2009, 149, 1424-1434.	4.8	78
94	Defense Related Phytohormones Regulation in Arbuscular Mycorrhizal Symbioses Depends on the Partner Genotypes. Journal of Chemical Ecology, 2014, 40, 791-803.	1.8	78
95	A new class of conjugated strigolactone analogues with fluorescent properties: synthesis and biological activity. Organic and Biomolecular Chemistry, 2009, 7, 3413.	2.8	77
96	<i>Tuber melanosporum, </i> when dominant, affects fungal dynamics in truffle grounds. New Phytologist, 2010, 185, 237-247.	7.3	77
97	Rice root colonisation by mycorrhizal and endophytic fungi in aerobic soil. Annals of Applied Biology, 2009, 154, 195-204.	2.5	76
98	Mucoromycota: going to the roots of plant-interacting fungi. Fungal Biology Reviews, 2020, 34, 100-113.	4.7	75
99	Apocarotenoids: Old and New Mediators of the Arbuscular Mycorrhizal Symbiosis. Frontiers in Plant Science, 2019, 10, 1186.	3.6	74
100	Comparative structure of vesicular-arbuscular mycorrhizas and ectomycorrhizas. Plant and Soil, 1994, 159, 79-88.	3.7	72
101	Cell Wall Proteins of the Ectomycorrhizal Basidiomycete Pisolithus tinctorius: Identification, Function, and Expression in Symbiosis. Fungal Genetics and Biology, 1999, 27, 161-174.	2.1	72
102	A nutrient-regulated, dual localization phospholipase A2 in the symbiotic fungus Tuber borchii. EMBO Journal, 2001, 20, 5079-5090.	7.8	72
103	Presymbiotic factors released by the arbuscular mycorrhizal fungus <i>Gigaspora margarita</i> induce starch accumulation in <i>Lotus japonicus</i> roots. New Phytologist, 2009, 183, 53-61.	7.3	72
104	A Novel Class of Ectomycorrhiza-Regulated Cell Wall Polypeptides in Pisolithus tinctorius. Molecular Plant-Microbe Interactions, 1999, 12, 862-871.	2.6	71
105	Localization of ascorbic acid, ascorbic acid oxidase, and glutathione in roots of Cucurbita maxima L Journal of Experimental Botany, 2004, 55, 2589-2597.	4.8	70
106	New Potent Fluorescent Analogues of Strigolactones: Synthesis and Biological Activity in Parasitic Weed Germination and Fungal Branching. European Journal of Organic Chemistry, 2011, 2011, 3781-3793.	2.4	69
107	<i><scp>E</scp>ndogone</i> , one of the oldest plantâ€associated fungi, host unique Mollicutesâ€related endobacteria. New Phytologist, 2015, 205, 1464-1472.	7.3	69
108	DNA probes for identification of the ectomycorrhizal fungusTuber magnatumPico. FEMS Microbiology Letters, 1993, 114, 245-251.	1.8	66

#	Article	IF	CITATIONS
109	Isolation and Characterization of Differentially Expressed Genes in the Mycelium and Fruit Body of <i>Tuber borchii</i> . Applied and Environmental Microbiology, 2002, 68, 4574-4582.	3.1	66
110	Ectomycorrhizal Inocybe species associate with the mycoheterotrophic orchid Epipogium aphyllum but not its asexual propagules. Annals of Botany, 2009, 104, 595-610.	2.9	66
111	Tuber magnatum Pico, a species of limited geographical distribution: its genetic diversity inside and outside a truffle ground. Environmental Microbiology, 2005, 7, 55-65.	3.8	63
112	Is the Perigord black truffle threatened by an invasive species? We dreaded it and it has happened!. New Phytologist, 2008, 178, 699-702.	7.3	63
113	The exudate from an arbuscular mycorrhizal fungus induces nitric oxide accumulation in Medicago truncatula roots. Mycorrhiza, 2012, 22, 259-269.	2.8	62
114	Systems biology and "omics―tools: A cooperation for next-generation mycorrhizal studies. Plant Science, 2013, 203-204, 107-114.	3.6	61
115	An interdomain network: the endobacterium of a mycorrhizal fungus promotes antioxidative responses in both fungal and plant hosts. New Phytologist, 2016, 211, 265-275.	7.3	61
116	Location of a cell-wall hydroxyproline-rich glycoprotein, cellulose and ?-1,3-glucans in apical and differentiated regions of maize mycorrhizal roots. Planta, 1994, 195, 201.	3.2	60
117	Two putative-aquaporin genes are differentially expressed during arbuscular mycorrhizal symbiosis in Lotus japonicus. BMC Plant Biology, 2012, 12, 186.	3.6	60
118	Expression and localization of polygalacturonase during the outgrowth of lateral roots in Allium porrum L Planta, 1992, 188, 164-172.	3.2	58
119	Genetic variability of Tuber uncinatum and its relatedness to other black truffles. Environmental Microbiology, 2002, 4, 584-594.	3.8	58
120	Early Lotus japonicus root transcriptomic responses to symbiotic and pathogenic fungal exudates. Frontiers in Plant Science, 2015, 6, 480.	3.6	58
121	Biology of Fungi and Their Bacterial Endosymbionts. Annual Review of Phytopathology, 2018, 56, 289-309.	7.8	58
122	The interface between fungal hyphae and orchid protocorm cells. Canadian Journal of Botany, 1996, 74, 1861-1870.	1.1	57
123	Phylogenetic analysis of Glomeromycota by partial LSU rDNA sequences. Mycorrhiza, 2006, 16, 183-189.	2.8	57
124	Soil metaproteomics reveals an inter-kingdom stress response to the presence of black truffles. Scientific Reports, 2016, 6, 25773.	3.3	56
125	Unique arbuscular mycorrhizal fungal communities uncovered in date palm plantations and surrounding desert habitats of Southern Arabia. Mycorrhiza, 2011, 21, 195-209.	2.8	55
126	The mitochondrial genome of the arbuscular mycorrhizal fungus ⟨i>Gigaspora margarita⟨/i> reveals two unsuspected ⟨i>trans⟨/i>â€splicing events of group I introns. New Phytologist, 2012, 194, 836-845.	7.3	55

#	Article	IF	Citations
127	Truffle Brûlés Have an Impact on the Diversity of Soil Bacterial Communities. PLoS ONE, 2013, 8, e61945.	2.5	55
128	Specific PCR-primers as a reliable tool for the detection of white truffles in mycorrhizal roots. New Phytologist, 1999, 141, 511-516.	7.3	54
129	The CRE1 Cytokinin Pathway Is Differentially Recruited Depending on Medicago truncatula Root Environments and Negatively Regulates Resistance to a Pathogen. PLoS ONE, 2015, 10, e0116819.	2.5	54
130	A Burkholderia Strain Living Inside the Arbuscular Mycorrhizal Fungus Gigaspora margarita Possesses the vacB Gene, Which Is Involved in Host Cell Colonization by Bacteria. Microbial Ecology, 2000, 39, 137-144.	2.8	53
131	The future has roots in the past: the ideas and scientists that shaped mycorrhizal research. New Phytologist, 2018, 220, 982-995.	7.3	53
132	Soil analysis reveals the presence of an extended mycelial network in a Tuber magnatumâ€Âftruffle-ground. FEMS Microbiology Ecology, 2010, 71, 43-49.	2.7	52
133	ITS fungal barcoding primers versus 18S AMFâ€specific primers reveal similar AMFâ€based diversity patterns in roots and soils of three mountain vineyards. Environmental Microbiology Reports, 2017, 9, 658-667.	2.4	52
134	The virome of the arbuscular mycorrhizal fungus <i>Gigaspora margarita</i> reveals the first report of DNA fragments corresponding to replicating nonâ€retroviral RNA viruses in fungi. Environmental Microbiology, 2018, 20, 2012-2025.	3.8	52
135	The plant microbiota: composition, functions, and engineering. Current Opinion in Biotechnology, 2022, 73, 135-142.	6.6	52
136	Building a mycorrhizal cell: How to reach compatibility between plants and arbuscular mycorrhizal fungi. Journal of Plant Interactions, 2005, 1, 3-13.	2.1	51
137	Chrysotile asbestos is progressively converted into a non-fibrous amorphous material by the chelating action of lichen metabolites. Journal of Environmental Monitoring, 2005, 7, 764.	2.1	51
138	Common and not so common symbiotic entry. Trends in Plant Science, 2010, 15, 540-545.	8.8	51
139	Growing Research Networks on Mycorrhizae for Mutual Benefits. Trends in Plant Science, 2018, 23, 975-984.	8.8	51
140	Differential spatio-temporal expression of carotenoid cleavage dioxygenases regulates apocarotenoid fluxes during AM symbiosis. Plant Science, 2015, 230, 59-69.	3.6	49
141	Epidermal cells of a symbiosis-defective mutant of Lotus japonicus show altered cytoskeleton organisation in the presence of a mycorrhizal fungus. Protoplasma, 2002, 219, 43-50.	2.1	48
142	Functional properties and differential mode of regulation of the nitrate transporter from a plant symbiotic ascomycete. Biochemical Journal, 2006, 394, 125-134.	3.7	48
143	The mycobiota: fungi take their place between plants and bacteria. Current Opinion in Microbiology, 2019, 49, 18-25.	5.1	48
144	â€ ⁻ Candidatus Moeniiplasma glomeromycotorumâ€ [™] , an endobacterium of arbuscular mycorrhizal fungi. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 1177-1184.	1.7	48

#	Article	IF	Citations
145	The plant nucleus in mycorrhizal roots: positional and structural modifications. Biology of the Cell, 1992, 75, 235-243.	2.0	47
146	The Mutualistic Interaction between Plants and Arbuscular Mycorrhizal Fungi. Microbiology Spectrum, 2016, 4, .	3.0	47
147	Polygalacturonase activity and location in arbuscular mycorrhizal roots of Allium porrum L Mycorrhiza, 1995, 5, 157-163.	2.8	46
148	An <scp>AM</scp> â€induced, <i><scp>MYB</scp></i> â€family gene of <i>Lotus japonicus</i> (<i>Lj<scp>MAMI</scp></i>) affects root growth in an <scp>AM</scp> â€independent manner. Plant Journal, 2013, 73, 442-455.	5.7	46
149	Ultrastructural localization of cell surface sugar residues in ericoid mycorrhizal fungi by gold-labeled lectins. Protoplasma, 1987, 139, 25-35.	2.1	45
150	Soil Fungal Hyphae Bind and Attack Asbestos Fibers. Angewandte Chemie - International Edition, 2003, 42, 219-222.	13.8	45
151	Bacterial and fungal communities associated with <i>Tuber magnatum</i> â€productive niches. Plant Biosystems, 2010, 144, 323-332.	1.6	45
152	The Perigord black truffle responds to cold temperature with an extensive reprogramming of its transcriptional activity. Fungal Genetics and Biology, 2011, 48, 585-591.	2.1	45
153	Immunocytochemical location of hydroxyproline rich glycoproteins at the interface between a mycorrhizal fungus and its host plants. Protoplasma, 1991, 165, 127-138.	2.1	44
154	Distinctive properties and expression profiles of glutamine synthetase from a plant symbiotic fungus. Biochemical Journal, 2003, 373, 357-368.	3.7	44
155	Impact of an arbuscular mycorrhizal fungus versus a mixed microbial inoculum on the transcriptome reprogramming of grapevine roots. Mycorrhiza, 2017, 27, 417-430.	2.8	44
156	Wall texture in the spore of a vesicular-arbuscular mycorrhizal fungus. Protoplasma, 1984, 120, 51-60.	2.1	42
157	A dehydration-inducible gene in the truffle Tuber borchii identifies a novel group of dehydrins. BMC Genomics, 2006, 7, 39.	2.8	42
158	Cytochemical modifications in the host-fungus interface during intracellular interactions in vesicular- arbuscular mycorrhizae. Plant Science Letters, 1981, 22, 13-21.	1.8	41
159	Expression of chitin synthase genes in the arbuscular mycorrhizal fungusGigaspora margarita. New Phytologist, 1999, 142, 347-354.	7. 3	41
160	Gate crashing arbuscular mycorrhizas: <i>in vivo</i> imaging shows the extensive colonization of both symbionts by <scp><i>T</i></scp> <i>richoderma atroviride</i> . Environmental Microbiology Reports, 2015, 7, 64-77.	2.4	41
161	Cytochemical and biochemical observations on the cell wall of the spore ofGlomus epigaeum. Protoplasma, 1984, 123, 140-151.	2.1	40
162	Evidence of DNA replication in an arbuscular mycorrhizal fungus in the absence of the host plant. Protoplasma, 1993, 176, 100-105.	2.1	40

#	Article	IF	Citations
163	ITS primers for the identification of marketable boletes. Journal of Biotechnology, 2006, 121, 318-329.	3.8	40
164	Plant Genes Related to Gibberellin Biosynthesis and Signaling Are Differentially Regulated during the Early Stages of AM Fungal Interactions. Molecular Plant, 2012, 5, 951-954.	8.3	40
165	LjLHT1.2â€"a mycorrhiza-inducible plant amino acid transporter from Lotus japonicus. Biology and Fertility of Soils, 2011, 47, 925-936.	4.3	39
166	Maize Polyamine Oxidase: Antibody Production and Ultrastructural Localization. Journal of Plant Physiology, 1995, 145, 686-692.	3.5	38
167	Phospholipase A2 up-regulation during mycorrhiza formation in Tuber borchii. New Phytologist, 2005, 167, 229-238.	7.3	38
168	Cell-specific gene expression of phosphate transporters in mycorrhizal tomato roots. Biology and Fertility of Soils, 2009, 45, 845-853.	4.3	38
169	Production of pectinâ€degrading enzymes by ericoid mycorrhizal fungi. New Phytologist, 1997, 135, 151-162.	7.3	37
170	A glimpse into the past of land plants and of their mycorrhizal affairs: from fossils to evoâ€devo. New Phytologist, 2010, 186, 267-270.	7.3	37
171	Endobacteria affect the metabolic profile of their host <i>Gigaspora margarita </i> , an arbuscular mycorrhizal fungus. Environmental Microbiology, 2010, 12, 2083-2095.	3.8	37
172	Plants and Arbuscular Mycorrhizal Fungi: Cues and Communication in the Early Steps of Symbiotic Interactions. Advances in Botanical Research, 2007, , 181-219.	1.1	36
173	A rice calcium-dependent protein kinase is expressed in cortical root cells during the presymbiotic phase of the arbuscular mycorrhizal symbiosis. BMC Plant Biology, 2011, 11, 90.	3.6	35
174	Chitin synthase genes in the arbuscular mycorrhizal fungusGlomus versiforme: full sequence of a gene encoding a class IV chitin synthase. FEMS Microbiology Letters, 1999, 170, 59-67.	1.8	33
175	The detection of mating type genes of Tuber melanosporum in productive and non productive soils. Applied Soil Ecology, 2012, 57, 9-15.	4.3	33
176	Analysis of the cell cycle in an arbuscular mycorrhizal fungus by flow cytometry and bromodeoxyuridine labelling. Protoplasma, 1995, 188, 161-169.	2.1	32
177	Endobacteria or bacterial endosymbionts? To be or not to be. New Phytologist, 2006, 170, 205-208.	7.3	32
178	Application of Laser Microdissection to plant pathogenic and symbiotic interactions. Journal of Plant Interactions, 2009, 4, 81-92.	2.1	32
179	Production of monoclonal antibodies against surface antigens of spores from arbuscular mycorrhizal fungi by an improved immunization and screening procedure. Mycorrhiza, 1993, 4, 69-78.	2.8	31
180	Rapid typing of truffle mycorrhizal roots by PCR amplification of the ribosomal DNA spacers. Mycorrhiza, 1996, 6, 417-421.	2.8	31

#	Article	IF	Citations
181	Differential Expression of Chitin Synthase III and IV mRNAs in Ascomata of Tuber borchii Vittad. Fungal Genetics and Biology, 2000, 31, 219-232.	2.1	31
182	Simultaneous detection and quantification of the unculturable microbe <i>Candidatus</i> Clomeribacter gigasporarum inside its fungal host <i>Gigaspora margarita</i> . New Phytologist, 2008, 180, 248-257.	7.3	31
183	The <i>ftsZ</i> Gene of the Endocellular Bacterium â€~ <i>Candidatus</i> Glomeribacter gigasporarum' Is Preferentially Expressed During the Symbiotic Phases of Its Host Mycorrhizal Fungus. Molecular Plant-Microbe Interactions, 2009, 22, 302-310.	2.6	31
184	Evidence of two polygalacturonases produced by a mycorrhizal ericoid fungus during its saprophytic growth. FEMS Microbiology Letters, 1993, 114, 85-91.	1.8	30
185	Transcript Profiling Reveals Novel Marker Genes Involved in Fruiting Body Formation in Tuber borchii. Eukaryotic Cell, 2005, 4, 1599-1602.	3.4	30
186	Check-In Procedures for Plant Cell Entry by Biotrophic Microbes. Molecular Plant-Microbe Interactions, 2007, 20, 1023-1030.	2.6	30
187	The computational-based structure of Dwarf14 provides evidence for its role as potential strigolactone receptor in plants. BMC Research Notes, 2012, 5, 307.	1.4	30
188	Genome-wide analysis of cell wall-related genes in Tuber melanosporum. Current Genetics, 2012, 58, 165-177.	1.7	30
189	Cell surface inCalluna vulgaris L. hair roots. Protoplasma, 1990, 155, 1-18.	2.1	29
190	Construction and characterization of genomic libraries of two endomycorrhizal fungi: Glomus versiforme and Gigaspora margarita. Mycological Research, 1999, 103, 955-960.	2.5	29
191	Thetbf-1Gene from the White TruffleTuber borchiiCodes for a Structural Cell Wall Protein Specifically Expressed in Fruitbody1. Fungal Genetics and Biology, 1998, 25, 87-99.	2.1	28
192	Molecular and morphological characterization of Tuber magnatum mycorrhizas in a long-term survey. Microbiological Research, 2001, 155, 279-284.	5.3	28
193	Gene expression profiling of the nitrogen starvation stress response in the mycorrhizal ascomycete Tuber borchii. Fungal Genetics and Biology, 2006, 43, 630-641.	2.1	28
194	Identification of Internal Transcribed Spacer Sequence Motifs in Truffles: a First Step toward Their DNA Bar Coding. Applied and Environmental Microbiology, 2007, 73, 5320-5330.	3.1	28
195	Water management and phenology influence the root-associated rice field microbiota. FEMS Microbiology Ecology, 2020, 96, .	2.7	28
196	Influence of heavy metals on production and activity of pectinolytic enzymes in ericoid mycorrhizal fungi. Mycological Research, 2000, 104, 825-833.	2.5	26
197	Laser Microdissection (LM): Applications to plant materials. Plant Biosystems, 2008, 142, 331-336.	1.6	26
198	Ascorbate oxidase: The unexpected involvement of a †wasteful enzyme†in the symbioses with nitrogen-fixing bacteria and arbuscular mycorrhizal fungi. Plant Physiology and Biochemistry, 2012, 59, 71-79.	5.8	26

#	Article	IF	Citations
199	Proteomic analysis reveals how pairing of a Mycorrhizal fungus with plant <scp>growthâ€promoting</scp> bacteria modulates growth and defense in wheat. Plant, Cell and Environment, 2021, 44, 1946-1960.	5 . 7	26
200	<i>Mollicutes</i> àâ€related endobacteria thrive inside liverwortâ€associated arbuscular mycorrhizal fungi. Environmental Microbiology, 2013, 15, 822-836.	3.8	25
201	MLO Differentially Regulates Barley Root Colonization by Beneficial Endophytic and Mycorrhizal Fungi. Frontiers in Plant Science, 2019, 10, 1678.	3.6	25
202	The intracellular delivery of <scp>TAT</scp> â€aequorin reveals calciumâ€mediated sensing of environmental and symbiotic signals by the arbuscular mycorrhizal fungus <i><scp>G</scp>igaspora margarita</i> . New Phytologist, 2014, 203, 1012-1020.	7.3	24
203	Understanding plant cell-wall remodelling during the symbiotic interaction between Tuber melanosporum and Corylus avellana using a carbohydrate microarray. Planta, 2016, 244, 347-359.	3.2	24
204	Colonization of legumes by an endophytic Fusarium solani strain FsK reveals common features to symbionts or pathogens. Fungal Genetics and Biology, 2019, 127, 60-74.	2.1	24
205	Efficient Mimics for Elucidating Zaxinone Biology and Promoting Agricultural Applications. Molecular Plant, 2020, 13, 1654-1661.	8.3	24
206	The Making of Symbiotic Cells in Arbuscular Mycorrhizal Roots. , 2010, , 57-71.		24
207	PCR primers specific for the genus <i>Tuber</i> reveal the presence of several truffle species in a truffle-ground. FEMS Microbiology Letters, 2009, 297, 67-72.	1.8	23
208	An endophytic <i>Fusarium</i> –legume association is partially dependent on the common symbiotic signalling pathway. New Phytologist, 2020, 226, 1429-1444.	7.3	23
209	Different Genetic Sources Contribute to the Small RNA Population in the Arbuscular Mycorrhizal Fungus Gigaspora margarita. Frontiers in Microbiology, 2020, 11, 395.	3.5	23
210	Transcription of a Gene Encoding a Lectinlike Glycoprotein Is Induced in Root Cells Harboring Arbuscular Mycorrhizal Fungi in Pisum sativum. Molecular Plant-Microbe Interactions, 1999, 12, 785-791.	2.6	22
211	Effect of volatiles versus exudates released by germinating spores ofÂGigaspora margarita on lateral root formation. Plant Physiology and Biochemistry, 2015, 97, 1-10.	5.8	22
212	Cell wall architectures in a mycorrhizal association as revealed by cryoultramicrotomy. Protoplasma, 1982, 111, 113-120.	2.1	21
213	Morphological analysis of early contacts between pine roots and two ectomycorrhizal Suillus strains. Mycorrhiza, 1998, 8, 1-10.	2.8	21
214	Tuber borchii versus Tuber maculatum: Neotype Studies and DNA Analyses. Mycologia, 2000, 92, 326.	1.9	21
215	Eucalypt NADP-Dependent Isocitrate Dehydrogenase1. Plant Physiology, 1998, 117, 939-948.	4.8	20
216	Tuber borchii versus Tuber maculatum: neotype studies and DNA analyses. Mycologia, 2000, 92, 326-331.	1.9	20

#	Article	IF	Citations
217	A limiting source of organic nitrogen induces specific transcriptional responses in the extraradical structures of the endomycorrhizal fungus Glomus intraradices. Current Genetics, 2006, 51, 59-70.	1.7	20
218	Arbuscular mycorrhizal fungal diversity in the Tuber melanosporum brûlé. Fungal Biology, 2015, 119, 518-527.	2.5	20
219	Effect of the strigolactone analogs methyl phenlactonoates on spore germination and root colonization of arbuscular mycorrhizal fungi. Heliyon, 2018, 4, e00936.	3.2	20
220	Physiological Beneficial Effect of Rhizophagus intraradices Inoculation on Tomato Plant Yield under Water Deficit Conditions. Agronomy, 2020, 10, 71.	3.0	20
221	Authentication of prized white and black truffles in processed products using quantitative real-time PCR. Food Research International, 2012, 48, 792-797.	6.2	19
222	The ultrastructure of the zygospore in Endogone flammicorona Trappe & Gerdemann. Mycopathologia, 1976, 59, 117-123.	3.1	17
223	Metabolome changes are induced in the arbuscular mycorrhizal fungus Gigaspora margarita by germination and by its bacterial endosymbiont. Mycorrhiza, 2018, 28, 421-433.	2.8	17
224	Hyphal and cytoskeleton polarization in Tuber melanosporum: A genomic and cellular analysis. Fungal Genetics and Biology, 2011, 48, 561-572.	2.1	16
225	Automated analysis of calcium spiking profiles with CaSA software: two case studies from root-microbe symbioses. BMC Plant Biology, 2013, 13, 224.	3.6	16
226	Gigaspora margarita with and without its endobacterium shows adaptive responses to oxidative stress. Mycorrhiza, 2017, 27, 747-759.	2.8	16
227	Arbuscular Mycorrhizas: The Lives of Beneficial Fungi and Their Plant Hosts. , 2015, , 235-245.		15
228	Tomato RNA-seq Data Mining Reveals the Taxonomic and Functional Diversity of Root-Associated Microbiota. Microorganisms, 2020, 8, 38.	3.6	15
229	Symbiotic responses of <i>Lotus japonicus</i> to two isogenic lines of a mycorrhizal fungus differing in the presence/absence of an endobacterium. Plant Journal, 2021, 108, 1547-1564.	5.7	15
230	Nuclear architecture and DNA location in two VAM fungi. Mycorrhiza, 1992, 1, 105-112.	2.8	14
231	Chitin synthase homologs in three ectomycorrhizal truffles. FEMS Microbiology Letters, 1995, 134, 109-114.	1.8	14
232	Root starch accumulation in response to arbuscular mycorrhizal colonization differs among Lotus japonicus starch mutants. Planta, 2011, 234, 639-646.	3.2	14
233	Nondegenerative Evolution in Ancient Heritable Bacterial Endosymbionts of Fungi. Molecular Biology and Evolution, 2016, 33, 2216-2231.	8.9	14
234	Gr and hp-1 tomato mutants unveil unprecedented interactions between arbuscular mycorrhizal symbiosis and fruit ripening. Planta, 2016, 244, 155-165.	3.2	13

#	Article	IF	CITATIONS
235	Intragenic complementation at the <i>Lotus japonicus CELLULOSE SYNTHASE-LIKE D1</i> locus rescues root hair defects. Plant Physiology, 2021, 186, 2037-2050.	4.8	13
236	Plant genotype and seasonality drive fine changes in olive root microbiota. Current Plant Biology, 2021, 28, 100219.	4.7	13
237	Dissecting the Rhizosphere complexity: The truffle-ground study case. Rendiconti Lincei, 2008, 19, 241-259.	2.2	12
238	The endobacterium of an arbuscular mycorrhizal fungus modulates the expression of its toxin–antitoxin systems during the life cycle of its host. ISME Journal, 2017, 11, 2394-2398.	9.8	12
239	Identification and Evolutionary Analysis of Putative Cytoplasmic McpA-Like Protein in a Bacterial Strain Living in Symbiosis with a Mycorrhizal Fungus. Journal of Molecular Evolution, 2002, 54, 815-824.	1.8	11
240	Pre-Penetration Apparatus Formation During AM Infection is Associated With a Specific Transcriptome Response in Epidermal Cells. Plant Signaling and Behavior, 2007, 2, 533-535.	2.4	11
241	AM fungal exudates activate MAP kinases in plant cells in dependence from cytosolic Ca2+ increase. Plant Physiology and Biochemistry, 2011, 49, 963-969.	5.8	11
242	TheLotus japonicus MAMIgene links root development, arbuscular mycorrhizal symbiosis and phosphate availability. Plant Signaling and Behavior, 2013, 8, e23414.	2.4	11
243	Understanding Changes in Tomato Cell Walls in Roots and Fruits: The Contribution of Arbuscular Mycorrhizal Colonization. International Journal of Molecular Sciences, 2019, 20, 415.	4.1	11
244	TPLATE Recruitment Reveals Endocytic Dynamics at Sites of Symbiotic Interface Assembly in Arbuscular Mycorrhizal Interactions. Frontiers in Plant Science, 2019, 10, 1628.	3.6	11
245	Chapter 39 Ecology and Evolution of Fungal-Bacterial Interactions. Mycology, 2017, , 563-584.	0.5	11
246	Apical meristems in mycorrhizal and uninfected roots of Calluna vulgaris (L.) Hull. Plant and Soil, 1983, 71, 285-291.	3.7	10
247	Title is missing!. Plant Growth Regulation, 2001, 34, 347-352.	3.4	10
248	The role of the glyoxylate cycle in the symbiotic fungus Tuber borchii: expression analysis and subcellular localization. Current Genetics, 2007, 52, 159-170.	1.7	10
249	Algae and fungi move from the past to the future. ELife, 2019, 8, .	6.0	10
250	Biotic Interactions as Mediators of Context-Dependent Biodiversity-Ecosystem Functioning Relationships. Research Ideas and Outcomes, 0, 8, .	1.0	10
251	Characterization of a symbiosis- and auxin-regulated glutathione-S-transferase from Eucalyptus globulus roots. Plant Physiology and Biochemistry, 2003, 41, 611-618.	5.8	8
252	Not only priming: Soil microbiota may protect tomato from root pathogens. Plant Signaling and Behavior, 2018, 13, 1-9.	2.4	8

#	Article	IF	Citations
253	The Mosaic Architecture of NRPS-PKS in the Arbuscular Mycorrhizal Fungus Gigaspora margarita Shows a Domain With Bacterial Signature. Frontiers in Microbiology, 2020, 11, 581313.	3.5	8
254	8 Pathogenic and Endomycorrhizal Associations. Methods in Microbiology, 1992, 24, 141-168.	0.8	7
255	Differential absorption and localization of two Sclerotinia sclerotiorum endo-polygalacturonases in soybean hypocotyls. Physiological and Molecular Plant Pathology, 1993, 43, 353-364.	2.5	7
256	Development and good breeding in legume models: poise and peas?. New Phytologist, 2000, 148, 7-9.	7.3	7
257	Zinc ions differentially affect chitin synthase gene expression in an ericoid mycorrhizal fungus. Plant Biosystems, 2004, 138, 271-277.	1.6	7
258	Enolase from the ectomycorrhizal fungus Tuber borchii Vittad.: biochemical characterization, molecular cloning, and localization. Fungal Genetics and Biology, 2004, 41, 157-167.	2.1	7
259	The arbuscular mycorrhizal fungus <i>Glomus intraradices</i> induces intracellular calcium changes in soybean cells. Caryologia, 2007, 60, 137-140.	0.3	7
260	Gene expression and metabolite changes during Tuber magnatum fruiting body storage. Current Genetics, 2014, 60, 285-294.	1.7	7
261	Establishment and Functioning of Arbuscular Mycorrhizas. , 2009, , 259-274.		6
262	Genomic suppression subtractive hybridization as a tool to identify differences in mycorrhizal fungal genomes. FEMS Microbiology Letters, 2011, 318, 115-122.	1.8	6
263	The Mutualistic Interaction between Plants and Arbuscular Mycorrhizal Fungi. , 0, , 727-747.		6
264	Quantifying Nutrient Trade in the Arbuscular Mycorrhizal Symbiosis Under Extreme Weather Events Using Quantum-Dot Tagged Phosphorus. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	6
265	Investigating the Endobacteria Which Thrive in Arbuscular Mycorrhizal Fungi. Methods in Molecular Biology, 2016, 1399, 29-53.	0.9	6
266	TMchs4, a class IV chitin synthase gene from the ectomycorrhizal Tuber magnatum. Mycological Research, 2000, 104, 703-707.	2.5	5
267	Gigaspora margarita and Its Endobacterium Modulate Symbiotic Marker Genes in Tomato Roots under Combined Water and Nutrient Stress. Plants, 2020, 9, 886.	3.5	4
268	Nuclear division in the vegetative hyphae of Tuber species plurimae. Mycopathologia, 1973, 49, 161-167.	3.1	3
269	Ultrastructural organization of vegetative hyphae of Tuber Albidum Pico. Mycopathologia, 1975, 56, 137-142.	3.1	3
270	Chitinase activity and VA-mycorrhiza development. Agriculture, Ecosystems and Environment, 1990, 29, 409-413.	5.3	3

#	Article	IF	CITATIONS
271	2004 Snapshots of AM Fungi: Still an Endless Tale…. Mycological Research, 2004, 108, 338-339.	2.5	3
272	Enhanced activity of the GmarMT1 promoter from the mycorrhizal fungus Gigaspora margarita at limited carbon supply. Fungal Genetics and Biology, 2007, 44, 877-885.	2.1	3
273	From environmental microbiology to ecogenomics: spotting the emerging field of fungal–bacterial interactions. Environmental Microbiology Reports, 2015, 7, 15-17.	2.4	3
274	TMpcp: ATuber MagnatumGene Which Encodes a Putative Mitochondrial Phosphate Carrier. DNA Sequence, 2000, 10, 407-410.	0.7	2
275	Symbiosis. Environmental Microbiology Reports, 2010, 2, 475-478.	2.4	2
276	Identification of Putative Nifdk Genes in the Genome of a. Burkholderia Living in Symbiosis with an Arbuscular Mycorrfflzal Fungus., 2002,, 206-206.		2
277	Mycorrhizal Fungi. Books in Soils, Plants, and the Environment, 2007, , 201-236.	0.1	2
278	The need for phosphate: at the root of the mycorrhizal symbiosis. Science Bulletin, 2021, , .	9.0	2
279	Texture of host cell walls in mycorrhizal leeks. Agriculture, Ecosystems and Environment, 1990, 29, 51-54.	5. 3	1
280	Discrimination of <i>Gigaspora</i> species by PCR specific primers and phylogenetic analysis. Mycotaxon, 2012, 118, 17-26.	0.3	1
281	Bioinformatic Methods for the Analysis of High-Throughput RNA Sequencing in Arbuscular Mycorrhizal Fungi. Methods in Molecular Biology, 2020, 2146, 137-153.	0.9	1
282	Microbe Profile: Gigaspora margarita, a multifaceted arbuscular mycorrhizal fungus. Microbiology (United Kingdom), 2022, 168, .	1.8	1
283	Joséâ€Miguel Barea 1942–2018: the man that always smiles. Environmental Microbiology, 2018, 20, 2319-2321.	3.8	0
284	Editorial: Proceedings of iMMM 2019 – International Molecular Mycorrhiza Meeting. Frontiers in Plant Science, 2020, 11, 627988.	3.6	0
285	Can the Study of Endomycorrhizae open new Avenues of Research in Symbiotic Nitrogen Fixation?. Current Plant Science and Biotechnology in Agriculture, 2000, , 653-658.	0.0	0
286	A Modular Database Architecture Enabled to Comparative Sequence Analysis. Lecture Notes in Computer Science, 2011, , 124-147.	1.3	0
287	7 Genetics and Genomics Decipher Partner Biology in Arbuscular Mycorrhizas., 2020,, 143-172.		0
288	European Journal of Histochemistry: an open forum for cell biology in plants. European Journal of Histochemistry, 2003, 47, 393-6.	1.5	0