List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8893124/publications.pdf Version: 2024-02-01

		18436	18606
117	19,741	62	119
papers	citations	h-index	g-index
121	121	121	19215
all docs	docs citations	times ranked	citing authors

XIN-YAO YU

#	Article	IF	CITATIONS
1	Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nature Communications, 2015, 6, 6512.	5.8	1,194
2	Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nature Communications, 2015, 6, 6694.	5.8	1,101
3	Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction. Energy and Environmental Science, 2016, 9, 1246-1250.	15.6	839
4	Carbonâ€Incorporated Nickel–Cobalt Mixed Metal Phosphide Nanoboxes with Enhanced Electrocatalytic Activity for Oxygen Evolution. Angewandte Chemie - International Edition, 2017, 56, 3897-3900.	7.2	725
5	Selfâ€Templated Formation of Uniform NiCo ₂ O ₄ Hollow Spheres with Complex Interior Structures for Lithiumâ€Ion Batteries and Supercapacitors. Angewandte Chemie - International Edition, 2015, 54, 1868-1872.	7.2	713
6	Metal Sulfide Hollow Nanostructures for Electrochemical Energy Storage. Advanced Energy Materials, 2016, 6, 1501333.	10.2	663
7	Mixed Metal Sulfides for Electrochemical Energy Storage and Conversion. Advanced Energy Materials, 2018, 8, 1701592.	10.2	647
8	Complex Nanostructures from Materials based on Metal–Organic Frameworks for Electrochemical Energy Storage and Conversion. Advanced Materials, 2017, 29, 1703614.	11.1	629
9	Ultrathin MoS ₂ Nanosheets Supported on Nâ€doped Carbon Nanoboxes with Enhanced Lithium Storage and Electrocatalytic Properties. Angewandte Chemie - International Edition, 2015, 54, 7395-7398.	7.2	596
10	Formation of Prussianâ€Blueâ€Analog Nanocages via a Direct Etching Method and their Conversion into Ni–Coâ€Mixed Oxide for Enhanced Oxygen Evolution. Advanced Materials, 2016, 28, 4601-4605.	11.1	550
11	Formation of Ni–Co–MoS ₂ Nanoboxes with Enhanced Electrocatalytic Activity for Hydrogen Evolution. Advanced Materials, 2016, 28, 9006-9011.	11.1	511
12	Structure-designed synthesis of FeS ₂ @C yolk–shell nanoboxes as a high-performance anode for sodium-ion batteries. Energy and Environmental Science, 2017, 10, 1576-1580.	15.6	475
13	Bowlâ€like SnO ₂ @Carbon Hollow Particles as an Advanced Anode Material for Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2014, 53, 12803-12807.	7.2	463
14	Formation of Nickel Sulfide Nanoframes from Metal–Organic Frameworks with Enhanced Pseudocapacitive and Electrocatalytic Properties. Angewandte Chemie - International Edition, 2015, 54, 5331-5335.	7.2	439
15	Sb@C coaxial nanotubes as a superior long-life and high-rate anode for sodium ion batteries. Energy and Environmental Science, 2016, 9, 2314-2318.	15.6	414
16	Formation of Hierarchical Cuâ€Đoped CoSe ₂ Microboxes via Sequential Ion Exchange for Highâ€Performance Sodiumâ€Ion Batteries. Advanced Materials, 2018, 30, e1706668.	11.1	402
17	Hierarchical MoS ₂ tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries. Science Advances, 2016, 2, e1600021.	4.7	362
18	Confining SnS2 Ultrathin Nanosheets in Hollow Carbon Nanostructures for Efficient Capacitive Sodium Storage. Joule, 2018, 2, 725-735.	11.7	324

XIN-YAO YU

#	Article	IF	CITATIONS
19	The Design and Synthesis of Hollow Microâ€∕Nanostructures: Present and Future Trends. Advanced Materials, 2018, 30, e1800939.	11.1	301
20	Iron and 1,3,5-Benzenetricarboxylic Metal–Organic Coordination Polymers Prepared by Solvothermal Method and Their Application in Efficient As(V) Removal from Aqueous Solutions. Journal of Physical Chemistry C, 2012, 116, 8601-8607.	1.5	287
21	General Formation of MS (M = Ni, Cu, Mn) Boxâ€inâ€Box Hollow Structures with Enhanced Pseudocapacitive Properties. Advanced Functional Materials, 2014, 24, 7440-7446.	7.8	281
22	Nickel cobalt phosphides quasi-hollow nanocubes as an efficient electrocatalyst for hydrogen evolution in alkaline solution. Chemical Communications, 2016, 52, 1633-1636.	2.2	271
23	Nanostructured Electrode Materials for Advanced Sodium-Ion Batteries. Matter, 2019, 1, 90-114.	5.0	266
24	Activating the hydrogen evolution and overall water splitting performance of NiFe LDH by cation doping and plasma reduction. Applied Catalysis B: Environmental, 2020, 266, 118627.	10.8	255
25	Encapsulating Sn Nanoparticles in Amorphous Carbon Nanotubes for Enhanced Lithium Storage Properties. Advanced Energy Materials, 2016, 6, 1601177.	10.2	234
26	AlOOH-Reduced Graphene Oxide Nanocomposites: One-Pot Hydrothermal Synthesis and Their Enhanced Electrochemical Activity for Heavy Metal Ions. ACS Applied Materials & Interfaces, 2012, 4, 4672-4682.	4.0	232
27	Adsorption of Lead(II) on O ₂ -Plasma-Oxidized Multiwalled Carbon Nanotubes: Thermodynamics, Kinetics, and Desorption. ACS Applied Materials & Interfaces, 2011, 3, 2585-2593.	4.0	220
28	Graphene Layersâ€Wrapped Fe/Fe ₅ C ₂ Nanoparticles Supported on Nâ€doped Graphene Nanosheets for Highly Efficient Oxygen Reduction. Advanced Energy Materials, 2018, 8, 1702476.	10.2	205
29	Facile Synthesis of Urchin-like NiCo ₂ O ₄ Hollow Microspheres with Enhanced Electrochemical Properties in Energy and Environmentally Related Applications. ACS Applied Materials & Interfaces, 2014, 6, 3689-3695.	4.0	204
30	A Practical Highâ€Energy Cathode for Sodiumâ€ion Batteries Based on Uniform P2â€Na _{0.7} CoO ₂ Microspheres. Angewandte Chemie - International Edition, 2017, 56, 5801-5805.	7.2	197
31	Electrochemical Detection of Arsenic(III) Completely Free from Noble Metal: Fe ₃ O ₄ Microspheres-Room Temperature Ionic Liquid Composite Showing Better Performance than Gold. Analytical Chemistry, 2013, 85, 2673-2680.	3.2	194
32	Hierarchical Nanotubes Constructed by Carbon oated Ultrathin SnS Nanosheets for Fast Capacitive Sodium Storage. Angewandte Chemie - International Edition, 2017, 56, 12202-12205.	7.2	188
33	Novel 3D Hierarchical Cotton-Candy-Like CuO: Surfactant-Free Solvothermal Synthesis and Application in As(III) Removal. ACS Applied Materials & amp; Interfaces, 2012, 4, 1954-1962.	4.0	184
34	A Nanosheetsâ€onâ€Channel Architecture Constructed from MoS ₂ and CMKâ€3 for Highâ€Capacity and Longâ€Cycleâ€Life Lithium Storage. Advanced Energy Materials, 2014, 4, 1400902.	10.2	180
35	Carbonâ€Incorporated Nickel–Cobalt Mixed Metal Phosphide Nanoboxes with Enhanced Electrocatalytic Activity for Oxygen Evolution. Angewandte Chemie, 2017, 129, 3955-3958.	1.6	177
36	Three-dimensional hierarchical flower-like Mg–Al-layered double hydroxides: highly efficient adsorbents for As(v) and Cr(vi) removal. Nanoscale, 2012, 4, 3466.	2.8	175

#	Article	IF	CITATIONS
37	Formation of Polypyrrole oated Sb ₂ Se ₃ Microclips with Enhanced Sodiumâ€&torage Properties. Angewandte Chemie - International Edition, 2018, 57, 9859-9863.	7.2	173
38	Bulletâ€like Cu ₉ S ₅ Hollow Particles Coated with Nitrogenâ€Doped Carbon for Sodiumâ€lon Batteries. Angewandte Chemie - International Edition, 2019, 58, 7744-7748.	7.2	173
39	Rutile TiO ₂ Submicroboxes with Superior Lithium Storage Properties. Angewandte Chemie - International Edition, 2015, 54, 4001-4004.	7.2	169
40	Deeply reconstructed hierarchical and defective NiOOH/FeOOH nanoboxes with accelerated kinetics for the oxygen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 15586-15594.	5.2	162
41	Etchingâ€inâ€aâ€Box: A Novel Strategy to Synthesize Unique Yolkâ€Shelled Fe ₃ O ₄ @Carbon with an Ultralong Cycling Life for Lithium Storage. Advanced Energy Materials, 2016, 6, 1502318.	10.2	158
42	Porous Hierarchically Micro-/Nanostructured MgO: Morphology Control and Their Excellent Performance in As(III) and As(V) Removal. Journal of Physical Chemistry C, 2011, 115, 22242-22250.	1.5	142
43	Formation of Co ₃ O ₄ microframes from MOFs with enhanced electrochemical performance for lithium storage and water oxidation. Chemical Communications, 2016, 52, 6269-6272.	2.2	137
44	Stripping voltammetry study of ultra-trace toxic metal ions on highly selectively adsorptive porous magnesium oxide nanoflowers. Analyst, The, 2012, 137, 2183.	1.7	118
45	Facile preparation of porous Co3O4 nanosheets for high-performance lithium ion batteries and oxygen evolution reaction. Journal of Power Sources, 2016, 310, 41-46.	4.0	111
46	Facet-dependent electrochemical properties of Co3O4 nanocrystals toward heavy metal ions. Scientific Reports, 2013, 3, 2886.	1.6	105
47	N-doped graphene layers encapsulated NiFe alloy nanoparticles derived from MOFs with superior electrochemical performance for oxygen evolution reaction. Scientific Reports, 2016, 6, 34004.	1.6	104
48	Al-1,3,5-benzenetricarboxylic metal–organic frameworks: A promising adsorbent for defluoridation of water with pH insensitivity and low aluminum residual. Chemical Engineering Journal, 2014, 252, 220-229.	6.6	103
49	Non-conductive nanomaterial enhanced electrochemical response in stripping voltammetry: The use of nanostructured magnesium silicate hollow spheres for heavy metal ions detection. Analytica Chimica Acta, 2013, 790, 31-38.	2.6	102
50	Millimeter-sized Mg–Al-LDH nanoflake impregnated magnetic alginate beads (LDH-n-MABs): a novel bio-based sorbent for the removal of fluoride in water. Journal of Materials Chemistry A, 2014, 2, 2119-2128.	5.2	102
51	Facile synthesis of porous single crystalline ZnO nanoplates and their application in photocatalytic reduction of Cr(VI) in the presence of phenol. Journal of Hazardous Materials, 2014, 276, 400-407.	6.5	96
52	Ultra high adsorption capacity of fried egg jellyfish-like γ-AlOOH(Boehmite)@SiO2/Fe3O4 porous magnetic microspheres for aqueous Pb(II) removal. Journal of Materials Chemistry, 2011, 21, 16550.	6.7	91
53	Hollow Nanostructures of Molybdenum Sulfides for Electrochemical Energy Storage and Conversion. Small Methods, 2017, 1, 1600020.	4.6	87
54	Self-assembled, monodispersed, flower-like Î ³ -AlOOH hierarchical superstructures for efficient and fast removal of heavy metal ions from water. CrystEngComm, 2012, 14, 3005.	1.3	80

Χιν-Υλό Υυ

#	Article	IF	CITATIONS
55	Oxygen Vacancy Engineering Synergistic with Surface Hydrophilicity Modification of Hollow Ru Doped CoNi‣DH Nanotube Arrays for Boosting Hydrogen Evolution. Small, 2022, 18, e2104323.	5.2	71
56	Activating the alkaline hydrogen evolution performance of Mo-incorporated Ni(OH)2 by plasma-induced heterostructure. Applied Catalysis B: Environmental, 2020, 260, 118154.	10.8	70
57	O2-plasma oxidized multi-walled carbon nanotubes for Cd(II) and Pb(II) detection: Evidence of adsorption capacity for electrochemical sensing. Electrochemistry Communications, 2011, 13, 1506-1509.	2.3	69
58	Synthesis of CoSe2 nanoparticles embedded in N-doped carbon with conformal TiO2 shell for sodium-ion batteries. Chemical Engineering Journal, 2019, 378, 122206.	6.6	69
59	Enhancing selectivity in stripping voltammetry by different adsorption behaviors: the use of nanostructured Mg–Al-layered double hydroxides to detect Cd(ii). Analyst, The, 2013, 138, 1812.	1.7	67
60	A Facile Approach for the Synthesis of Ag oated Fe ₃ O ₄ @TiO ₂ Core/Shell Microspheres as Highly Efficient and Recyclable Photocatalysts. European Journal of Inorganic Chemistry, 2011, 2011, 5096-5104.	1.0	64
61	γ-Fe ₂ O ₃ Nanoparticles Encapsulated Millimeter-Sized Magnetic Chitosan Beads for Removal of Cr(VI) from Water: Thermodynamics, Kinetics, Regeneration, and Uptake Mechanisms. Journal of Chemical & Engineering Data, 2013, 58, 3142-3149.	1.0	64
62	Interface modification of hierarchical Co9S8@NiCo layered dihydroxide nanotube arrays using polypyrrole as charge transfer layer in flexible all-solid asymmetric supercapacitors. Journal of Power Sources, 2019, 439, 227103.	4.0	63
63	Porous 2-line ferrihydrite/bayerite composites (LFBC): Fluoride removal performance and mechanism. Chemical Engineering Journal, 2015, 268, 325-336.	6.6	62
64	Two-step self-assembly of iron oxide into three-dimensional hollow magnetic porous microspheres and their toxic ion adsorption mechanism. Dalton Transactions, 2013, 42, 1921-1928.	1.6	61
65	Bowlâ€like SnO ₂ @Carbon Hollow Particles as an Advanced Anode Material for Lithiumâ€lon Batteries. Angewandte Chemie, 2014, 126, 13017-13021.	1.6	57
66	Tungstate-modulated Ni/Ni(OH) ₂ interface for efficient hydrogen evolution reaction in neutral media. Journal of Materials Chemistry A, 2021, 9, 1456-1462.	5.2	57
67	Carbon-coated CoSe ₂ nanoparticles confined in N-doped carbon microboxes with enhanced sodium storage properties. Journal of Materials Chemistry A, 2019, 7, 21404-21409.	5.2	52
68	In-situ formation of ligand-stabilized bismuth nanosheets for efficient CO2 conversion. Applied Catalysis B: Environmental, 2021, 297, 120481.	10.8	52
69	Hierarchical core–shell structures of P-Ni(OH) ₂ rods@MnO ₂ nanosheets as high-performance cathode materials for asymmetric supercapacitors. Nanoscale, 2018, 10, 2524-2532.	2.8	51
70	Nanostructured metal oxides/hydroxides-based electrochemical sensor for monitoring environmental micropollutants. Trends in Environmental Analytical Chemistry, 2014, 3-4, 28-35.	5.3	50
71	Hierarchical Nanotubes Constructed by Carbon oated Ultrathin SnS Nanosheets for Fast Capacitive Sodium Storage. Angewandte Chemie, 2017, 129, 12370-12373.	1.6	47
72	Cation-Assisted Formation of Porous TiO _{2–<i>x</i>} Nanoboxes with High Grain Boundary Density as Efficient Electrocatalysts for Lithium–Oxygen Batteries. ACS Catalysis, 2018, 8, 1720-1727.	5.5	47

XIN-YAO YU

#	Article	IF	CITATIONS
73	Fluoride removal mechanism of bayerite/boehmite nanocomposites: Roles of the surface hydroxyl groups and the nitrate anions. Journal of Colloid and Interface Science, 2015, 440, 60-67.	5.0	46
74	Synthesis of monodispersed Pt nanoparticles on plasma processed carbon nanotubes for methanol electro-oxidation reaction. Journal of Materials Chemistry, 2009, 19, 6720.	6.7	45
75	Bulletâ€like Cu ₉ S ₅ Hollow Particles Coated with Nitrogenâ€Doped Carbon for Sodiumâ€lon Batteries. Angewandte Chemie, 2019, 131, 7826-7830.	1.6	43
76	Facile one-pot synthesis of lepidocrocite (Î ³ -FeOOH) nanoflakes for water treatment. New Journal of Chemistry, 2013, 37, 2551.	1.4	42
77	Controlled synthesis of natroalunite microtubes and spheres with excellent fluoride removal performance. Chemical Engineering Journal, 2015, 271, 240-251.	6.6	42
78	General synthesis of vanadium-based mixed metal oxides hollow nanofibers for high performance lithium-ion batteries. Journal of Power Sources, 2016, 329, 190-196.	4.0	40
79	A facile template free solution approach for the synthesis of dypingite nanowires and subsequent decomposition to nanoporous MgO nanowires with excellent arsenate adsorption properties. RSC Advances, 2013, 3, 5430.	1.7	36
80	Sub-20 nm-Fe ₃ O ₄ square and circular nanoplates: synthesis and facet-dependent magnetic and electrochemical properties. Chemical Communications, 2014, 50, 15952-15955.	2.2	36
81	Low-coordinated cobalt arrays for efficient hydrazine electrooxidation. Energy and Environmental Science, 2022, 15, 3246-3256.	15.6	36
82	Introducing oxygen vacancies for improving the electrochemical performance of Co9S8@NiCo-LDH nanotube arrays in flexible all-solid battery-capacitor hybrid supercapacitors. Energy, 2022, 238, 121767.	4.5	35
83	Electrochemical oxidation to construct a nickel sulfide/oxide heterostructure with improvement of capacitance. Journal of Materials Chemistry A, 2016, 4, 11611-11615.	5.2	33
84	Synergistic Electronic and Pore Structure Modulation in Open Carbon Nanocages Enabling Efficient Electrocatalytic Production of H ₂ O ₂ in Acidic Medium. Advanced Functional Materials, 2022, 32, .	7.8	33
85	Formation of Polypyrroleâ€Coated Sb ₂ Se ₃ Microclips with Enhanced Sodiumâ€Storage Properties. Angewandte Chemie, 2018, 130, 10007-10011.	1.6	31
86	Surfactant-free preparation of nickel carbonate hydroxide in aqueous solution and its toxic ion-exchange properties. New Journal of Chemistry, 2013, 37, 534-539.	1.4	30
87	A simple method to synthesize graphene at 633 K by dechlorination of hexachlorobenzene on Cu foils. Carbon, 2012, 50, 306-310.	5.4	29
88	Synthesis of monodispersed α-FeOOH nanorods with a high content of surface hydroxyl groups and enhanced ion-exchange properties towards As(v). RSC Advances, 2013, 3, 15805.	1.7	29
89	Regulating Ni site in NiV LDH for efficient electrocatalytic production of formate and hydrogen by glycerol electrolysis. Rare Metals, 2022, 41, 1583-1594.	3.6	29
90	Necklace-like mesoporous MgO/TiO ₂ heterojunction structures with excellent capability for water treatment. Dalton Transactions, 2014, 43, 2348-2351.	1.6	27

#	Article	IF	CITATIONS
91	Formation of Ti–Fe mixed sulfide nanoboxes for enhanced electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2018, 6, 21891-21895.	5.2	27
92	Synthesis of ZIF-67 nanocubes with complex structures co-mediated by dopamine and polyoxometalate. Journal of Materials Chemistry A, 2018, 6, 19338-19341.	5.2	26
93	PEG aggregation templated porous ZnO nanostructure: room temperature solution synthesis, pore formation mechanism, and their photoluminescence properties. CrystEngComm, 2013, 15, 3647.	1.3	25
94	A Practical Highâ€Energy Cathode for Sodiumâ€Ion Batteries Based on Uniform P2â€Na _{0.7} CoO ₂ Microspheres. Angewandte Chemie, 2017, 129, 5895-5899.	1.6	25
95	Accelerating the oxygen evolution reaction kinetics of Co ₃ O ₄ in neutral electrolyte by decorating RuO ₂ . Chemical Communications, 2021, 57, 2907-2910.	2.2	24
96	Synergetic electronic modulation and nanostructure engineering of heterostructured RuO ₂ /Co ₃ O ₄ as advanced bifunctional electrocatalyst for zinc–air batteries. Journal of Materials Chemistry A, 2021, 9, 26669-26675.	5.2	24
97	Synthesis of metal–organic-framework related core–shell heterostructures and their application to ion enrichment in aqueous conditions. Chemical Communications, 2014, 50, 7686.	2.2	22
98	Dense doping of indium to coral-like SnO ₂ nanostructures through a plasma-assisted strategy for sensitive and selective detection of chlorobenzene. Nanotechnology, 2011, 22, 315501.	1.3	21
99	Shape-controlled synthesis of CdCO3 microcrystals and corresponding nanoporous CdO architectures. RSC Advances, 2012, 2, 10251.	1.7	21
100	Cobalt sulfide aerogel prepared by anion exchange method with enhanced pseudocapacitive and water oxidation performances. Nanotechnology, 2018, 29, 215601.	1.3	19
101	Formation of uniform porous yolk–shell MnCo ₂ O ₄ microrugby balls with enhanced electrochemical performance for lithium storage and the oxygen evolution reaction. Dalton Transactions, 2019, 48, 17022-17028.	1.6	19
102	N ₂ plasma-activated NiO nanosheet arrays with enhanced water splitting performance. Nanotechnology, 2020, 31, 455709.	1.3	18
103	2D metal–organic frameworks and their derivatives for the oxygen evolution reaction. Journal of Alloys and Compounds, 2022, 919, 165823.	2.8	18
104	Copper and carbon-incorporated yolk-shelled FeP spheres with enhanced sodium storage properties. Chemical Engineering Journal, 2021, 421, 127776.	6.6	16
105	Modification of coral-like SnO2 nanostructures with dense TiO2 nanoparticles for a self-cleaning gas sensor. Talanta, 2012, 99, 394-403.	2.9	15
106	Plasma-reduced Co(OH)2 with activated hydrogen evolution and overall water splitting performance. Sustainable Energy and Fuels, 2020, 4, 2645-2649.	2.5	15
107	Fe ions modulated formation of hollow NiFe oxyphosphide spheres with enhanced oxygen evolution performance. Chemical Communications, 2019, 55, 14371-14374.	2.2	9
108	Formation of highly porous CuCo ₂ O ₄ nanosheet assemblies for high-rate and long-term lithium storage. Sustainable Energy and Fuels, 2019, 3, 3370-3374.	2.5	9

#	Article	IF	CITATIONS
109	Energy Balance in DC Arc Plasma Melting Furnace. Plasma Science and Technology, 2009, 11, 206-210.	0.7	8
110	Plasma deposition of polymer electrolyte membrane for proton exchange membrane fuel cell (PEMFC) applications. Surface and Coatings Technology, 2010, 205, S231-S235.	2.2	6
111	The synthesis and characteristics of polymer nanoballs by plasma polymerization cooperating with DC plasma sputtering technique. Thin Solid Films, 2010, 518, 6609-6613.	0.8	6
112	Preparation of Anodes for DMFC by Co-Sputtering of Platinum and Ruthenium. Plasma Science and Technology, 2010, 12, 224-229.	0.7	5
113	Effects of Sputtering Parameters on the Performance of Sputtered Cathodes for Direct Methanol Fuel Cells. Plasma Science and Technology, 2010, 12, 87-91.	0.7	5
114	Plasma- and anneal-assisted hybridization of SWCNT-Au network for rapid and high-sensitive electrical detection of antibody-antigen interactions. Journal of Materials Chemistry, 2012, 22, 6139.	6.7	4
115	Effect of Feed Forms on the Results of Melting of Fly Ash by a DC Plasma Arc Furnace. Plasma Science and Technology, 2009, 11, 592-597.	0.7	3
116	Synthesis of Porous Gold Based on Gold–Thiol Coordination Polymer and Its Application in SERS Detection with High Activity and High Reproducibility. Chemistry Letters, 2013, 42, 407-409.	0.7	0
117	Study on the microheterogeneity of aqueous alcohol solutions: formation mechanism of inner pores of ZnO nanostructures. RSC Advances, 2014, 4, 11124.	1.7	0