Jakob König

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8892887/publications.pdf Version: 2024-02-01

LAKOB KöNIC

#	Article	IF	CITATIONS
1	Applicability of water glass for the transfer of the glass-foaming process from controlled to air atmosphere. Journal of Cleaner Production, 2021, 282, 125428.	9.3	14
2	The foaming mechanism of glass foams prepared from the mixture of Mn3O4, carbon and CRT panel glass. Ceramics International, 2021, 47, 2839-2847.	4.8	12
3	Application of foaming agent–oxidizing agent couples to foamed-glass formation. Journal of Non-Crystalline Solids, 2021, 553, 120469.	3.1	6
4	Modelling of the mechanisms of heat transfer in recycled glass foams. Construction and Building Materials, 2021, 274, 122000.	7.2	10
5	Influence of additives on the crystallization and thermal conductivity of container glass cullet for foamed glass preparation. Ceramics International, 2021, 47, 32867-32873.	4.8	13
6	Using anticipatory life cycle assessment to enable future sustainable construction. Journal of Industrial Ecology, 2020, 24, 178-192.	5.5	35
7	Synthesis and properties of open- and closed-porous foamed glass with a low density. Construction and Building Materials, 2020, 247, 118574.	7.2	48
8	High-speed synchrotron X-ray imaging of glass foaming and thermal conductivity simulation. Acta Materialia, 2020, 189, 85-92.	7.9	20
9	Evaluation of the contributions to the effective thermal conductivity of an open-porous-type foamed glass. Construction and Building Materials, 2019, 214, 337-343.	7.2	34
10	Impact of pore structure on the thermal conductivity of glass foams. Materials Letters, 2019, 250, 72-74.	2.6	30
11	Impact of gas composition on thermal conductivity of glass foams prepared via high-pressure sintering. Journal of Non-Crystalline Solids: X, 2019, 1, 100014.	1.2	5
12	Foam glass obtained through highâ€pressure sintering. Journal of the American Ceramic Society, 2018, 101, 3917-3923.	3.8	20
13	Effect of alkali phosphate content on foaming of CRT panel glass using Mn3O4 and carbon as foaming agents. Journal of Non-Crystalline Solids, 2018, 482, 217-222.	3.1	27
14	Suppressing the effect of cullet composition on the formation and properties of foamed glass. Ceramics International, 2018, 44, 11143-11150.	4.8	47
15	Gas-releasing reactions in foam-glass formation using carbon and MnxOy as the foaming agents. Ceramics International, 2017, 43, 4638-4646.	4.8	41
16	Influence of foaming agents on solid thermal conductivity of foam glasses prepared from CRT panel glass. Journal of Non-Crystalline Solids, 2017, 465, 59-64.	3.1	34
17	The viscosity window of the silicate glass foam production. Journal of Non-Crystalline Solids, 2017, 456, 49-54.	3.1	73
18	Influence of the glass particle size on the foaming process and physical characteristics of foam glasses. Journal of Non-Crystalline Solids, 2016, 447, 190-197.	3.1	51

Jakob König

#	Article	IF	CITATIONS
19	Evaluation of Foaming Behavior of Glass Melts by Highâ€Temperature Microscopy. International Journal of Applied Glass Science, 2016, 7, 524-531.	2.0	21
20	Fabrication of highly insulating foam glass made from CRT panel glass. Ceramics International, 2015, 41, 9793-9800.	4.8	125
21	The mechanism of foaming and thermal conductivity of glasses foamed with MnO 2. Journal of Non-Crystalline Solids, 2015, 425, 74-82.	3.1	76
22	Uniaxial Stress Dependence of the Permittivity and the Hardening Effect in the Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3System. Ferroelectrics, 2014, 470, 201-211.	0.6	3
23	Effect of Na2CO3 as foaming agent on dynamics and structure of foam glass melts. Journal of Non-Crystalline Solids, 2014, 400, 1-5.	3.1	39
24	Influence of the glass–calcium carbonate mixture's characteristics on the foaming process and the properties of the foam glass. Journal of the European Ceramic Society, 2014, 34, 1591-1598.	5.7	87
25	Uniaxial stress dependence of the dielectric permittivity of the Na0.5Bi0.5TiO3–KTaO3 system. Sensors and Actuators A: Physical, 2012, 182, 89-94.	4.1	4
26	Incipient Ferroelectric Properties of NaTaO ₃ . Ferroelectrics, 2012, 426, 206-214.	0.6	8
27	Influence of the synthesis conditions on the dielectric properties in the Bi0.5Na0.5TiO3–KTaO3 system. Journal of the European Ceramic Society, 2011, 31, 1987-1995.	5.7	12
28	Uniaxial stress dependence of the dielectric properties in the Na _{0.5} Bi _{0.5} TiO ₃ –NaTaO ₃ system. Journal of Materials Research, 2010, 25, 1784-1792.	2.6	5
29	New Na _{0.5} Bi _{0.5} TiO ₃ –NaTaO ₃ â€Based Perovskite Ceramics. Journal of the American Ceramic Society, 2007, 90, 3621-3627.	3.8	21
30	Enhanced tunable characteristics of the Na/sub 0.5/Bi/sub 0.5/TiO/sub 3/-NaTaO/sub 3/relaxor-type system. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54, 2617-2622.	3.0	9