
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8892270/publications.pdf Version: 2024-02-01

FLISA MELE

#	Article	IF	CITATIONS
1	Patterning of light-emitting conjugated polymer nanofibres. Nature Nanotechnology, 2008, 3, 614-619.	31.5	180
2	Electrospinning of natural polymers for advanced wound care: towards responsive and adaptive dressings. Journal of Materials Chemistry B, 2016, 4, 4801-4812.	5.8	166
3	Alginate–lavender nanofibers with antibacterial and anti-inflammatory activity to effectively promote burn healing. Journal of Materials Chemistry B, 2016, 4, 1686-1695.	5.8	162
4	Fibrous wound dressings encapsulating essential oils as natural antimicrobial agents. Journal of Materials Chemistry B, 2015, 3, 1583-1589.	5.8	141
5	Electrospun Nanofibres Containing Antimicrobial Plant Extracts. Nanomaterials, 2017, 7, 42.	4.1	129
6	Photocontrolled Variations in the Wetting Capability of Photochromic Polymers Enhanced by Surface Nanostructuring. Langmuir, 2006, 22, 2329-2333.	3.5	103
7	Capillary micromechanics: Measuring the elasticity of microscopic soft objects. Soft Matter, 2010, 6, 4550.	2.7	100
8	Biophysical properties of normal and diseased renal glomeruli. American Journal of Physiology - Cell Physiology, 2011, 300, C397-C405.	4.6	91
9	Multilevel, Room-Temperature Nanoimprint Lithography for Conjugated Polymer-Based Photonics. Nano Letters, 2005, 5, 1915-1919.	9.1	77
10	Photoswitchable Organic Nanofibers. Advanced Materials, 2008, 20, 314-318.	21.0	74
11	Strelitzia reginae Leaf as a Natural Template for Anisotropic Wetting and Superhydrophobicity. Langmuir, 2012, 28, 5312-5317.	3.5	74
12	A Bioartificial Renal Tubule Device Embedding Human Renal Stem/Progenitor Cells. PLoS ONE, 2014, 9, e87496.	2.5	69
13	Cellular Response to Surface Morphology: Electrospinning and Computational Modeling. Frontiers in Bioengineering and Biotechnology, 2018, 6, 155.	4.1	65
14	Adult Stem Cell Therapies for Wound Healing: Biomaterials and Computational Models. Frontiers in Bioengineering and Biotechnology, 2015, 3, 206.	4.1	55
15	Electrospinning of polylactic acid fibres containing tea tree and manuka oil. Reactive and Functional Polymers, 2017, 117, 106-111.	4.1	52
16	Near-infrared imprinted distributed feedback lasers. Applied Physics Letters, 2006, 89, 201105.	3.3	51
17	Alginate Nanofibrous Mats with Adjustable Degradation Rate for Regenerative Medicine. Biomacromolecules, 2015, 16, 936-943.	5.4	48
18	Electrospinning of Essential Oils. Polymers, 2020, 12, 908.	4.5	46

#	Article	IF	CITATIONS
19	Monolithic polymer microcavity lasers with on-top evaporated dielectric mirrors. Applied Physics Letters, 2006, 88, 121110.	3.3	42
20	Polymeric distributed feedback lasers by room-temperature nanoimprint lithography. Applied Physics Letters, 2006, 89, 131109.	3.3	40
21	Multi-layer Scaffolds of Poly(caprolactone), Poly(glycerol sebacate) and Bioactive Glasses Manufactured by Combined 3D Printing and Electrospinning. Nanomaterials, 2020, 10, 626.	4.1	38
22	Microvascular endothelial cell spreading and proliferation on nanofibrous scaffolds by polymer blends with enhanced wettability. Soft Matter, 2013, 9, 5529.	2.7	35
23	Low-Cost and Effective Fabrication of Biocompatible Nanofibers from Silk and Cellulose-Rich Materials. ACS Biomaterials Science and Engineering, 2016, 2, 526-534.	5.2	34
24	Polymer nanofibers by soft lithography. Applied Physics Letters, 2005, 87, 123109.	3.3	32
25	Biomimetic Approach for Liquid Encapsulation with Nanofibrillar Cloaks. Langmuir, 2014, 30, 2896-2902.	3.5	32
26	Enhancement of light polarization from electrospun polymer fibers by room temperature nanoimprint lithography. Nanotechnology, 2010, 21, 215304.	2.6	31
27	Fibres from blends of epoxidized natural rubber and polylactic acid by the electrospinning process: Compatibilization and surface texture. European Polymer Journal, 2017, 87, 241-254.	5.4	31
28	Role of doping concentration on the competition between amplified spontaneous emission and nonradiative energy transfer in blends of conjugated polymers. Physical Review B, 2006, 73, .	3.2	30
29	Very high-quality distributed Bragg reflectors for organic lasing applications by reactive electron-beam deposition. Optics Express, 2006, 14, 1951.	3.4	29
30	Zwitterionic Nanofibers of Super-Glue for Transparent and Biocompatible Multi-Purpose Coatings. Scientific Reports, 2015, 5, 14019.	3.3	28
31	Optical Gain from the Open Form of a Photochromic Molecule in the Solid State. Journal of Physical Chemistry B, 2006, 110, 4506-4509.	2.6	26
32	Influence of topography of nanofibrous scaffolds on functionality of engineered neural tissue. Journal of Materials Chemistry B, 2018, 6, 930-939.	5.8	26
33	Effect of Antibacterial Plant Extracts on the Morphology of Electrospun Poly(Lactic Acid) Fibres. Materials, 2018, 11, 923.	2.9	25
34	Smart photochromic gratings with switchable wettability realized by green-light interferometry. Applied Physics Letters, 2006, 88, 203124.	3.3	24
35	Chitosan-Coated Poly(lactic acid) Nanofibres Loaded with Essential Oils for Wound Healing. Polymers, 2021, 13, 2582.	4.5	24
36	Localized synthesis of gold nanoparticles in anisotropic alginate structures. RSC Advances, 2014, 4, 20449.	3.6	23

#	Article	IF	CITATIONS
37	Fumarate-loaded electrospun nanofibers with anti-inflammatory activity for fast recovery of mild skin burns. Biomedical Materials (Bristol), 2016, 11, 041001.	3.3	23
38	Polydimethylsiloxane and poly(ether) ether ketone functionally graded composites for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 93, 130-142.	3.1	23
39	Amplified Spontaneous Emission and Waveguiding Properties of the Colored Merocyanine Form of		

#	Article	IF	CITATIONS
55	Ultra-efficient, widely tunable gold nanoparticle-based fiducial markers for X-ray imaging. Nanoscale, 2016, 8, 18921-18927.	5.6	14
56	Printability and mechanical performance of biomedical PDMS-PEEK composites developed for material extrusion. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 115, 104291.	3.1	14
57	Exploring the Mechanical Properties and Performance of Type-I Collagen at Various Length Scales: A Progress Report. Materials, 2022, 15, 2753.	2.9	14
58	Low-threshold blue-emitting monolithic polymer vertical cavity surface-emitting lasers. Applied Physics Letters, 2006, 89, 121111.	3.3	13
59	In Situ Generation of ZnO Nanoparticles within a Polyethyleneimine Matrix for Antibacterial Zein Fibers. ACS Applied Polymer Materials, 2019, 1, 1707-1716.	4.4	13
60	Structural relaxation in PLLA: Contribution of different scale motions. Thermochimica Acta, 2019, 672, 157-161.	2.7	13
61	Study of optical properties of electrospun light-emitting polymer fibers. Superlattices and Microstructures, 2010, 47, 145-149.	3.1	12
62	Dry vs. wet: Properties and performance of collagen films. Part II. Cyclic and time-dependent behaviours. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 112, 104040.	3.1	12
63	Full organic distributed feedback cavities based on a soluble electroluminescent oligothiophene. Physical Review B, 2004, 70, .	3.2	11
64	Soft Nanolithography by Polymer Fibers. Advanced Functional Materials, 2011, 21, 1140-1145.	14.9	11
65	Photo-polymerisable electrospun fibres of N-methacrylate glycol chitosan for biomedical applications. RSC Advances, 2015, 5, 24723-24728.	3.6	11
66	Polarization mode splitting in monolithic polymer microcavities. Applied Physics Letters, 2005, 87, 031103.	3.3	10
67	Low-loss and highly polarized emission from planar polymer waveguides. Optics Letters, 2006, 31, 1429.	3.3	10
68	Polymer to polymer to polymer pattern transfer: Multiple molding for 100â€,nm scale lithography. Journal of Vacuum Science & Technology B, 2006, 24, 807.	1.3	10
69	Phase separation events induce the coexistence of distinct nanofeatures in electrospun fibres of poly(ethyl cyanoacrylate) and polycaprolactone. Materials Today Communications, 2018, 16, 135-141.	1.9	10
70	Mechanical performance of 3D printed polylactide during degradation. Additive Manufacturing, 2021, 38, 101764.	3.0	10
71	Stability and mechanical performance of collagen films under different environmental conditions. Polymer Degradation and Stability, 2022, 197, 109853.	5.8	10
72	Fracture behaviour and toughening mechanisms of dry and wet collagen. Acta Biomaterialia, 2022, 142, 174-184.	8.3	10

#	Article	IF	CITATIONS
73	Subâ€50â€nm Conjugated Polymer Dots by Nanoprinting. Small, 2008, 4, 1894-1899.	10.0	9
74	Nanoparticle image velocimetry at topologically structured surfaces. Biomicrofluidics, 2009, 3, 44111.	2.4	9
75	Rolling particle lithography by soft polymer microparticles. Soft Matter, 2013, 9, 2206.	2.7	9
76	Synthesis and Electrospinning of Polycaprolactone from an Aluminium-Based Catalyst: Influence of the Ancillary Ligand and Initiators on Catalytic Efficiency and Fibre Structure. Polymers, 2019, 11, 677.	4.5	9
77	Electrospinning of stimuliâ€responsive polymers for controlled drug delivery: pH―and temperatureâ€driven release. Biotechnology and Bioengineering, 2022, 119, 1177-1188.	3.3	9
78	Organic Lightâ€Emitting Nanofibers by Solventâ€Resistant Nanofluidics. Advanced Materials, 2008, 20, 4158-4162.	21.0	8
79	Designing responsive dressings for inflammatory skin disorders; encapsulating antioxidant nanoparticles into biocompatible electrospun fibres. Soft Matter, 2021, 17, 3775-3783.	2.7	8
80	Polymeric foams with functional nanocomposite cells. RSC Advances, 2014, 4, 19177-19182.	3.6	7
81	Biomimetic Locomotion on Water of a Porous Natural Polymeric Composite. Advanced Materials Interfaces, 2016, 3, 1500854.	3.7	7
82	In-situ formation of polyvinylidene fluoride microspheres within polycaprolactone electrospun mats. Polymer, 2020, 186, 122087.	3.8	7
83	Porous Optically Transparent Cellulose Acetate Scaffolds for Biomimetic Blood-Brain Barrierin vitro Models. Frontiers in Bioengineering and Biotechnology, 2021, 9, 630063.	4.1	7
84	An In-Vitro Evaluation of the Characteristics of Zein-Based Films for the Release of Lactobionic Acid and the Effects of Oleic Acid. Polymers, 2021, 13, 1826.	4.5	7
85	Combined capillary force and step and flash lithography. Nanotechnology, 2005, 16, 391-395.	2.6	6
86	3D Arrays of Super-Hydrophobic Microtubes from Polypore Mushrooms as Naturally-Derived Systems for Oil Absorption. Materials, 2019, 12, 132.	2.9	6
87	Nanostructuring polymers by soft lithography templates realized via ion sputtering. Nanotechnology, 2005, 16, 2714-2717.	2.6	5
88	Patterning photo-curable light-emitting organic composites by vertical and horizontal capillarity: a general route to photonic nanostructures. Nanotechnology, 2008, 19, 335301.	2.6	5
89	Bioinspired Poly(vinylidene fluoride) Membranes with Directional Release of Therapeutic Essential Oils. Langmuir, 2018, 34, 8652-8660.	3.5	5
90	Atomic-scale clustering inhibits the bioactivity of fluoridated phosphate glasses. Biomedical Glasses, 2019, 5, 76-84.	2.4	5

#	Article	IF	CITATIONS
91	MaTrEx AM: A new hybrid additive manufacturing process to selectively control mechanical properties. Additive Manufacturing, 2021, 47, 102337.	3.0	5
92	Probing the Thermal Transitions of Lactobionic Acid and Effects of Sample History by DSC Analysis. Journal of Pharmaceutical Sciences, 2019, 108, 3781-3784.	3.3	4
93	Cell marbles: A novel cell encapsulation technology by wrapping cell suspension droplets using electrospun nanofibers for developmental engineering. Journal of Biotechnology, 2020, 323, 82-91.	3.8	4
94	Development of a hollow fibre-based renal module for active transport studies. Journal of Artificial Organs, 2021, 24, 473-484.	0.9	4
95	Damage in extrusion additive manufactured parts: effect of environment and cyclic loading. Procedia Structural Integrity, 2020, 28, 452-457.	0.8	4
96	Investigation of the electro-spinnability of alginate solutions containing gold precursor HAuCl 4. Journal of Colloid and Interface Science, 2016, 483, 60-66.	9.4	3
97	On the quantification of local power densities in a new vibration bioreactor. PLoS ONE, 2021, 16, e0245768.	2.5	3
98	Fracture Behaviour of Collagen: Effect of Environment. Procedia Structural Integrity, 2020, 28, 843-849.	0.8	3
99	Absolute luminescence efficiency and photonic band-gap effect of conjugated polymers with top-deposited distributed Bragg reflectors. Chemical Physics Letters, 2005, 411, 316-320.	2.6	2
100	Real-time monitoring of microfluidic lithography. Synthetic Metals, 2005, 153, 325-328.	3.9	2
101	Imprinting strategies for 100Ânm lithography on polyfluorene and poly(phenylenevinylene) derivatives and their blends. Materials Science and Engineering C, 2007, 27, 1428-1433.	7.3	2
102	Polymer microcavities by room temperature electron-beam evaporation of TiOx and SiOx. Synthetic Metals, 2005, 153, 329-332.	3.9	1
103	Introduction: Smart Materials in Biomedicine. , 2018, , 1-13.		1
104	Damage in extrusion additive manufactured biomedical polymer: Effects of testing direction and environment during cyclic loading. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 118, 104397.	3.1	1
105	Editorial: "Design, Modeling and Manufacturing of Scaffolds to Control Cell-Biomaterial Interactions in Tissue Engineering― Frontiers in Bioengineering and Biotechnology, 2022, 10, 868362.	4.1	1
106	Light emitting polymer nanofibers: energy transfer, waveguiding and photostability. , 2007, , .		0
107	Resonance vibration interventions in the femur: Experimental-numerical modelling approaches. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 124, 104850.	3.1	0