
Silvia Laura Toffolatti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8891342/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fungicide Resistance Evolution and Detection in Plant Pathogens: Plasmopara viticola as a Case Study. Microorganisms, 2021, 9, 119.	3.6	73
2	Not Just a Pathogen? Description of a Plant-Beneficial Pseudomonas syringae Strain. Frontiers in Microbiology, 2019, 10, 1409.	3.5	55
3	Unique resistance traits against downy mildew from the center of origin of grapevine (Vitis vinifera). Scientific Reports, 2018, 8, 12523.	3.3	50
4	Phenotypic and histochemical traits of the interaction between Plasmopara viticola and resistant or susceptible grapevine varieties. BMC Plant Biology, 2012, 12, 124.	3.6	49
5	A timeâ€course investigation of resistance to the carboxylic acid amide mandipropamid in field populations of <i>Plasmopara viticola</i> treated with antiâ€resistance strategies. Pest Management Science, 2018, 74, 2822-2834.	3.4	39
6	Rpv29, Rpv30 and Rpv31: Three Novel Genomic Loci Associated With Resistance to Plasmopara viticola in Vitis vinifera. Frontiers in Plant Science, 2020, 11, 562432.	3.6	38
7	Novel Aspects on The Interaction Between Grapevine and Plasmopara viticola: Dual-RNA-Seq Analysis Highlights Gene Expression Dynamics in The Pathogen and The Plant During The Battle For Infection. Genes, 2020, 11, 261.	2.4	37
8	Assessment of Qol resistance inPlasmopara viticola oospores. Pest Management Science, 2007, 63, 194-201.	3.4	36
9	From plant resistance response to the discovery of antimicrobial compounds: The role of volatile organic compounds (VOCs) in grapevine downy mildew infection. Plant Physiology and Biochemistry, 2021, 160, 294-305.	5.8	32
10	A new approach to modelling the dynamics of oospore germination in Plasmopara viticola. European Journal of Plant Pathology, 2010, 128, 113-126.	1.7	28
11	Fungal contamination and aflatoxin content of maize, moringa and peanut foods from rural subsistence farms in South Haiti. Journal of Stored Products Research, 2020, 85, 101550.	2.6	28
12	Georgian Grapevine Cultivars: Ancient Biodiversity for Future Viticulture. Frontiers in Plant Science, 2021, 12, 630122.	3.6	26
13	Evolution of Qol resistance in Plasmopara viticola oospores. European Journal of Plant Pathology, 2011, 129, 331-338.	1.7	25
14	Bactericidal performance of nanostructured surfaces by fluorocarbon plasma. Materials Science and Engineering C, 2017, 80, 117-121.	7.3	25
15	Genetic structure of Italian population of the grapevine downy mildew agent, Plasmopara viticola. Annals of Applied Biology, 2020, 176, 257-267.	2.5	25
16	RNAi of a Putative Grapevine Susceptibility Gene as a Possible Downy Mildew Control Strategy. Frontiers in Plant Science, 2021, 12, 667319.	3.6	25
17	Identification of the First Oomycete Mating-type Locus Sequence in the Grapevine Downy Mildew Pathogen, Plasmopara viticola. Current Biology, 2020, 30, 3897-3907.e4.	3.9	23
18	NoPv1: a synthetic antimicrobial peptide aptamer targeting the causal agents of grapevine downy mildew and potato late blight. Scientific Reports, 2020, 10, 17574.	3.3	23

#	Article	IF	CITATIONS
19	Characterization of Lysinibacillus fusiformis strain S4C11: In vitro, in planta, and in silico analyses reveal a plant-beneficial microbe. Microbiological Research, 2021, 244, 126665.	5.3	20
20	Genetic structure and fungicide sensitivity of <i>Botrytis cinerea</i> populations isolated from grapevine in northern Italy. Plant Pathology, 2017, 66, 890-899.	2.4	19
21	Assessing pigmented pericarp of maize kernels as possible source of resistance to fusarium ear rot, Fusarium spp. infection and fumonisin accumulation. International Journal of Food Microbiology, 2016, 227, 56-62.	4.7	17
22	The influence of flavonoids in maize pericarp on fusarium ear rot symptoms and fumonisin accumulation under field conditions. Plant Pathology, 2015, 64, 671-679.	2.4	15
23	Role of terpenes in plant defense to biotic stress. , 2021, , 401-417.		15
24	Pathogenicity variation in Fusarium verticillioides populations isolated from maize in northern Italy. Mycoscience, 2013, 54, 285-290.	0.8	14
25	Sensitivity to cymoxanil in Italian populations of <i>Plasmopara viticola</i> oospores. Pest Management Science, 2015, 71, 1182-1188.	3.4	13
26	Histological and Ultrastructural Studies on the Curative Effects of Mandipropamid on Plasmopara viticola. Journal of Phytopathology, 2011, 159, 201-207.	1.0	12
27	Mating behavior of a Northern Italian population of Fusarium verticillioides associated with maize. Journal of Applied Genetics, 2011, 52, 367-370.	1.9	11
28	Genomic Designing for Biotic Stress Resistant Grapevine. , 2022, , 87-255.		11
29	The Study of the Germination Dynamics of Plasmopara viticola Oospores Highlights the Presence of Phenotypic Synchrony With the Host. Frontiers in Microbiology, 2021, 12, 698586.	3.5	9
30	First Report of <i>Fusarium andiyazi</i> Causing Ear Rot on Maize in Italy. Plant Disease, 2017, 101, 839-839.	1.4	9
31	Characterization of fungicide sensitivity profiles of Botrytis cinerea populations sampled in Lombardy (Northern Italy) and implications for resistance management. Pest Management Science, 2020, 76, 2198-2207.	3.4	8
32	A Real-Time PCR Assay for the Quantification of Plasmopara viticola Oospores in Grapevine Leaves. Frontiers in Plant Science, 2020, 11, 1202.	3.6	6
33	First Report of SDHI Resistant Strains of <i>Venturia inaequalis</i> From Commercial Orchards in Northern Italy. Plant Disease, 2016, 100, 2324.	1.4	5
34	The Dark Side of Fungi: How They Cause Diseases in Plants. Frontiers for Young Minds, 0, 9, .	0.8	3
35	Dissecting the susceptibility/resistance mechanism of <i>Vitis vinifera</i> for the future control of downy mildew. BIO Web of Conferences, 2022, 44, 04002.	0.2	2
36	A molecular epidemiology study reveals the presence of identical genotypes on grapevines and ground cover weeds and the existence of separate genetic groups in a <i>Botrytis cinerea</i> population. Plant Pathology, 2020, 69, 1695-1707.	2.4	1

	IF	CITATIONS
87 Evolution of Qol resistance in Plasmopara viticola oospores. , 2010, , 199-206. 0	para viticola oospores. , 2010, , 199-206.	0