Enzo Martinelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8891277/publications.pdf

Version: 2024-02-01

		109264	143943
105	3,580	35	57
papers	citations	h-index	g-index
110	110	110	2417
110	110	110	2417
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Physical and mechanical characteristics of raw jute fibers, threads and diatons. Construction and Building Materials, 2022, 326, 126903.	3.2	16
2	Artificial neural network for technical feasibility prediction of seismic retrofitting in existing RC structures. Structures, 2022, 41, 1220-1234.	1.7	12
3	A general numerical model for simulating the long-term response of two-layer composite systems in partial interaction. Composite Structures, 2021, 257, 112929.	3.1	5
4	Seismic and Thermal Retrofitting of Masonry Buildings with Fiber Reinforced Composite Systems: A State of the Art Review. International Journal of Structural Glass and Advanced Materials Research, 2021, 5, 41-67.	0.4	5
5	Autogenous Shrinkage in Structural Concrete Made with Recycled Concrete Aggregates. RILEM Bookseries, 2021, , 111-120.	0.2	O
6	Mechanical Response and Analysis of Cracking Process in Hybrid TRM Composites with Flax Textile and Curau $ ilde{A}_i$ Fibres. Polymers, 2021, 13, 715.	2.0	9
7	Closed-Form Solution Procedure for Simulating Debonding in FRP Strips Glued to a Generic Substrate Material. Fibers, 2021, 9, 22.	1.8	9
8	Tensile behavior of flax textile reinforced lime-mortar: Influence of reinforcement amount and textile impregnation. Cement and Concrete Composites, 2021, 119, 103984.	4.6	37
9	A cracked-hinge approach to modelling high performance fiber-reinforced concrete. Composite Structures, 2021, 273, 114277.	3.1	5
10	A Practice-Oriented Procedure for Seismic Reliability Assessment of RC Structures Affected by Carbonation-Induced Degradation. Applied Mechanics, 2021, 2, 820-840.	0.7	2
11	Effects of Freeze-Thaw and Wet-Dry Cycles on Tension Stiffening Behavior of Reinforced RAC Elements. Applied Sciences (Switzerland), 2021, 11, 10063.	1.3	2
12	Innovative Structural Applications of High Performance Concrete Materials in Sustainable Construction. Sustainability, 2021, 13, 12491.	1.6	0
13	Low-Cycle Fatigue of FRP Strips Glued to a Quasi-Brittle Material. Materials, 2021, 14, 7753.	1.3	3
14	Shear capacity of masonry walls externally strengthened using Flax-TRM composite systems: experimental tests and comparative assessment. Construction and Building Materials, 2020, 261, 120490.	3.2	57
15	Meso-Scale Formulation of a Cracked-Hinge Model for Hybrid Fiber-Reinforced Cement Composites. Fibers, 2020, 8, 56.	1.8	11
16	On the Distribution in Height of Base Shear Forces in Linear Static Analysis of Base-Isolated Structures. Buildings, 2020, 10, 197.	1.4	4
17	Early-Age Properties of Concrete Based on Numerical Hydration Modelling: A Parametric Analysis. Materials, 2020, 13, 2112.	1.3	6
18	Durability of Structural Recycled Aggregate Concrete Subjected to Freeze-Thaw Cycles. Sustainability, 2020, 12, 6475.	1.6	22

#	Article	IF	CITATIONS
19	Analytical Modeling of the Postcracking Response Observed in Hybrid Steel/Polypropylene Fiber-Reinforced Concrete. Polymers, 2020, 12, 1864.	2.0	2
20	Influence of Wetting and Drying Cycles on Physical and Mechanical Behavior of Recycled Aggregate Concrete. Materials, 2020, 13, 5675.	1.3	10
21	Soft computing techniques in structural and earthquake engineering: a literature review. Engineering Structures, 2020, 207, 110269.	2.6	106
22	Flax Textile Reinforced Mortars: Experimental Characterization and Structural Behavior. , 2020, , 885-892.		1
23	Retrofitting of School Building Located in Southern Italy. , 2020, , 71-94.		0
24	A low-cycle fatigue approach to predicting shear strength degradation in RC joints subjected to seismic actions. Bulletin of Earthquake Engineering, 2019, 17, 6061-6078.	2.3	2
25	Seismic retrofitting of existing RC buildings: a rational selection procedure based on Genetic Algorithms. Structures, 2019, 22, 310-326.	1.7	31
26	Influence of an Impregnation Treatment on the Morphology and Mechanical Behaviour of Flax Yarns Embedded in Hydraulic Lime Mortar. Fibers, 2019, 7, 30.	1.8	36
27	Tensile strength of flax fabrics to be used as reinforcement in cement-based composites: experimental tests under different environmental exposures. Composites Part B: Engineering, 2019, 168, 511-523.	5.9	45
28	Seismic Response of Acceleration-Sensitive Non-Structural Components in Buildings. Buildings, 2019, 9, 7.	1.4	7
29	Experimental Study on the Adhesion of Basalt Textile Reinforced Mortars (TRM) to Clay Brick Masonry: The Influence of Textile Density. Fibers, 2019, 7, 103.	1.8	18
30	Behavior of prestressed CFRP plates bonded to steel substrate: Numerical modeling and experimental validation. Composite Structures, 2019, 207, 974-984.	3.1	40
31	Uso de materiales reciclados en compuestos cementicios. Tecnura, 2019, 23, 38-51.	0.1	6
32	Influence of natural fibers characteristics on the interface mechanics with cement based matrices. Composites Part B: Engineering, 2018, 140, 183-196.	5.9	82
33	A modified Duvaut-Lions zero-thickness interface model for simulating the rate-dependent bond behavior of FRP-concrete joints. Composites Part B: Engineering, 2018, 149, 260-267.	5.9	14
34	Acoustic Emission behavior of thermally damaged Self-Compacting High Strength Fiber Reinforced Concrete. Construction and Building Materials, 2018, 187, 519-530.	3.2	38
35	Rheological Behavior at Fresh State of Structural Recycled Aggregate Concrete. , 2018, , 215-223.		0
36	On the mechanical response of Hybrid Fiber Reinforced Concrete with Recycled and Industrial Steel Fibers. Construction and Building Materials, 2017, 147, 286-295.	3.2	122

#	Article	lF	Citations
37	A simplified method for predicting early-age stresses in slabs of steel-concrete composite beams in partial interaction. Engineering Structures, 2017, 140, 286-297.	2.6	21
38	Inelastic design spectra based on the actual dissipative capacity of the hysteretic response. Soil Dynamics and Earthquake Engineering, 2017, 97, 101-116.	1.9	2
39	Cement Replacement: Experimental Results for Concrete with Recycled Aggregates and Fly-Ash. Research for Development, 2017, , 47-83.	0.2	1
40	Cementitious Composites Reinforced with Recycled Fibres. Research for Development, 2017, , 141-195.	0.2	10
41	Modelling beam-to-column joints in seismic analysis of RC frames. Earthquake and Structures, 2017, 12, 119-133.	1.0	8
42	Generalised Mix Design Rules for Concrete with Recycled Aggregates. Research for Development, 2017, , 123-134.	0.2	0
43	State of Knowledge on Green Concrete with Recycled Aggregates and Cement Replacement. Research for Development, 2017, , 3-27.	0.2	1
44	A novel mix design methodology for Recycled Aggregate Concrete. Construction and Building Materials, 2016, 122, 362-372.	3.2	76
45	Cost-competitive hysteretic devices for seismic energy dissipation in steel bracings: experimental tests and low-cycle fatigue characterisation. Construction and Building Materials, 2016, 113, 57-67.	3.2	11
46	Mechanical and durability performance of sustainable structural concretes: An experimental study. Cement and Concrete Composites, 2016, 71, 85-96.	4.6	80
47	Experimental characterization of the post-cracking response in Hybrid Steel/Polypropylene Fiber-Reinforced Concrete. Construction and Building Materials, 2016, 125, 1035-1043.	3.2	133
48	Inverse identification of the bond behavior for jute fibers in cementitious matrix. Composites Part B: Engineering, 2016, 95, 440-452.	5.9	35
49	Cyclic shear-compression tests on masonry walls strengthened with alternative configurations of CFRP strips. Bulletin of Earthquake Engineering, 2016, 14, 1695-1720.	2.3	17
50	Nonlinear static analyses based on either inelastic or elastic spectra with equivalent viscous damping: A parametric comparison. Engineering Structures, 2015, 88, 241-250.	2.6	15
51	Experimental and numerical characterization of the bond behavior of steel fibers recovered from waste tires embedded in cementitious matrices. Cement and Concrete Composites, 2015, 62, 146-155.	4.6	74
52	An experimental study on the post-cracking behaviour of Hybrid Industrial/Recycled Steel Fibre-Reinforced Concrete. Construction and Building Materials, 2015, 94, 290-298.	3.2	121
53	A simplified procedure for Nonlinear Static analysis of masonry infilled RC frames. Engineering Structures, 2015, 101, 591-608.	2.6	28
54	A Unified Theoretical Model for the Monotonic and Cyclic Response of FRP Strips Glued to Concrete. Polymers, 2014, 6, 370-381.	2.0	47

#	Article	IF	Citations
55	Steel bracing configurations for seismic retrofitting of a reinforced concrete frame. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2014, 167, 54-65.	0.4	9
56	RC Beams Strengthened with Mechanically Fastened Composites: Experimental Results and Numerical Modeling. Polymers, 2014, 6, 613-633.	2.0	13
57	Prestressed CFRP Strips with Gradient Anchorage for Structural Concrete Retrofitting: Experiments and Numerical Modeling. Polymers, 2014, 6, 114-131.	2.0	45
58	A 1D finite element model for the flexural behaviour of RC beams strengthened with MF-FRP strips. Composite Structures, 2014, 107, 190-204.	3.1	12
59	Structural concrete made with recycled aggregates: Hydration process and compressive strength models. Mechanics Research Communications, 2014, 58, 139-145.	1.0	20
60	Alternative processing procedures for recycled aggregates in structural concrete. Construction and Building Materials, 2014, 69, 124-132.	3.2	208
61	Compressive strength and hydration processes of concrete with recycled aggregates. Cement and Concrete Research, 2014, 56, 203-212.	4.6	98
62	Seismic response of masonry infilled RC frames: practice-oriented models and open issues. Earthquake and Structures, 2014, 6, 409-436.	1.0	15
63	A fracture-based interface model for simulating the bond behaviour of FRP strips glued to a brittle substrate. Composite Structures, 2013, 99, 397-403.	3.1	20
64	Numerical calibration of bond law for GFRP bars embedded in steel fibre-reinforced self-compacting concrete. Composites Part B: Engineering, 2013, 50, 403-412.	5.9	32
65	Seismic Capacity Design of RC frames and environment-induced degradation of materials: Any concern?. Engineering Structures, 2013, 52, 466-477.	2.6	7
66	Analysis and design of RC structures strengthened with mechanically fastened FRP laminates: A review. Composites Part B: Engineering, 2013, 55, 386-399.	5.9	34
67	Physical properties and mechanical behaviour of concrete made with recycled aggregates and fly ash. Construction and Building Materials, 2013, 47, 547-559.	3.2	154
68	A numerical recipe for modelling hydration and heat flow in hardening concrete. Cement and Concrete Composites, 2013, 40, 48-58.	4.6	55
69	Experimental investigation of the mechanical connection between FRP laminates and concrete. Composites Part B: Engineering, 2013, 45, 341-355.	5.9	35
70	Experimental study on bond performance of GFRP bars in self-compacting steel fiber reinforced concrete. Composite Structures, 2013, 95, 202-212.	3.1	117
71	Design by testing procedure for intermediate debonding in EBR FRP strengthened RC beams. Engineering Structures, 2013, 46, 147-154.	2.6	41
72	Rio 2016 sustainable construction commitments lead to new developments in recycled aggregate concrete. Proceedings of the Institution of Civil Engineers: Civil Engineering, 2013, 166, 28-35.	0.3	5

#	Article	IF	Citations
73	Indirect Identification Method of Bilinear Interface Laws for FRP Bonded on a Concrete Substrate. Journal of Composites for Construction, 2012, 16, 171-184.	1.7	28
74	Shear-Flexible Steel-Concrete Composite Beams in Partial Interaction: Closed-Form "Exact―Expression of the Stiffness Matrix. Journal of Engineering Mechanics - ASCE, 2012, 138, 151-163.	1.6	20
75	A unified formulation for simulating the bond behaviour of fibres in cementitious materials. Materials & Design, 2012, 42, 204-213.	5.1	37
76	Fracture behavior of concrete beams reinforced with mixed long/short steel fibers. Construction and Building Materials, 2012, 37, 832-840.	3.2	69
77	Capacity models for shear strength of exterior joints in RC frames: state-of-the-art and synoptic examination. Bulletin of Earthquake Engineering, 2012, 10, 967-983.	2.3	39
78	Capacity models for shear strength of exterior joints in RC frames: experimental assessment and recalibration. Bulletin of Earthquake Engineering, 2012, 10, 985-1007.	2.3	25
79	Effect of curing conditions on strength development in an epoxy resin for structural strengthening. Composites Part B: Engineering, 2012, 43, 398-410.	5.9	95
80	Zero-thickness interface model formulation for failure behavior of fiber-reinforced cementitious composites. Computers and Structures, 2012, 98-99, 23-32.	2.4	60
81	Inverse identification of a bearing-stress-interface-slip relationship in mechanically fastened FRP laminates. Composite Structures, 2012, 94, 2548-2560.	3.1	22
82	Bond behaviour of FRP strips glued on masonry: Experimental investigation and empirical formulation. Construction and Building Materials, 2012, 31, 353-363.	3.2	41
83	A fully-analytical approach for modelling the response of FRP plates bonded to a brittle substrate. International Journal of Solids and Structures, 2012, 49, 2291-2300.	1.3	65
84	Dimensionless formulation and comparative study of analytical models for composite beams in partial interaction. Journal of Constructional Steel Research, 2012, 75, 21-31.	1.7	28
85	Interface model for fracture behaviour of fiber-reinforced cementitious composites (FRCCs). European Journal of Environmental and Civil Engineering, 2011, 15, 1339-1359.	1.0	3
86	Modeling in-plane and out-of-plane displacement fields in pull-off tests on FRP strips. Engineering Structures, 2011, 33, 3715-3725.	2.6	52
87	Derivation of the exact stiffness matrix for a two-layer Timoshenko beam element with partial interaction. Engineering Structures, 2011, 33, 298-307.	2.6	71
88	Masonry columns confined by composite materials: Experimental investigation. Composites Part B: Engineering, 2011, 42, 692-704.	5.9	72
89	Masonry columns confined by composite materials: Design formulae. Composites Part B: Engineering, 2011, 42, 705-716.	5.9	47
90	Interface model for fracture behaviour of fiber-reinforced cementitious composites (FRCCs). European Journal of Environmental and Civil Engineering, 2011, 15, 1339-1359.	1.0	6

#	Article	IF	CITATIONS
91	Steel–concrete composite beams in partial interaction: Closed-form "exact―expression of the stiffness matrix and the vector of equivalent nodal forces. Engineering Structures, 2010, 32, 2744-2754.	2.6	35
92	Shear capacity of masonry walls externally strengthened by a cement-based composite material: An experimental campaign. Construction and Building Materials, 2010, 24, 84-93.	3.2	97
93	Modelling and verification of response of RC slabs strengthened in flexure with mechanically fastened FRP laminates. Magazine of Concrete Research, 2010, 62, 593-605.	0.9	23
94	Meso- and macroscopic models for fiber-reinforced concrete. , 2010, , 241-250.		1
95	Direct versus Indirect Method for Identifying FRP-to-Concrete Interface Relationships. Journal of Composites for Construction, 2009, 13, 226-233.	1.7	37
96	Formulation and validation of a theoretical model for intermediate debonding in FRP-strengthened RC beams. Composites Part B: Engineering, 2008, 39, 645-655.	5.9	34
97	Analysis of steel–concrete composite PR-frames in partial shear interaction: A numerical model and some applications. Engineering Structures, 2008, 30, 1178-1186.	2.6	19
98	Comparative Application of Capacity Models for Seismic Vulnerability Evaluation of Existing RC Structures. AIP Conference Proceedings, 2008, , .	0.3	1
99	Shear Connection Nonlinearity and Deflections of Steel–Concrete Composite Beams: A Simplified Method. Journal of Structural Engineering, 2003, 129, 12-20.	1.7	59
100	Steel and concrete composite beams with flexible shear connection: "exact―analytical expression of the stiffness matrix and applications. Computers and Structures, 2002, 80, 1001-1009.	2.4	112
101	On the Behavior of FRP-to-concrete Adhesive Interface: Theoretical Models and Experimental Results. , 0, , .		2
102	An Overview of the Current Code Provisions on the Seismic Response of Acceleration-Sensitive Non-Structural Components in Buildings. Applied Mechanics and Materials, 0, 847, 273-280.	0.2	6
103	A Novel Conceptual Approach for Predicting the Mechanical Properties of Recycled Aggregate Concrete. Applied Mechanics and Materials, 0, 847, 156-165.	0.2	0
104	Mechanical Behaviour of Masonry Panels Strengthened by Flax TRM Systems. Key Engineering Materials, 0, 817, 427-434.	0.4	3
105	Natural Fibers Reinforced Mortars: Composition and Mechanical Properties. Key Engineering Materials, 0, 913, 149-153.	0.4	2