Luefeng Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8890800/publications.pdf

Version: 2024-02-01

LUFFENC CHEN

#	Article	IF	CITATIONS
1	Softmax regression based deep sparse autoencoder network for facial emotion recognition in human-robot interaction. Information Sciences, 2018, 428, 49-61.	4.0	151
2	Two-layer fuzzy multiple random forest for speech emotion recognition in human-robot interaction. Information Sciences, 2020, 509, 150-163.	4.0	107
3	Three-Layer Weighted Fuzzy Support Vector Regression for Emotional Intention Understanding in Human–Robot Interaction. IEEE Transactions on Fuzzy Systems, 2018, 26, 2524-2538.	6.5	58
4	Weight-Adapted Convolution Neural Network for Facial Expression Recognition in Human–Robot Interaction. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 1473-1484.	5.9	50
5	Dynamic Emotion Understanding in Human–Robot Interaction Based on Two-Layer Fuzzy SVR-TS Model. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 490-501.	5.9	44
6	Information-Driven Multirobot Behavior Adaptation to Emotional Intention in Human–Robot Interaction. IEEE Transactions on Cognitive and Developmental Systems, 2018, 10, 647-658.	2.6	36
7	A Fuzzy Control Strategy of Burn-Through Point Based on the Feature Extraction of Time-Series Trend for Iron Ore Sintering Process. IEEE Transactions on Industrial Informatics, 2020, 16, 2357-2368.	7.2	30
8	A fuzzy PID controller with nonlinear compensation term for mold level of continuous casting process. Information Sciences, 2020, 539, 487-503.	4.0	25
9	A Fuzzy Deep Neural Network with Sparse Autoencoder for Emotional Intention Understanding in Human-Robot Interaction. IEEE Transactions on Fuzzy Systems, 2020, , 1-1.	6.5	24
10	An event-triggered approach to torsional vibration control of drill-string system using measurement-while-drilling data. Control Engineering Practice, 2021, 106, 104668.	3.2	24
11	Modeling and optimization of coal blending and coking costs using coal petrography. Information Sciences, 2020, 522, 49-68.	4.0	22
12	Continuous State Feedback Control Based on Intelligent Optimization for First-Order Nonholonomic Systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 2534-2540.	5.9	21
13	Fault diagnosis based on feature clustering of time series data for loss and kick of drilling process. Journal of Process Control, 2021, 102, 24-33.	1.7	21
14	Multi-SVM based Dempster–Shafer theory for gesture intention understanding using sparse coding feature. Applied Soft Computing Journal, 2019, 85, 105787.	4.1	19
15	Two-Stage Fuzzy Fusion Based-Convolution Neural Network for Dynamic Emotion Recognition. IEEE Transactions on Affective Computing, 2022, 13, 805-817.	5.7	19
16	Operating mode recognition of iron ore sintering process based on the clustering of time series data. Control Engineering Practice, 2020, 96, 104297.	3.2	17
17	Prediction model of burn-through point with fuzzy time series for iron ore sintering process. Engineering Applications of Artificial Intelligence, 2021, 102, 104259.	4.3	17
18	Hybrid Intelligent Control Based on Condition Identification for Combustion Process in Heating Furnace of Compact Strip Production. IEEE Transactions on Industrial Electronics, 2022, 69, 2790-2800.	5.2	15

LUEFENG CHEN

4

#	Article	IF	CITATIONS
19	An intelligent decision-making strategy based on the forecast of abnormal operating mode for iron ore sintering process. Journal of Process Control, 2020, 96, 57-66.	1.7	12
20	Observerâ€based trajectory control for directional drilling process. Asian Journal of Control, 2022, 24, 259-272.	1.9	12
21	CNN-based Broad Learning with Efficient Incremental Reconstruction Model for Facial Emotion Recognition. IFAC-PapersOnLine, 2020, 53, 10236-10241.	0.5	12
22	Multiobjective Drilling Trajectory Optimization Considering Parameter Uncertainties. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 1224-1233.	5.9	11
23	Operating Mode Recognition Based on Fluctuation Interval Prediction for Iron Ore Sintering Process. IEEE/ASME Transactions on Mechatronics, 2020, 25, 2297-2308.	3.7	10
24	Real-time dynamic prediction model of carbon efficiency with working condition identification in sintering process. Journal of Process Control, 2022, 111, 97-105.	1.7	10
25	A Novel Modeling Framework Based on Customized Kernel-Based Fuzzy C-Means Clustering in Iron Ore Sintering Process. IEEE/ASME Transactions on Mechatronics, 2022, 27, 950-961.	3.7	9
26	A population randomization-based multi-objective genetic algorithm for gesture adaptation in human-robot interaction. Science China Information Sciences, 2021, 64, 1.	2.7	9
27	Two-Stage Decision-Making Method for Burden Distribution Based on Recognition of Conditions in Blast Furnace. IEEE Transactions on Industrial Electronics, 2021, 68, 4199-4208.	5.2	7
28	Equivalent-input-disturbance-based robust control of drilling trajectory with weight-on-bit uncertainty in directional drilling. ISA Transactions, 2022, 127, 370-382.	3.1	7
29	Weighted Kernel Fuzzy C-Means-Based Broad Learning Model for Time-Series Prediction of Carbon Efficiency in Iron Ore Sintering Process. IEEE Transactions on Cybernetics, 2022, 52, 4751-4763.	6.2	7
30	A deviation correction strategy based on particle filtering and improved model predictive control for vertical drilling. ISA Transactions, 2021, 111, 265-274.	3.1	6
31	Operating Performance Improvement Based on Prediction and Grade Assessment for Sintering Process. IEEE Transactions on Cybernetics, 2022, 52, 10529-10541.	6.2	6
32	A multi-objective optimisation algorithm for a drilling trajectory constrained to wellbore stability. International Journal of Systems Science, 2022, 53, 154-167.	3.7	5
33	K-Means Clustering-based Kernel Canonical Correlation Analysis for Multimodal Emotion Recognition. IFAC-PapersOnLine, 2020, 53, 10250-10254.	0.5	5
34	Intelligent Compensating Method for MPC-Based Deviation Correction with Stratum Uncertainty in Vertical Drilling Process. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2021, 25, 23-30.	0.5	4
35	Model Predictive Control Strategy Based on Improved Trajectory Extension Model for Deviation Correction in Vertical Drilling Process. IFAC-PapersOnLine, 2020, 53, 11213-11218.	0.5	4

36 Multimodal Information-Based Broad and Deep Learning Model for Emotion Understanding., 2021,,.

LUEFENG CHEN

#	Article	IF	CITATIONS
37	Design of Deviation Correction Control System in Vertical Drilling Process. , 2019, , .		3
38	Multimodal Emotion Recognition and Intention Understanding in Human-Robot Interaction. Studies in Systems, Decision and Control, 2021, , 255-288.	0.8	3
39	Information Granulation With Rectangular Information Granules and Its Application in Time-Series Similarity Measurement. IEEE Transactions on Fuzzy Systems, 2022, 30, 4069-4081.	6.5	3
40	Multi-Objective Drilling Trajectory Optimization with a Modified Complexity Index. , 2018, , .		2
41	Tube-Based Adaptive Model Predictive Control for Deviation Correction in Vertical Drilling Process. IEEE Transactions on Industrial Electronics, 2022, 69, 9419-9428.	5.2	2
42	AdaBoost-KNN with Direct Optimization for Dynamic Emotion Recognition. Studies in Computational Intelligence, 2021, , 41-55.	0.7	2
43	Design of a prediction and optimization system for plate shape in roller quenching process. , 2021, , .		1
44	Weight-Adapted Convolution Neural Network for Facial Expression Recognition. Studies in Computational Intelligence, 2021, , 57-75.	0.7	1
45	Two-Layer Fuzzy Multiple Random Forest for Speech Emotion Recognition. Studies in Computational Intelligence, 2021, , 77-89.	0.7	1
46	Deep Residual Network with D-S Evidence Theory for Bimodal Emotion Recognition. , 2021, , .		1
47	Experiments and Applications of Emotional Human-Robot Interaction Systems. Studies in Computational Intelligence, 2021, , 223-244.	0.7	0
48	Two-Stage Fuzzy Fusion Based-Convolution Neural Network for Dynamic Emotion Recognition. Studies in Computational Intelligence, 2021, , 91-114.	0.7	0
49	Multi-support Vector Machine Based Dempster-Shafer Theory for Gesture Intention Understanding. Studies in Computational Intelligence, 2021, , 115-131.	0.7	0