
Khanh Kieu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8890685/publications.pdf Version: 2024-02-01

KHANH KIEU

#	Article	IF	CITATIONS
1	Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite. Optics Letters, 2007, 32, 2242.	3.3	270
2	Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser. Optics Letters, 2009, 34, 593.	3.3	212
3	Soliton Thulium-Doped Fiber Laser With Carbon Nanotube Saturable Absorber. IEEE Photonics Technology Letters, 2009, 21, 128-130.	2.5	185
4	All-fiber normal-dispersion femtosecond laser. Optics Express, 2008, 16, 11453.	3.4	168
5	All-fiber bidirectional passively mode-locked ring laser. Optics Letters, 2008, 33, 64.	3.3	146
6	Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser. Applied Physics Letters, 2016, 108, .	3.3	141
7	Scaling of dissipative soliton fiber lasers to megawatt peak powers by use of large-area photonic crystal fiber. Optics Letters, 2010, 35, 1569.	3.3	121
8	High-power picosecond fiber source for coherent Raman microscopy. Optics Letters, 2009, 34, 2051.	3.3	100
9	Rapid Large-Area Multiphoton Microscopy for Characterization of Graphene. ACS Nano, 2013, 7, 8441-8446.	14.6	81
10	Transition dynamics for multi-pulsing in mode-locked lasers. Optics Express, 2009, 17, 23137.	3.4	77
11	Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics. Optics Express, 2012, 20, 8148.	3.4	74
12	Fiber laser using a microsphere resonator as a feedback element. Optics Letters, 2007, 32, 244.	3.3	72
13	Mid-IR supercontinuum generation in an integrated liquid-core optical fiber filled with CS_2. Optical Materials Express, 2013, 3, 1358.	3.0	69
14	Rapid and Large-Area Characterization of Exfoliated Black Phosphorus Using Third-Harmonic Generation Microscopy. Journal of Physical Chemistry Letters, 2017, 8, 1343-1350.	4.6	68
15	Label-free multi-photon imaging using a compact femtosecond fiber laser mode-locked by carbon nanotube saturable absorber. Biomedical Optics Express, 2013, 4, 2187.	2.9	62
16	High power and high energy monolithic single frequency 2 μm nanosecond pulsed fiber laser by using large core Tm-doped germanate fibers: experiment and modeling. Optics Express, 2012, 20, 16410.	3.4	59
17	Tuning of fiber lasers by use of a single-mode biconic fiber taper. Optics Letters, 2006, 31, 2435.	3.3	58
18	High-power synchronously pumped femtosecond Raman fiber laser. Optics Letters, 2015, 40, 2529.	3.3	54

Кнапн Кіеи

#	Article	IF	CITATIONS
19	Generation of Few-Cycle Pulses From an Amplified Carbon Nanotube Mode-Locked Fiber Laser System. IEEE Photonics Technology Letters, 2010, 22, 1521-1523.	2.5	53
20	Compact fiber-based multi-photon endoscope working at 1700 nm. Biomedical Optics Express, 2018, 9, 2326.	2.9	48
21	Structure-based optical filtering by the silica microshell of the centric marine diatom Coscinodiscus wailesii. Optics Express, 2014, 22, 15992.	3.4	43
22	High power femtosecond source near 1 micron based on an all-fiber Er-doped mode-locked laser. Optics Express, 2010, 18, 21350.	3.4	40
23	Two-Photon Absorption in CdSe Colloidal Quantum Dots Compared to Organic Molecules. ACS Nano, 2014, 8, 12572-12586.	14.6	35
24	Low noise erbium fiber fs frequency comb based on a tapered-fiber carbon nanotube design. Optics Express, 2011, 19, 5313.	3.4	31
25	High Power Soliton Self-Frequency Shift With Improved Flatness Ranging From 1.6 to 1.78 \$mu{m m}\$. IEEE Photonics Technology Letters, 2013, 25, 1893-1896.	2.5	30
26	Sub-femtosecond timing jitter, all-fiber, CNT-mode-locked Er-laser at telecom wavelength. Optics Express, 2013, 21, 26533.	3.4	30
27	All-fiber high-power 1700 nm femtosecond laser based on optical parametric chirped-pulse amplification. Optics Express, 2020, 28, 2317.	3.4	30
28	Low timing jitter and intensity noise from a soliton Er-fiber laser mode-locked by a fiber taper carbon nanotube saturable absorber. Optics Express, 2012, 20, 29524.	3.4	28
29	Design and characterization of a combined OCT and wide field imaging falloposcope for ovarian cancer detection. Biomedical Optics Express, 2017, 8, 124.	2.9	28
30	White light Bessel-like beams generated †by miniature all-fiber device. Optics Express, 2011, 19, 11365.	3.4	26
31	Active Q switching of a fiber laser with a microsphere resonator. Optics Letters, 2006, 31, 3568.	3.3	24
32	Imaging of targeted lipid microbubbles to detect cancer cells using third harmonic generation microscopy. Biomedical Optics Express, 2016, 7, 2849.	2.9	24
33	Bi-Directional Mode-Locked Thulium Fiber Laser as a Single-Cavity Dual-Comb Source. IEEE Photonics Technology Letters, 2018, 30, 1772-1775.	2.5	24
34	All-fiber single-cavity dual-comb for coherent anti-Stokes Raman scattering spectroscopy based on spectral focusing. Optics Letters, 2021, 46, 146.	3.3	23
35	Normal dispersion femtosecond fiber optical parametric oscillator. Optics Letters, 2013, 38, 3616.	3.3	22
36	High-quality crystallinity controlled ALD TiO_2 for waveguiding applications. Optics Letters, 2013, 38, 3980.	3.3	22

Khanh Kieu

#	Article	IF	CITATIONS
37	Slow light based on stimulated Raman scattering in an integrated liquid-core optical fiber filled with CS_2. Optics Express, 2013, 21, 8821.	3.4	22
38	All-optical switching based on inverse Raman scattering in liquid-core optical fibers. Optics Letters, 2012, 37, 942.	3.3	20
39	Label-free multi-photon imaging of dysplasia in Barrett's esophagus. Biomedical Optics Express, 2016, 7, 148.	2.9	19
40	All-Fiber Dissipative Soliton Raman Laser Based on Phosphosilicate Fiber. IEEE Photonics Technology Letters, 2018, 30, 1846-1849.	2.5	17
41	All-reflective multiphoton microscope. Optics Express, 2017, 25, 23399.	3.4	15
42	Fabrication of High-Q Microresonators Using Femtosecond Laser Micromachining. IEEE Photonics Technology Letters, 2013, 25, 430-433.	2.5	14
43	Brillouin lasing in integrated liquid-core optical fibers. Optics Letters, 2013, 38, 543.	3.3	14
44	Watt-level all-fiber optical parametric chirped-pulse amplifier working at 1300  nm. Optics Letters, 2019, 44, 3422.	3.3	13
45	Characterization of 1D photonic crystal nanobeam cavities using curved microfiber. Optics Express, 2010, 18, 20558.	3.4	12
46	Observation of two-photon fluorescence for Rhodamine 6G in microbubble resonators. Optics Letters, 2014, 39, 3098.	3.3	11
47	Demonstration of Zeno switching through inverse Raman scattering in an optical fiber. Optics Express, 2011, 19, 12532.	3.4	8
48	Multiphoton microscopy as a detection tool for photobleaching of EO materials. Optics Express, 2014, 22, 30955.	3.4	8
49	Efficient Frequency Comb Generation in the 9- <inline-formula> <tex-math notation="TeX">(mu) </tex-math></inline-formula> m Region Using Compact Fiber Sources. IEEE Photonics Technology Letters, 2014, 26, 2271-2274.	2.5	7
50	Raman-induced frequency shift in CS2-filled integrated liquid-core optical fiber. Optics Communications, 2014, 318, 83-87.	2.1	7
51	All-fiber bidirectional optical parametric oscillator for precision sensing. Optics Letters, 2015, 40, 2033.	3.3	7
52	Polarization dependent femtosecond laser modification of MBE-grown III-V nanostructures on silicon. Optical Materials Express, 2017, 7, 2102.	3.0	7
53	Self-Locked Excitation Scheme for Microsphere Resonators. IEEE Photonics Technology Letters, 2007, 19, 100-102.	2.5	5
54	Hyper-numerical aperture (NA = 28) microscope using λ = 156 Âμm femtosecond source for multi-photon imaging. Biomedical Optics Express, 2013, 4, 1786.	2.9	5

Khanh Kieu

#	Article	IF	CITATIONS
55	Real-time imaging of chromophore alignment in photorefractive polymer devices through multiphoton microscopy. MRS Communications, 2015, 5, 243-250.	1.8	5
56	Silicon nanoridge array waveguides for nonlinear and sensing applications. Optics Express, 2015, 23, 28224.	3.4	5
57	Optical characterization of directly deposited graphene on a dielectric substrate. Optics Express, 2016, 24, 2965.	3.4	5
58	Multiphoton Microscopy of π-Conjugated Copolymers and Copolymer/Fullerene Blends for Organic Photovoltaic Applications. ACS Applied Materials & Interfaces, 2018, 10, 31813-31823.	8.0	5
59	Characterization of coplanar poled electro optic polymer films for Si-photonic devices with multiphoton microscopy. Applied Physics Letters, 2014, 104, 161109.	3.3	3
60	Strong optical nonlinearity of ultrathin graphitic films synthesized on dielectric substrates. Applied Surface Science, 2019, 497, 143766.	6.1	3
61	Progress in growth, fabrication, and characterization of semiconductor photonic crystal nanocavities. Physica Status Solidi (B): Basic Research, 2011, 248, 892-896.	1.5	2
62	Watt-level All-Fiber Optical Parametric Chirped-Pulse Amplifier Working at 1300 nm. , 2019, , .		0