Revital Nimri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8890680/publications.pdf

Version: 2024-02-01

51 papers	6,316 citations	218677 26 h-index	51 g-index
51	51	51	4602
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care, 2019, 42, 1593-1603.	8.6	2,101
2	International Consensus on Use of Continuous Glucose Monitoring. Diabetes Care, 2017, 40, 1631-1640.	8.6	1,376
3	Nocturnal Glucose Control with an Artificial Pancreas at a Diabetes Camp. New England Journal of Medicine, 2013, 368, 824-833.	27.0	397
4	MD-Logic Artificial Pancreas System. Diabetes Care, 2010, 33, 1072-1076.	8.6	239
5	A comparison of two hybrid closed-loop systems in adolescents and young adults with type 1 diabetes (FLAIR): a multicentre, randomised, crossover trial. Lancet, The, 2021, 397, 208-219.	13.7	206
6	Outcome Measures for Artificial Pancreas Clinical Trials: A Consensus Report. Diabetes Care, 2016, 39, 1175-1179.	8.6	195
7	MD-Logic Overnight Control for 6 Weeks of Home Use in Patients With Type 1 Diabetes: Randomized Crossover Trial. Diabetes Care, 2014, 37, 3025-3032.	8.6	158
8	Prevention of Hypoglycemia With Predictive Low Glucose Insulin Suspension in Children With Type 1 Diabetes: A Randomized Controlled Trial. Diabetes Care, 2017, 40, 764-770.	8.6	137
9	Insulin dose optimization using an automated artificial intelligence-based decision support system in youths with type 1 diabetes. Nature Medicine, 2020, 26, 1380-1384.	30.7	127
10	Insulin Pump Therapy in Youth With Type 1 Diabetes: A Retrospective Paired Study. Pediatrics, 2006, 117, 2126-2131.	2.1	123
11	Clinical Evaluation of a Personalized Artificial Pancreas. Diabetes Care, 2013, 36, 801-809.	8.6	97
12	Multinational Home Use of Closed-Loop Control Is Safe and Effective. Diabetes Care, 2016, 39, 1143-1150.	8.6	95
13	Night glucose control with MD-Logic artificial pancreas in home setting: a single blind, randomized crossover trial-interim analysis. Pediatric Diabetes, 2014, 15, 91-99.	2.9	93
14	Neuropsychological dysfunction and developmental defects associated with genetic changes in infants with neonatal diabetes mellitus: a prospective cohort study. Lancet Diabetes and Endocrinology,the, 2013, 1, 199-207.	11.4	87
15	A Novel Loss-of-Function Mutation in <i>GPR54/KISS1R</i> Leads to Hypogonadotropic Hypogonadism in a Highly Consanguineous Family. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E536-E545.	3.6	76
16	Feasibility Study of Automated Overnight Closed-Loop Glucose Control Under MD-Logic Artificial Pancreas in Patients with Type 1 Diabetes: The DREAM Project. Diabetes Technology and Therapeutics, 2012, 14, 728-735.	4.4	72
17	Faster Compared With Standard Insulin Aspart During Day-and-Night Fully Closed-Loop Insulin Therapy in Type 1 Diabetes: A Double-Blind Randomized Crossover Trial. Diabetes Care, 2020, 43, 29-36.	8.6	68
18	Closed-loop glucose control in young people with type 1 diabetes during and after unannounced physical activity: a randomised controlled crossover trial. Diabetologia, 2017, 60, 2157-2167.	6.3	64

#	Article	IF	Citations
19	Overnight automated type 1 diabetes control under MD-logic closed-loop system: a randomized crossover trial. Pediatric Diabetes, 2013, 14, $n/a-n/a$.	2.9	63
20	Automatic Learning Algorithm for the MD-Logic Artificial Pancreas System. Diabetes Technology and Therapeutics, 2011, 13, 983-990.	4.4	50
21	Reduced Worries of Hypoglycaemia, High Satisfaction, and Increased Perceived Ease of Use after Experiencing Four Nights of MD-Logic Artificial Pancreas at Home (DREAM4). Journal of Diabetes Research, 2015, 2015, 1-8.	2.3	47
22	Insulin Pump Therapy. American Journal of Therapeutics, 2020, 27, e30-e41.	0.9	46
23	Adjusting insulin doses in patients with type 1 diabetes who use insulin pump and continuous glucose monitoring: Variations among countries and physicians. Diabetes, Obesity and Metabolism, 2018, 20, 2458-2466.	4.4	44
24	MD‣ogic overnight type 1 diabetes control in home settings: ⟨scp⟩A⟨/scp⟩ multicentre, multinational, single blind randomized trial. Diabetes, Obesity and Metabolism, 2017, 19, 553-561.	4.4	37
25	Addâ€on therapy with dapagliflozin under full closed loop control improves time in range in adolescents and young adults with type 1 diabetes: The ⟨scp⟩DAPADream⟨/scp⟩ study. Diabetes, Obesity and Metabolism, 2021, 23, 599-608.	4.4	36
26	DREAM5: An openâ€label, randomized, crossâ€over study to evaluate the safety and efficacy of day and night closedâ€loop control by comparing the MDâ€Logic automated insulin delivery system to sensor augmented pump therapy in patients with type 1 diabetes at home. Diabetes, Obesity and Metabolism, 2019, 21, 822-828.	4.4	29
27	Artificial pancreas. Current Opinion in Endocrinology, Diabetes and Obesity, 2014, 21, 251-256.	2.3	28
28	Lived Experience of Advanced Hybrid Closed-Loop Versus Hybrid Closed-Loop: Patient-Reported Outcomes and Perspectives. Diabetes Technology and Therapeutics, 2021, 23, 857-861.	4.4	28
29	Type 1 diabetes mellitus management in young children: implementation of current technologies. Pediatric Research, 2020, 87, 624-629.	2.3	23
30	Feasibility Study of a Hybrid Closed-Loop System with Automated Insulin Correction Boluses. Diabetes Technology and Therapeutics, 2021, 23, 268-276.	4.4	16
31	A Remote Monitoring System for Artificial Pancreas Support Is Safe, Reliable, and User Friendly. Diabetes Technology and Therapeutics, 2014, 16, 699-705.	4.4	14
32	Adjustment of Insulin Pump Settings in Type 1 Diabetes Management: Advisor Pro Device Compared to Physicians' Recommendations. Journal of Diabetes Science and Technology, 2022, 16, 364-372.	2.2	13
33	Metabolic control of insulin detemir in basal-bolus therapy: treat-to-target study in children and adolescents with type 1 diabetesâ€. Pediatric Diabetes, 2012, 14, n/a-n/a.	2.9	12
34	Comparison of Insulin Dose Adjustments Made by Artificial Intelligence-Based Decision Support Systems and by Physicians in People with Type 1 Diabetes Using Multiple Daily Injections Therapy. Diabetes Technology and Therapeutics, 2022, 24, 564-572.	4.4	11
35	Decision Support Systems and Closed Loop. Diabetes Technology and Therapeutics, 2019, 21, S-42-S-56.	4.4	10
36	Executive Functions and Adherence to Continuous Glucose Monitoring in Children and Adolescents with Type 1 Diabetes. Diabetes Technology and Therapeutics, 2020, 22, 265-270.	4.4	10

#	Article	IF	CITATIONS
37	Children Diagnosed with Diabetes during Infancy Have Unique Clinical Characteristics. Hormone Research in Paediatrics, 2007, 67, 263-267.	1.8	9
38	Closing the Loop. Diabetes Technology and Therapeutics, 2016, 18, S-29-S-42.	4.4	9
39	User and Healthcare Professional Perspectives on Do-It-Yourself Artificial Pancreas Systems: A Need for Guidelines. Journal of Diabetes Science and Technology, 2022, 16, 224-227.	2.2	9
40	Using Iterative Learning for Insulin Dosage Optimization in Multiple-Daily-Injections Therapy for People With Type 1 Diabetes. IEEE Transactions on Biomedical Engineering, 2021, 68, 482-491.	4.2	9
41	A Comparison of Postprandial Glucose Control in the Medtronic Advanced Hybrid Closed-Loop System Versus 670G. Diabetes Technology and Therapeutics, 2022, 24, 573-582.	4.4	9
42	Closing the Loop. Diabetes Technology and Therapeutics, 2017, 19, S-27-S-41.	4.4	7
43	Symptoms and Glycemic Control in Young People With Type 1 Diabetes Following SARS-CoV-2 Infection: An Observational Study. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e3264-e3272.	3.6	7
44	Decision Support Systems for Insulin Treatment Adjustment in People with Type 1 Diabetes. Pediatric Endocrinology Reviews, 2020, 17, 170-182.	1.2	6
45	Decision Support Systems and Closed-Loop. Diabetes Technology and Therapeutics, 2021, 23, S-69-S-84.	4.4	5
46	Decision Support Systems and Closed‣oop. Diabetes Technology and Therapeutics, 2022, 24, S-58-S-75.	4.4	5
47	Closing the Loop. Diabetes Technology and Therapeutics, 2018, 20, S-41-S-54.	4.4	4
48	Impact of Temporary Glycemic Target Use in the Hybrid and Advanced Hybrid Closed-Loop Systems. Diabetes Technology and Therapeutics, 2022, 24, 848-852.	4.4	4
49	Decision Support Systems and Closed Loop. Diabetes Technology and Therapeutics, 2020, 22, S-47-S-62.	4.4	2
50	Clinical characteristics, growth patterns, and longâ€ŧerm diabetes complications of 24 patients with neonatal diabetes mellitus: A single center experience. Pediatric Diabetes, 2022, 23, 45-54.	2.9	2
51	Diabetes ketoacidosis recovery in youth with newly diagnosed and established type 1 diabetes. Pediatric Research, 2022, 91, 1272-1277.	2.3	1