
James P Herman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8890552/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neural regulation of endocrine and autonomic stress responses. Nature Reviews Neuroscience, 2009, 10, 397-409.	10.2	2,443
2	Neurocircuitry of stress: central control of the hypothalamo–pituitary–adrenocortical axis. Trends in Neurosciences, 1997, 20, 78-84.	8.6	1,936
3	Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo–pituitary–adrenocortical responsiveness. Frontiers in Neuroendocrinology, 2003, 24, 151-180.	5.2	1,332
4	Limbic system mechanisms of stress regulation: Hypothalamo-pituitary-adrenocortical axis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2005, 29, 1201-1213.	4.8	1,079
5	Regulation of the Hypothalamicâ€Pituitaryâ€Adrenocortical Stress Response. , 2016, 6, 603-621.		1,078
6	Strategies and Methods for Research on Sex Differences in Brain and Behavior. Endocrinology, 2005, 146, 1650-1673.	2.8	679
7	Ventral subicular interaction with the hypothalamic paraventricular nucleus: Evidence for a relay in the bed nucleus of the stria terminalis. Journal of Comparative Neurology, 1993, 332, 1-20.	1.6	540
8	Limbic Regulation of Hypothalamoâ€Pituitaryâ€Adrenocortical Function during Acute and Chronic Stress. Annals of the New York Academy of Sciences, 2008, 1148, 64-73.	3.8	456
9	Regulatory Changes in Neuroendocrine Stress-Integrative Circuitry Produced by a Variable Stress Paradigm. Neuroendocrinology, 1995, 61, 180-190.	2.5	428
10	Chronic stress induces adrenal hyperplasia and hypertrophy in a subregion-specific manner. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E965-E973.	3.5	374
11	Bed Nucleus of the Stria Terminalis Subregions Differentially Regulate Hypothalamic–Pituitary–Adrenal Axis Activity: Implications for the Integration of Limbic Inputs. Journal of Neuroscience, 2007, 27, 2025-2034.	3.6	334
12	Neuronal Circuit Regulation of the Hypothalamo-Pituitary-Adrenocortical Stress Axis. Critical Reviews in Neurobiology, 1996, 10, 371-394.	3.1	322
13	Localization and Regulation of Glucocorticoid and Mineralocorticoid Receptor Messenger RNAs in the Hippocampal Formation of the Rat. Molecular Endocrinology, 1989, 3, 1886-1894.	3.7	303
14	Palmitic acid mediates hypothalamic insulin resistance by altering PKC-Î, subcellular localization in rodents. Journal of Clinical Investigation, 2009, 119, 2577-2589.	8.2	289
15	Dissociation of ACTH and glucocorticoids. Trends in Endocrinology and Metabolism, 2008, 19, 175-180.	7.1	288
16	Glucagon-Like Peptide-1 (GLP-1) Receptors Expressed on Nerve Terminals in the Portal Vein Mediate the Effects of Endogenous GLP-1 on Glucose Tolerance in Rats. Endocrinology, 2007, 148, 4965-4973.	2.8	279
17	Fast Feedback Inhibition of the HPA Axis by Glucocorticoids Is Mediated by Endocannabinoid Signaling. Endocrinology, 2010, 151, 4811-4819.	2.8	269
18	Neural control of chronic stress adaptation. Frontiers in Behavioral Neuroscience, 2013, 7, 61.	2.0	261

#	Article	IF	CITATIONS
19	Comparative analysis of ACTH and corticosterone sampling methods in rats. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E823-E828.	3.5	258
20	Region-Specific Regulation of Glutamic Acid Decarboxylase (GAD) mRNA Expression in Central Stress Circuits. Journal of Neuroscience, 1998, 18, 5938-5947.	3.6	241
21	Local circuit regulation of paraventricular nucleus stress integration. Pharmacology Biochemistry and Behavior, 2002, 71, 457-468.	2.9	240
22	Role of GABA and Glutamate Circuitry in Hypothalamo-Pituitary-Adrenocortical Stress Integration. Annals of the New York Academy of Sciences, 2004, 1018, 35-45.	3.8	237
23	Distribution of vesicular glutamate transporter mRNA in rat hypothalamus. Journal of Comparative Neurology, 2002, 448, 217-229.	1.6	233
24	Glucocorticoid actions on synapses, circuits, and behavior: Implications for the energetics of stress. Frontiers in Neuroendocrinology, 2014, 35, 180-196.	5.2	232
25	Functional role of local GABAergic influences on the HPA axis. Brain Structure and Function, 2008, 213, 63-72.	2.3	225
26	Stress Integration after Acute and Chronic Predator Stress: Differential Activation of Central Stress Circuitry and Sensitization of the Hypothalamo-Pituitary-Adrenocortical Axis. Endocrinology, 2003, 144, 5249-5258.	2.8	222
27	Mechanisms of rapid glucocorticoid feedback inhibition of the hypothalamic–pituitary–adrenal axis. Stress, 2011, 14, 398-406.	1.8	222
28	The medial prefrontal cortex differentially regulates stress-induced c-fos expression in the forebrain depending on type of stressor. European Journal of Neuroscience, 2003, 18, 2357-2364.	2.6	219
29	Sex differences in psychopathology: Of gonads, adrenals and mental illness. Physiology and Behavior, 2009, 97, 250-258.	2.1	215
30	Role of the ventral subiculum in stress integration. Behavioural Brain Research, 2006, 174, 215-224.	2.2	207
31	Stress Activation of Cortex and Hippocampus Is Modulated by Sex and Stage of Estrus. Endocrinology, 2002, 143, 2534-2540.	2.8	205
32	Involvement of the Bed Nucleus of the Stria Terminalis in Tonic Regulation of Paraventricular Hypothalamic CRH and AVP mRNA Expression. Journal of Neuroendocrinology, 1994, 6, 433-442.	2.6	204
33	Mechanisms in the Bed Nucleus of the Stria Terminalis Involved in Control of Autonomic and Neuroendocrine Functions: A Review. Current Neuropharmacology, 2013, 11, 141-159.	2.9	198
34	Role of Prefrontal Cortex Glucocorticoid Receptors in Stress and Emotion. Biological Psychiatry, 2013, 74, 672-679.	1.3	195
35	CNS Glucagon-Like Peptide-1 Receptors Mediate Endocrine and Anxiety Responses to Interoceptive and Psychogenic Stressors. Journal of Neuroscience, 2003, 23, 6163-6170.	3.6	193
36	Anatomical interactions between the central amygdaloid nucleus and the hypothalamic paraventricular nucleus of the rat: a dual tract-tracing analysis. Journal of Chemical Neuroanatomy, 1998, 15, 173-186.	2.1	189

#	Article	IF	CITATIONS
37	Requirement of Cannabinoid Receptor Type 1 for the Basal Modulation of Hypothalamic-Pituitary-Adrenal Axis Function. Endocrinology, 2007, 148, 1574-1581.	2.8	186
38	Regulation of Hippocampal Glucocorticoid Receptor Gene Transcription and Protein Expression <i>In Vivo</i> . Journal of Neuroscience, 1998, 18, 7462-7473.	3.6	183
39	Contribution of the Ventral Subiculum to Inhibitory Regulation of the Hypothalamo-Pituitary-Adrenocortical Axis. Journal of Neuroendocrinology, 1995, 7, 475-482.	2.6	175
40	Pleasurable behaviors reduce stress via brain reward pathways. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20529-20534.	7.1	175
41	Regulation of adrenocorticosteroid receptor mRNA expression in the central nervous system. Cellular and Molecular Neurobiology, 1993, 13, 349-372.	3.3	172
42	Stress, depression and Parkinson's disease. Experimental Neurology, 2012, 233, 79-86.	4.1	172
43	Chronic Stress Increases Prefrontal Inhibition: A Mechanism for Stress-Induced Prefrontal Dysfunction. Biological Psychiatry, 2016, 80, 754-764.	1.3	172
44	Paraventricular Hypothalamic Mechanisms of Chronic Stress Adaptation. Frontiers in Endocrinology, 2016, 7, 137.	3.5	171
45	The Role of the Forebrain Glucocorticoid Receptor in Acute and Chronic Stress. Endocrinology, 2008, 149, 5482-5490.	2.8	149
46	Differential forebrain c-fos mRNA induction by ether inhalation and novelty: evidence for distinctive stress pathways. Brain Research, 1999, 845, 60-67.	2.2	145
47	Hypoactivity of the Hypothalamo-Pituitary-Adrenocortical Axis during Recovery from Chronic Variable Stress. Endocrinology, 2006, 147, 2008-2017.	2.8	143
48	Neural Regulation of the Stress Response: The Many Faces of Feedback. Cellular and Molecular Neurobiology, 2012, 32, 683-694.	3.3	142
49	Estrogen potentiates adrenocortical responses to stress in female rats. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E1173-E1182.	3.5	140
50	<i>In Situ</i> Hybridization Analysis of Arginine Vasopressin Gene Transcription Using Intron-Specific Probes. Molecular Endocrinology, 1991, 5, 1447-1456.	3.7	137
51	Role of the paraventricular nucleus microenvironment in stress integration*. European Journal of Neuroscience, 2002, 16, 381-385.	2.6	137
52	Hyperphagia and Increased Fat Accumulation in Two Models of Chronic CNS Glucagon-Like Peptide-1 Loss of Function. Journal of Neuroscience, 2011, 31, 3904-3913.	3.6	135
53	Expression of ionotropic glutamate receptor subunit mRNAs in the hypothalamic paraventricular nucleus of the rat. Journal of Comparative Neurology, 2000, 422, 352-362.	1.6	130
54	Selective forebrain fiber tract lesions implicate ventral hippocampal structures in tonic regulation of paraventricular nucleus corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) mRNA expression. Brain Research, 1992, 592, 228-238.	2.2	129

#	Article	IF	CITATIONS
55	Chronic stressâ€induced neurotransmitter plasticity in the PVN. Journal of Comparative Neurology, 2009, 517, 156-165.	1.6	128
56	Central stress-integrative circuits: forebrain glutamatergic and GABAergic projections to the dorsomedial hypothalamus, medial preoptic area, and bed nucleus of the stria terminalis. Brain Structure and Function, 2014, 219, 1287-1303.	2.3	126
57	In situ hybridization analysis of vasopressin gene transcription in the paraventricular and supraoptic nuclei of the rat: Regulation by stress and glucocorticoids. Journal of Comparative Neurology, 1995, 363, 15-27.	1.6	124
58	Limbic and HPA axis function in an animal model of chronic neuropathic pain. Physiology and Behavior, 2006, 88, 67-76.	2.1	124
59	Stress Vulnerability during Adolescent Development in Rats. Endocrinology, 2011, 152, 629-638.	2.8	121
60	Daily Limited Access to Sweetened Drink Attenuates Hypothalamic-Pituitary-Adrenocortical Axis Stress Responses. Endocrinology, 2007, 148, 1823-1834.	2.8	118
61	Stress risk factors and stress-related pathology: Neuroplasticity, epigenetics and endophenotypes. Stress, 2011, 14, 481-497.	1.8	118
62	Chronic stress plasticity in the hypothalamic paraventricular nucleus. Progress in Brain Research, 2008, 170, 353-364.	1.4	113
63	Reduced Behavioral Response to Gonadal Hormones in Mice Shipped during the Peripubertal/Adolescent Period. Endocrinology, 2009, 150, 2351-2358.	2.8	113
64	Mifepristone decreases depression-like behavior and modulates neuroendocrine and central hypothalamic–pituitary–adrenocortical axis responsiveness to stress. Psychoneuroendocrinology, 2010, 35, 1100-1112.	2.7	111
65	Ascending mechanisms of stress integration: Implications for brainstem regulation of neuroendocrine and behavioral stress responses. Neuroscience and Biobehavioral Reviews, 2017, 74, 366-375.	6.1	103
66	Corticotropin-Releasing Hormone Protects Neurons against Insults Relevant to the Pathogenesis of Alzheimer's Disease. Neurobiology of Disease, 2001, 8, 492-503.	4.4	102
67	Stress: Influence of sex, reproductive status and gender. Neurobiology of Stress, 2019, 10, 100155.	4.0	101
68	Chronic electroconvulsive shock treatment elicits up-regulation of CRF and AVP mRNA in select populations of neuroendocrine neurons. Brain Research, 1989, 501, 235-246.	2.2	98
69	The Anteroventral Bed Nucleus of the Stria Terminalis Differentially Regulates Hypothalamic-Pituitary-Adrenocortical Axis Responses to Acute and Chronic Stress. Endocrinology, 2008, 149, 818-826.	2.8	94
70	Neurocircuitry of Stress Integration: Anatomical Pathways Regulating the Hypothalamo-Pituitary-Adrenocortical Axis of the Rat. Integrative and Comparative Biology, 2002, 42, 541-551.	2.0	91
71	The role of the posterior medial bed nucleus of the stria terminalis in modulating hypothalamic–pituitary–adrenocortical axis responsiveness to acute and chronic stress. Psychoneuroendocrinology, 2008, 33, 659-669.	2.7	89
72	Distribution of natriuretic peptide precursor mRNAs in the rat brain. Journal of Comparative Neurology, 1995, 356, 183-199.	1.6	88

#	Article	IF	CITATIONS
73	Organization and regulation of paraventricular nucleus glutamate signaling systems: N-methyl-D-aspartate receptors. Journal of Comparative Neurology, 2005, 484, 43-56.	1.6	85
74	Identification of chronic stressâ€activated regions reveals a potential recruited circuit in rat brain. European Journal of Neuroscience, 2012, 36, 2547-2555.	2.6	85
75	Decrements in Nuclear Glucocorticoid Receptor (GR) Protein Levels and DNA Binding in Aged Rat Hippocampus. Endocrinology, 2002, 143, 1362-1370.	2.8	79
76	Mouse handling limits the impact of stress on metabolic endpoints. Physiology and Behavior, 2015, 150, 31-37.	2.1	79
77	Hydration State Controls Stress Responsiveness and Social Behavior. Journal of Neuroscience, 2011, 31, 5470-5476.	3.6	76
78	Role of central glucagon-like peptide-1 in stress regulation. Physiology and Behavior, 2013, 122, 201-207.	2.1	76
79	Brain mechanisms of HPA axis regulation: neurocircuitry and feedback in context Richard Kvetnansky lecture. Stress, 2020, 23, 617-632.	1.8	74
80	"Braking―the Prefrontal Cortex: The Role of Glucocorticoids and Interneurons in Stress Adaptation and Pathology. Biological Psychiatry, 2019, 86, 669-681.	1.3	72
81	Regulation of Basal Corticotropin-Releasing Hormone and Arginine Vasopressin Messenger Ribonucleic Acid Expression in the Paraventricular Nucleus: Effects of Selective Hypothalamic Deafferentations*. Endocrinology, 1990, 127, 2408-2417.	2.8	71
82	Hypothalamo-Pituitary-Adrenocortical Regulation Following Lesions of the Central Nucleus of the Amygdala. Stress, 1997, 1, 263-279.	1.8	71
83	Defense of Adrenocorticosteroid Receptor Expression in Rat Hippocampus: Effects of Stress and Strain1. Endocrinology, 1999, 140, 3981-3991.	2.8	71
84	Local Integration of Glutamate Signaling in the Hypothalamic Paraventricular Region: Regulation of Glucocorticoid Stress Reponses. Endocrinology, 2000, 141, 4801-4804.	2.8	71
85	Rapid Nongenomic Glucocorticoid Actions in Male Mouse Hypothalamic Neuroendocrine Cells Are Dependent on the Nuclear Glucocorticoid Receptor. Endocrinology, 2015, 156, 2831-2842.	2.8	71
86	Up-regulation of α1D Ca2+ channel subunit mRNA expression in the hippocampus of aged F344 rats. Neurobiology of Aging, 1998, 19, 581-587.	3.1	70
87	Angiotensin Type 1a Receptors in the Paraventricular Nucleus of the Hypothalamus Protect against Diet-Induced Obesity. Journal of Neuroscience, 2013, 33, 4825-4833.	3.6	70
88	Neuroendocrine Function After Hypothalamic Depletion of Glucocorticoid Receptors in Male and Female Mice. Endocrinology, 2015, 156, 2843-2853.	2.8	69
89	Distribution of glucagon-like peptide-1 immunoreactivity in the hypothalamic paraventricular and supraoptic nuclei. Journal of Chemical Neuroanatomy, 2008, 36, 144-149.	2.1	68
90	Stress activation of IL-6 neurons in the hypothalamus. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 299, R343-R351.	1.8	68

#	Article	IF	CITATIONS
91	Forebrain origins of glutamatergic innervation to the rat paraventricular nucleus of the hypothalamus: Differential inputs to the anterior versus posterior subregions. Journal of Comparative Neurology, 2011, 519, 1301-1319.	1.6	67
92	Stressor-Selective Role of the Ventral Subiculum in Regulation of Neuroendocrine Stress Responses. Endocrinology, 2004, 145, 3763-3768.	2.8	66
93	Regulation of Hypothalamo-Pituitary-Adrenocortical Responses to Stressors by the Nucleus of the Solitary Tract/Dorsal Vagal Complex. Cellular and Molecular Neurobiology, 2018, 38, 25-35.	3.3	66
94	Blood-Borne Angiotensin II Acts in the Brain to Influence Behavioral and Endocrine Responses to Psychogenic Stress. Journal of Neuroscience, 2011, 31, 15009-15015.	3.6	65
95	Differential effects of homotypic vs. heterotypic chronic stress regimens on microglial activation in the prefrontal cortex. Physiology and Behavior, 2013, 122, 246-252.	2.1	65
96	Aberrant Stress Response Associated with Severe Hypoglycemia in a Transgenic Mouse Model of Alzheimer's Disease. Journal of Molecular Neuroscience, 1999, 13, 159-166.	2.3	64
97	Sex differences in synaptic plasticity in stress-responsive brain regions following chronic variable stress. Physiology and Behavior, 2011, 104, 242-247.	2.1	64
98	Neuropeptide Y (NPY) and posttraumatic stress disorder (PTSD): A translational update. Experimental Neurology, 2016, 284, 196-210.	4.1	64
99	Impact of Corticosterone Treatment on Spontaneous Seizure Frequency and Epileptiform Activity in Mice with Chronic Epilepsy. PLoS ONE, 2012, 7, e46044.	2.5	63
100	Adolescent chronic stress causes hypothalamo–pituitary–adrenocortical hypo-responsiveness and depression-like behavior in adult female rats. Psychoneuroendocrinology, 2016, 65, 109-117.	2.7	63
101	Diurnal Regulation of Glucocorticoid Receptor and Mineralocorticoid Receptor mRNAs in Rat Hippocampus. Molecular and Cellular Neurosciences, 1993, 4, 181-190.	2.2	62
102	Central angiotensin II has catabolic action at white and brown adipose tissue. American Journal of Physiology - Endocrinology and Metabolism, 2011, 301, E1081-E1091.	3.5	62
103	Opposing effects of chronic stress and weight restriction on cardiovascular, neuroendocrine and metabolic function. Physiology and Behavior, 2011, 104, 228-234.	2.1	59
104	Sensitization of the Hypothalamic-Pituitary-Adrenal Axis in a Male Rat Chronic Stress Model. Endocrinology, 2016, 157, 2346-2355.	2.8	59
105	Microglial Acid Sensing Regulates Carbon Dioxide-Evoked Fear. Biological Psychiatry, 2016, 80, 541-551.	1.3	59
106	Traumatic brain injury regulates adrenocorticosteroid receptor mRNA levels in rat hippocampus. Brain Research, 2002, 947, 41-49.	2.2	57
107	Nongenomic Actions of Adrenal Steroids in the Central Nervous System. Journal of Neuroendocrinology, 2010, 22, 846-861.	2.6	56
108	The selective glucocorticoid receptor antagonist CORT 108297 decreases neuroendocrine stress responses and immobility in the forced swim test. Hormones and Behavior, 2014, 65, 363-371.	2.1	56

#	Article	IF	CITATIONS
109	Enduring Influences of Peripubertal/Adolescent Stressors on Behavioral Response to Estradiol and Progesterone in Adult Female Mice. Endocrinology, 2009, 150, 3717-3725.	2.8	55
110	Stimulation of the prelimbic cortex differentially modulates neuroendocrine responses to psychogenic and systemic stressors. Physiology and Behavior, 2011, 104, 266-271.	2.1	55
111	Infralimbic prefrontal cortex structural and functional connectivity with the limbic forebrain: a combined viral genetic and optogenetic analysis. Brain Structure and Function, 2019, 224, 73-97.	2.3	55
112	Enhanced fear recall and emotional arousal in rats recovering from chronic variable stress. Physiology and Behavior, 2010, 101, 474-482.	2.1	54
113	Stress, autonomic imbalance, and the prediction of metabolic risk: A model and a proposal for research. Neuroscience and Biobehavioral Reviews, 2018, 86, 12-20.	6.1	54
114	Glucocorticoid regulation of preproglucagon transcription and RNA stability during stress. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5913-5918.	7.1	53
115	Disruption of Glucagon-Like Peptide 1 Signaling in <i>Sim1</i> Neurons Reduces Physiological and Behavioral Reactivity to Acute and Chronic Stress. Journal of Neuroscience, 2017, 37, 184-193.	3.6	53
116	Chronic social stress in the visible burrow system modulates stress-related gene expression in the bed nucleus of the stria terminalis. Physiology and Behavior, 2006, 89, 301-310.	2.1	52
117	Role of paraventricular nucleusâ€projecting norepinephrine/epinephrine neurons in acute and chronic stress. European Journal of Neuroscience, 2014, 39, 1903-1911.	2.6	52
118	Behavioral and physiological consequences of enrichment loss in rats. Psychoneuroendocrinology, 2017, 77, 37-46.	2.7	50
119	Dietary Restriction Selectively Decreases Glucocorticoid Receptor Expression in the Hippocampus and Cerebral Cortex of Rats. Experimental Neurology, 2000, 166, 435-441.	4.1	49
120	Hypothalamo-pituitary-adrenocortical dysregulation in aging F344/Brown-Norway F1 hybrid rats. Neurobiology of Aging, 2001, 22, 323-332.	3.1	49
121	Stress and amphetamine induce Fos expression in medial prefrontal cortex neurons containing glucocorticoid receptors. Brain Research, 2003, 990, 209-214.	2.2	49
122	Environmental enrichment protects against functional deficits caused by traumatic brain injury. Frontiers in Behavioral Neuroscience, 2013, 7, 44.	2.0	48
123	Hypothalamic-pituitary-adrenocortical axis dysfunction in epilepsy. Physiology and Behavior, 2016, 166, 22-31.	2.1	47
124	GABAergic circuits and the stress hyporesponsive period in the rat: Ontogeny of glutamic acid decarboxylase (GAD) 67 mRNA expression in limbic–hypothalamic stress pathways. Brain Research, 2007, 1138, 1-9.	2.2	45
125	Optic tract injury after closed head traumatic brain injury in mice: A model of indirect traumatic optic neuropathy. PLoS ONE, 2018, 13, e0197346.	2.5	45
126	HPA axis dampening by limited sucrose intake: Reward frequency vs. caloric consumption. Physiology and Behavior, 2011, 103, 104-110.	2.1	44

James P Herman

#	Article	IF	CITATIONS
127	Brainstem origins of glutamatergic innervation of the rat hypothalamic paraventricular nucleus. Journal of Comparative Neurology, 2012, 520, 2369-2394.	1.6	44
128	Mineralocorticoid receptors regulate bcl-2 and p53 mRNA expression in hippocampus. NeuroReport, 1998, 9, 3085-3089.	1.2	43
129	Stress regulation of mineralocorticoid receptor heteronuclear RNA in rat hippocampus. Brain Research, 1995, 677, 243-249.	2.2	42
130	Norepinephrine–gamma-aminobutyric acid (GABA) interaction in limbic stress circuits: effects of reboxetine on GABAergic neurons. Biological Psychiatry, 2003, 53, 166-174.	1.3	42
131	Role of Glucocorticoids in Tuning Hindbrain Stress Integration. Journal of Neuroscience, 2010, 30, 14907-14914.	3.6	42
132	Differential impact of stress and environmental enrichment on corticolimbic circuits. Pharmacology Biochemistry and Behavior, 2020, 197, 172993.	2.9	42
133	GABAergic Signaling within a Limbic-Hypothalamic Circuit Integrates Social and Anxiety-Like Behavior with Stress Reactivity. Neuropsychopharmacology, 2016, 41, 1530-1539.	5.4	41
134	Role of central glucagon-like peptide-1 in hypothalamo-pituitary-adrenocortical facilitation following chronic stress. Experimental Neurology, 2008, 210, 458-466.	4.1	40
135	Glucocorticoid receptors in the nucleus of the solitary tract (NTS) decrease endocrine and behavioral stress responses. Psychoneuroendocrinology, 2014, 45, 142-153.	2.7	39
136	Ibotenate-induced cell death in the hypothalamic paraventricular nucleus: differential susceptibility of magnocellular and parvicellular neurons. Brain Research, 1986, 383, 367-372.	2.2	38
137	Hypothalamic-Pituitary-Adrenal Axis, Glucocorticoids, and Neurologic Disease. Neurologic Clinics, 2006, 24, 461-481.	1.8	38
138	Adolescent environmental enrichment prevents behavioral and physiological sequelae of adolescent chronic stress in female (but not male) rats. Stress, 2018, 21, 464-473.	1.8	35
139	Role of Paraventricular Nucleus Glutamate Signaling in Regulation of HPA Axis Stress Responses. Interdisciplinary Information Sciences, 2015, 21, 253-260.	0.4	34
140	Fat-brain connections: Adipocyte glucocorticoid control of stress and metabolism. Frontiers in Neuroendocrinology, 2018, 48, 50-57.	5.2	33
141	Prefrontal Cortex Regulates Chronic Stressâ€Induced Cardiovascular Susceptibility. Journal of the American Heart Association, 2019, 8, e014451.	3.7	33
142	Loss of melanocortin-4 receptor function attenuates HPA responses to psychological stress. Psychoneuroendocrinology, 2014, 42, 98-105.	2.7	32
143	Adipocyte glucocorticoid receptors mediate fat-to-brain signaling. Psychoneuroendocrinology, 2015, 56, 110-119.	2.7	32
144	Long-term impact of chronic variable stress in adolescence versus adulthood. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 88, 303-310.	4.8	32

#	Article	IF	CITATIONS
145	Chronic stress, energy balance and adiposity in female rats. Physiology and Behavior, 2011, 102, 84-90.	2.1	31
146	Stability of Neuroendocrine and Behavioral Responsiveness in Aging Fischer 344/Brown-Norway Hybrid Rats. Endocrinology, 2005, 146, 3105-3112.	2.8	30
147	Heterogeneity of neuroendocrine stress responses in aging rat strains. Physiology and Behavior, 2009, 96, 6-11.	2.1	30
148	Unique genetic loci identified for emotional behavior in control and chronic stress conditions. Frontiers in Behavioral Neuroscience, 2014, 8, 341.	2.0	30
149	Chronic variable stress improves glucose tolerance in rats with sucrose-induced prediabetes. Psychoneuroendocrinology, 2014, 47, 178-188.	2.7	30
150	Central Nervous System GLP-1 Receptors Regulate Islet Hormone Secretion and Glucose Homeostasis in Male Rats. Endocrinology, 2017, 158, 2124-2133.	2.8	30
151	Changes in Central Sodium and not Osmolarity or Lactate Induce Panic-Like Responses in a Model of Panic Disorder. Neuropsychopharmacology, 2010, 35, 1333-1347.	5.4	29
152	Role of nucleus of the solitary tract noradrenergic neurons in post-stress cardiovascular and hormonal control in male rats. Stress, 2015, 18, 221-232.	1.8	29
153	Vesicular Glutamate Transporter 1 Knockdown in Infralimbic Prefrontal Cortex Augments Neuroendocrine Responses to Chronic Stress in Male Rats. Endocrinology, 2017, 158, 3579-3591.	2.8	29
154	Functional disruption of stress modulatory circuits in a model of temporal lobe epilepsy. PLoS ONE, 2018, 13, e0197955.	2.5	29
155	Neural pathways of stress integration: relevance to alcohol abuse. , 2012, 34, 441-7.		28
156	Differential regulation of forebrain glutamic acid decarboxylase mRNA expression by aging and stress. Brain Research, 2001, 912, 60-66.	2.2	27
157	Lesion of the Central Nucleus of the Amygdala Decreases Basal CRH mRNA Expression and Stressâ€Induced ACTH Release. Annals of the New York Academy of Sciences, 1994, 746, 438-440.	3.8	27
158	GluR5-mediated glutamate signaling regulates hypothalamo–pituitary–adrenocortical stress responses at the paraventricular nucleus and median eminence. Psychoneuroendocrinology, 2009, 34, 1370-1379.	2.7	27
159	Differential Regulation of Neuropeptide Y in the Amygdala and Prefrontal Cortex during Recovery from Chronic Variable Stress. Frontiers in Behavioral Neuroscience, 2011, 5, 54.	2.0	27
160	Weight loss by calorie restriction versus bariatric surgery differentially regulates the hypothalamo-pituitary-adrenocortical axis in male rats. Stress, 2014, 17, 484-493.	1.8	27
161	Membrane-initiated nuclear trafficking of the glucocorticoid receptor in hypothalamic neurons. Steroids, 2019, 142, 55-64.	1.8	27
162	Physiological Responses to Acute Psychological Stress Are Reduced by the PPARÎ ³ Agonist Rosiglitazone. Endocrinology, 2012, 153, 1279-1287.	2.8	25

#	Article	IF	CITATIONS
163	The neuroendocrinology of stress: Glucocorticoid signaling mechanisms. Psychoneuroendocrinology, 2022, 137, 105641.	2.7	25
164	Defense of Adrenocorticosteroid Receptor Expression in Rat Hippocampus: Effects of Stress and Strain. Endocrinology, 1999, 140, 3981-3991.	2.8	24
165	Conditional deletion of glucocorticoid receptors in rat brain results in sex-specific deficits in fear and coping behaviors. ELife, 2019, 8, .	6.0	24
166	Local Integration of Glutamate Signaling in the Hypothalamic Paraventricular Region: Regulation of Glucocorticoid Stress Reponses. Endocrinology, 2000, 141, 4801-4804.	2.8	23
167	Immunoautoradiographic and in situ hybridization analysis of corticotropin-releasing hormone biosynthesis in the hypothalamic paraventricular nucleus. Journal of Chemical Neuroanatomy, 1996, 11, 49-56.	2.1	22
168	Chronic social subordination stress modulates glutamic acid decarboxylase (GAD) 67 mRNA expression in central stress circuits. Physiology and Behavior, 2015, 146, 7-15.	2.1	22
169	Desacyl Ghrelin Decreases Anxiety-like Behavior in Male Mice. Endocrinology, 2018, 159, 388-399.	2.8	22
170	Loss of Environmental Enrichment Elicits Behavioral and Physiological Dysregulation in Female Rats. Frontiers in Behavioral Neuroscience, 2018, 12, 287.	2.0	22
171	Lesions of parvocellular subdivisions of the hypothalamic paraventricular nucleus alter open field behavior and acquisition of sensory and spatial discrimination. Brain Research, 1991, 550, 291-297.	2.2	21
172	Adrenocorticosteroid receptor blockade and excitotoxic challenge regulate adrenocorticosteroid receptor mRNA levels in hippocampus. Journal of Neuroscience Research, 2001, 64, 277-283.	2.9	21
173	Sensitivity of depression-like behavior to glucocorticoids and antidepressants is independent of forebrain glucocorticoid receptors. Brain Research, 2013, 1525, 1-15.	2.2	21
174	Infralimbic cortical glutamate output is necessary for the neural and behavioral consequences of chronic stress. Neurobiology of Stress, 2020, 13, 100274.	4.0	21
175	Evidence That IGF-I Acts as an Autocrine/Paracrine Growth Factor in the Magnocellular Neurosecretory System: Neuronal Synthesis and Induction of Axonal Sprouting. Experimental Neurology, 1999, 159, 419-432.	4.1	20
176	Acid-sensing by the T cell death-associated gene 8 (TDAG8) receptor cloned from rat brain. Biochemical and Biophysical Research Communications, 2009, 386, 420-425.	2.1	20
177	Variable impact of chronic stress on spatial learning and memory in BXD mice. Physiology and Behavior, 2015, 150, 69-77.	2.1	20
178	Divergent effects of repeated restraint versus chronic variable stress on prefrontal cortical immune status after LPS injection. Brain, Behavior, and Immunity, 2016, 57, 263-270.	4.1	20
179	Statistical modeling implicates neuroanatomical circuit mediating stress relief by â€~comfort' food. Brain Structure and Function, 2016, 221, 3141-3156.	2.3	20
180	Nitrergic neurotransmission in the paraventricular nucleus of the hypothalamus modulates autonomic, neuroendocrine and behavioral responses to acute restraint stress in rats. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 90, 16-27.	4.8	20

#	Article	IF	CITATIONS
181	RU486 Mitigates Hippocampal Pathology Following Status Epilepticus. Frontiers in Neurology, 2016, 7, 214.	2.4	19
182	Activity-Dependent Modulation of Neurotransmitter Innervation to Vasopressin Neurons of the Supraoptic Nucleus. Endocrinology, 2005, 146, 348-354.	2.8	17
183	Lasting Impact of Chronic Adolescent Stress and Glucocorticoid Receptor Selective Modulation in Male and Female Rats. Psychoneuroendocrinology, 2020, 112, 104490.	2.7	17
184	Chemogenetic Inhibition of Infralimbic Prefrontal Cortex GABAergic Parvalbumin Interneurons Attenuates the Impact of Chronic Stress in Male Mice. ENeuro, 2020, 7, ENEURO.0423-19.2020.	1.9	17
185	Acute Stress Upregulates Vasopressin Gene Expression in Parvocellular Neurons of the Hypothalamic Paraventricular Nucleus. Annals of the New York Academy of Sciences, 1993, 689, 546-549.	3.8	16
186	Central Peptidergic Neurons Are Hyperactive during Collateral Sprouting and Inhibition of Activity Suppresses Sprouting. Journal of Neuroscience, 1999, 19, 1586-1598.	3.6	16
187	Deficient hippocampal c-fos expression results in reduced anxiety and altered response to chronic stress in female mice. Neuroscience Letters, 2006, 403, 125-130.	2.1	16
188	Similarities and dissimilarities between psychiatric cluster disorders. Molecular Psychiatry, 2021, 26, 4853-4863.	7.9	16
189	Behavioral characteristics of Roman high avoidance rats homozygous for diabetes insipidus (RHA :) Tj ETQq1 1	0.784314 2.2	rgBT_/Overlo <mark>c</mark> i
190	Hypothalamo-Pituitary-Adrenocortical Axis, Glucocorticoids, and Neurologic Disease. Immunology and Allergy Clinics of North America, 2009, 29, 265-284.	1.9	14
191	Metabotropic glutamate receptor-mediated signaling dampens the HPA axis response to restraint stress. Physiology and Behavior, 2015, 150, 2-7.	2.1	14
192	Vasopressin and Animal Behavior. , 1987, , 517-547.		14
193	<i>HIST1H2BB</i> and <i>MAGI2</i> Methylation and Somatic Mutations as Precision Medicine Biomarkers for Diagnosis and Prognosis of High-grade Serous Ovarian Cancer. Cancer Prevention Research, 2020, 13, 783-794.	1.5	11
194	Prefrontal cortex PACAP signaling: organization and role in stress regulation. Stress, 2021, 24, 196-205.	1.8	11
195	The visible burrow system: A view from across the hall. Physiology and Behavior, 2017, 178, 103-109.	2.1	10
196	Deletion of Glucocorticoid Receptors in Forebrain GABAergic Neurons Alters Acute Stress Responding and Passive Avoidance Behavior in Female Mice. Frontiers in Behavioral Neuroscience, 2018, 12, 325.	2.0	10
197	The glucocorticoid receptor specific modulator CORT108297 reduces brain pathology following status epilepticus. Experimental Neurology, 2021, 341, 113703.	4.1	10
198	Stress and stress-related disease states as topics of multi-approach research. Stress, 2020, 23, 615-616.	1.8	10

#	Article	IF	CITATIONS
199	Disruption of Glucagon-Like Peptide 1 Signaling in <i>Sim1</i> Neurons Reduces Physiological and Behavioral Reactivity to Acute and Chronic Stress. Journal of Neuroscience, 2017, 37, 184-193.	3.6	10
200	Expression of Insulin-Like Growth Factor Binding Protein-2 during Postnatal Development of the Rat Neurointermediate Pituitary. Neuroendocrinology, 1997, 66, 17-27.	2.5	8
201	Single Prolonged Stress Reduces Intrinsic Excitability and Excitatory Synaptic Drive Onto Pyramidal Neurons in the Infralimbic Prefrontal Cortex of Adult Male Rats. Frontiers in Cellular Neuroscience, 2021, 15, 705660.	3.7	8
202	Characterization of a New Rodent Model of Diabetes insipidus: The Roman High Avoidance Rat Homozygous for Diabetes insipidus. Neuroendocrinology, 1986, 43, 340-347.	2.5	7
203	Glucocorticoid Regulation of Stressâ€Induced Mineralocorticoid Receptor Gene Transcription <i>in Vivo</i> . Annals of the New York Academy of Sciences, 1994, 746, 485-488.	3.8	7
204	Regulation of forebrain GABAergic stress circuits following lesion of the ventral subiculum. Brain Research, 2006, 1116, 132-142.	2.2	7
205	Lessons from regular gathering of experts in stress research: focus on pathophysiological consequences of stress exposure. Stress, 2016, 19, 339-340.	1.8	7
206	Neurocircuit control of the hypothalamo-pituitary-adrenocortical axis during stress. Current Opinion in Endocrinology, Diabetes and Obesity, 1999, 6, 3.	0.6	6
207	Hippocampal interneurons are direct targets for circulating glucocorticoids. Journal of Comparative Neurology, 2022, 530, 2100-2112.	1.6	5
208	Introduction: Stress and neurological disease. Experimental Neurology, 2012, 233, 1-2.	4.1	4
209	Good stress, bad stress and very bad stress. Stress, 2015, 18, 267-268.	1.8	4
210	In Situ Hybridization Analysis of Gene Expression in the HPA Stress Axis: Regulation by Glucocorticoids. , 1989, , 11-22.		4
211	Regulation of mRNA in Peptidergic Systems: Quantitative and In Situ Studies. , 1988, , 225-241.		4
212	Expression of ionotropic glutamate receptor subunit mRNAs in the hypothalamic paraventricular nucleus of the rat. Journal of Comparative Neurology, 2000, 422, 352-362.	1.6	3
213	Chapter 8 Neuroendocrine Aspects of the Aging Brain. Advances in Cell Aging and Gerontology, 1997, 2, 193-241.	0.1	2
214	Neurocircuit regulation of the hypothalamo–pituitary–adrenocortical stress response – an overview. Handbook of Behavioral Neuroscience, 2005, 15, 405-418.	0.0	2
215	Corticolimbic stress regulatory circuits, hypothalamo–pituitary–adrenocortical adaptation, and resilience. , 2020, , 291-309.		2
216	Adolescent Stress Confers Resilience to Traumatic Stress Later in Life: Role of the Prefrontal Cortex. Biological Psychiatry Global Open Science, 2023, 3, 274-282.	2.2	2

#	Article	IF	CITATIONS
217	Hybridization Studies of Adrenocorticosteroid Receptors in the Central Nervous System. Methods in Neurosciences, 1994, 22, 189-210.	0.5	0
218	Mechanisms of Aldosterone Action in Brain and Behavior. , 2002, , 627-642.		0
219	Linking cerebral metabolic function to stress vulnerability (Commentary on Knapman <i>et al.</i>). European Journal of Neuroscience, 2012, 35, 411-411.	2.6	Ο
220	Brain insulin receptors link stress and metabolism. Molecular Metabolism, 2015, 4, 77-78.	6.5	0
221	New perspectives in stress research: 2016 neurobiology of stress workshop. Stress, 2017, 20, 419-420.	1.8	Ο
222	Prefrontal Cortical Regulation of Chronic Stressâ€Induced Cardiovascular Susceptibility. FASEB Journal, 2018, 32, 598.11.	0.5	0