Henri Bernardi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8890378/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular Regulation of Skeletal Muscle Growth and Organelle Biosynthesis: Practical Recommendations for Exercise Training. International Journal of Molecular Sciences, 2021, 22, 2741.	1.8	18
2	Recent Data on Cellular Component Turnover: Focus on Adaptations to Physical Exercise. Cells, 2019, 8, 542.	1.8	33
3	eIF3f depletion impedes mouse embryonic development, reduces adult skeletal muscle mass and amplifies muscle loss during disuse. Journal of Physiology, 2019, 597, 3107-3131.	1.3	16
4	AMP-activated protein kinase stabilizes FOXO3 in primary myotubes. Biochemical and Biophysical Research Communications, 2018, 499, 493-498.	1.0	20
5	Autophagy and Protein Turnover Signaling in Slow-Twitch Muscle during Exercise. Medicine and Science in Sports and Exercise, 2014, 46, 1314-1325.	0.2	75
6	FoxO transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Cellular and Molecular Life Sciences, 2014, 71, 1657-1671.	2.4	246
7	Autophagy is essential to support skeletal muscle plasticity in response to endurance exercise. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R956-R969.	0.9	106
8	eIF3f: A central regulator of the antagonism atrophy/hypertrophy in skeletal muscle. International Journal of Biochemistry and Cell Biology, 2013, 45, 2158-2162.	1.2	39
9	The role of AMP-activated protein kinase in the coordination of skeletal muscle turnover and energy homeostasis. American Journal of Physiology - Cell Physiology, 2012, 303, C475-C485.	2.1	100
10	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
11	AMPK promotes skeletal muscle autophagy through activation of forkhead FoxO3a and interaction with Ulk1. Journal of Cellular Biochemistry, 2012, 113, 695-710.	1.2	259
12	Wnt4 activates the canonical β-catenin pathway and regulates negatively myostatin: functional implication in myogenesis. American Journal of Physiology - Cell Physiology, 2011, 300, C1122-C1138.	2.1	54
13	Inhibition of myoblast differentiation by Sfrp1 and Sfrp2. Cell and Tissue Research, 2008, 332, 299-306.	1.5	53
14	The atypical α2β2 IGF receptor expressed in inducible c2.7 myoblasts is derived from post-translational modifications of the mouse IGF-I receptor. Growth Hormone and IGF Research, 2008, 18, 412-423.	0.5	6
15	Inhibition of autocrine secretion of myostatin enhances terminal differentiation in human rhabdomyosarcoma cells. Oncogene, 2003, 22, 8221-8232.	2.6	32
16	Mechanisms involved in the inhibition of myoblast proliferation and differentiation by myostatin. Experimental Cell Research, 2003, 286, 263-275.	1.2	275
17	Insulin-Like Growth Factor I (IGF-I) Receptor Overexpression Abolishes the IGF Requirement for Differentiation and Induces a Ligand-Dependent Transformed Phenotype in C2 Inducible Myoblasts*. Endocrinology, 1997, 138, 5210-5219.	1.4	16
18	Rabbit slow and fast skeletal muscle-derived satellite myoblast phenotypes do not involve constitutive differences in the components of the insulin-like growth factor system. , 1996, 169, 227-234.		9

Henri Bernardi

#	Article	IF	CITATIONS
19	Characterization of a null mutation inace-1, the gene encoding class A acetylcholinesterase in the nematodeCaenorhabditis elegans. FEBS Letters, 1995, 357, 265-268.	1.3	15
20	ATP-Sensitive K ⁺ Channels. Kidney and Blood Pressure Research, 1994, 17, 118-120.	0.9	3
21	Characterization of the Sulfonylurea-Sensitive ATP-Modulated Potassium Channel. , 1993, , 61-75.		3
22	ATP/ADP binding sites are present in the sulfonylurea binding protein associated with brain ATP-sensitive potassium channels. Biochemistry, 1992, 31, 6328-6332.	1.2	40
23	Antidiabetic sulfonylureas: localization of binding sites in the brain and effects on the hyperpolarization induced by anoxia in hippocampal slices. Brain Research, 1989, 486, 159-164.	1.1	233
24	Role and Function of Wnts in the Regulation of Myogenesis: When Wnt Meets Myostatin. , 0, , .		4
25	Autophagy, a Highly Regulated Intracellular System Essential to Skeletal Muscle Homeostasis — Role in Disease, Exercise and Altitude Exposure. , 0, , .		6
26	Insulin-Like Growth Factor I (IGF-I) Receptor Overexpression Abolishes the IGF Requirement for Differentiation and Induces a Ligand-Dependent Transformed Phenotype in C2 Inducible Myoblasts. , 0, .		3