Jian-Liang Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8890198/publications.pdf

Version: 2024-02-01

81743 95083 4,979 113 39 68 citations g-index h-index papers 113 113 113 6385 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	2D/2D SnS2@Ti3C2 MXene heterojunction photocatalyst with a superior efficiency for tetracycline hydrochloride elimination. Materials Letters, 2022, 311, 131550.	1.3	3
2	Ultrahigh sensitive and selective triethylamine sensor based on h-BN modified MoO3 nanowires. Advanced Powder Technology, 2022, 33, 103432.	2.0	19
3	Synthesis and low temperature methane sensing performance of Pd modified In2O3 microspheres. Materials Chemistry and Physics, 2022, 279, 125749.	2.0	8
4	Improved TEA Sensitivity and Selectivity of In2O3 Porous Nanospheres by Modification with Ag Nanoparticles. Nanomaterials, 2022, 12, 1532.	1.9	7
5	Enhanced methane sensing performance of NiO decorated In2O3 nanospheres composites at low temperature. Journal of Alloys and Compounds, 2021, 854, 157169.	2.8	26
6	WO ₃ Nanoflakes Coupled with Hexagonal Boron Nitride Nanosheets for Triethylamine Sensing. ACS Applied Nano Materials, 2021, 4, 6316-6327.	2.4	18
7	A gas sensor based on Ag-modified ZnO flower-like microspheres: Temperature-modulated dual selectivity to CO and CH4. Surfaces and Interfaces, 2021, 24, 101110.	1.5	37
8	Facile synthesis hierarchical porous structure anatase–rutile TiO2/g-C3N4 composite for efficient photodegradation tetracycline hydrochloride. Applied Surface Science, 2021, 567, 150833.	3.1	18
9	Graphene-like h-BN supported polyhedral NiS2/NiS nanocrystals with excellent photocatalytic performance for removing rhodamine B and Cr(VI). Frontiers of Chemical Science and Engineering, 2021, 15, 1537-1549.	2.3	7
10	A luminescent terbium coordination complex as multifunctional sensing platform. Talanta, 2020, 208, 120363.	2.9	9
11	In Situ Synthesis of Z-Scheme AgI/Ag3PO4/SPS Photocatalyst with Enhanced Photocatalytic Activity. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 658-666.	1.9	7
12	Rapid detection of low concentration CO using Pt-loaded ZnO nanosheets. Journal of Hazardous Materials, 2020, 381, 120944.	6.5	98
13	Preparation of magnetic \hat{l} ±-Fe2O3/ZnFe2O4@Ti3C2 MXene with excellent photocatalytic performance. Ceramics International, 2020, 46, 81-88.	2.3	88
14	Porous In2O3 nanospheres with high methane sensitivity: A combined experimental and first-principle study. Sensors and Actuators A: Physical, 2020, 305, 111944.	2.0	20
15	Palladium modified ZnFe2O4/g-C3N4 nanocomposite as an efficiently magnetic recycling photocatalyst. Journal of Solid State Chemistry, 2020, 288, 121389.	1.4	40
16	TiO2/ZnCo2O4 porous nanorods: Synthesis and temperature-dependent dual selectivity for sensing HCHO and TEA. Sensors and Actuators B: Chemical, 2020, 321, 128461.	4.0	59
17	Facile and Efficient Fabrication of Bandgap Tunable Carbon Quantum Dots Derived From Anthracite and Their Photoluminescence Properties. Frontiers in Chemistry, 2020, 8, 123.	1.8	34
18	CuO-ZnO hetero-junctions decorated graphitic carbon nitride hybrid nanocomposite: Hydrothermal synthesis and ethanol gas sensing application. Journal of Alloys and Compounds, 2019, 770, 972-980.	2.8	68

#	Article	lF	CITATIONS
19	Host–Guest Recognition on 2D Graphitic Carbon Nitride for Nanosensing. Advanced Materials Interfaces, 2019, 6, 1901429.	1.9	30
20	A lanthanide-based magnetic nanosensor as an erasable and visible platform for multi-color point-of-care detection of multiple targets and the potential application by smartphone. Journal of Materials Chemistry B, 2019, 7, 734-743.	2.9	18
21	Graphitic Carbon Nitride Nanosheets Decorated Flower-like NiO Composites for High-Performance Triethylamine Detection. ACS Omega, 2019, 4, 9645-9653.	1.6	40
22	Enhanced methane sensing properties of porous NiO nanaosheets by decorating with SnO2. Sensors and Actuators B: Chemical, 2019, 288, 373-382.	4.0	55
23	Improving methane gas sensing performance of flower-like SnO2 decorated by WO3 nanoplates. Talanta, 2019, 199, 603-611.	2.9	59
24	Enhanced Methane Sensing Properties of WO3 Nanosheets with Dominant Exposed (200) Facet via Loading of SnO2 Nanoparticles. Nanomaterials, 2019, 9, 351.	1.9	27
25	One-step synthesis of Ag/SnO2/rGO nanocomposites and their trimethylamine sensing properties. Materials Research Bulletin, 2019, 114, 61-67.	2.7	19
26	In Situ Ion Exchange Synthesis of Cauliflower-like AgBr/Ag3PO4/Sulfonated Polystyrene Sphere Heterojunction Photocatalyst With Enhanced Photocatalytic Activity. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 1154-1159.	1.9	5
27	Synthesis of porous nanosheets-assembled ZnO/ZnCo2O4 hierarchical structure for TEA detection. Sensors and Actuators B: Chemical, 2019, 287, 199-208.	4.0	134
28	Graphitic Carbon Nitride: Host–Guest Recognition on 2D Graphitic Carbon Nitride for Nanosensing (Adv. Mater. Interfaces 23/2019). Advanced Materials Interfaces, 2019, 6, 1970144.	1.9	5
29	Facile synthesis of Co3O4 nanochains and their improved TEA sensing performance by decorating with Au nanoparticles. Journal of Alloys and Compounds, 2019, 776, 782-790.	2.8	40
30	A Novel In Situ Synthesis of Cu/Cu2O/CuO/Sulfonated Polystyrene Heterojunction Photocatalyst with Enhanced Photodegradation Activity. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 340-345.	1.9	6
31	Highly stable hole-conductor-free perovskite solar cells based upon ammonium chloride and a carbon electrode. Journal of Colloid and Interface Science, 2019, 540, 315-321.	5.0	22
32	Synthesis of graphitic carbon nitride nanosheets decorated sphericalâ€like nickel oxide composites for carbon monoxide gasâ€sensing application. Micro and Nano Letters, 2019, 14, 1410-1413.	0.6	8
33	In situ decoration of Zn2SnO4 nanoparticles on reduced graphene oxide for high performance ethanol sensor. Ceramics International, 2018, 44, 6836-6842.	2.3	38
34	Electronic Structure and Magnetic Properties of V-Monodoped and (V, Al)-Codoped 4H-SiC. Journal of Superconductivity and Novel Magnetism, 2018, 31, 225-231.	0.8	7
35	Continuously improved gas-sensing performance of SnO2/Zn2SnO4 porous cubes by structure evolution and further NiO decoration. Sensors and Actuators B: Chemical, 2018, 255, 2936-2943.	4.0	44
36	A ratiometric nanosensor based on lanthanide-functionalized attapulgite nanoparticle for rapid and sensitive detection of bacterial spore biomarker. Dyes and Pigments, 2018, 148, 44-51.	2.0	25

#	Article	IF	CITATIONS
37	A Novel In-Situ Synthesis and Enhanced Photocatalytic Performance of Z-Scheme Ag/Agl/AgBr/Sulfonated Polystyrene Heterostructure Photocatalyst. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 805-811.	1.9	6
38	Synthesis and characterization of monodisperse hollow SnO2 microspheres and their enhanced sensing properties to ethanol. Journal of Porous Materials, 2018, 25, 1099-1104.	1.3	2
39	Ag nanocrystals decorated g-C3N4/Nafion hybrid membranes: One-step synthesis and photocatalytic performance. Materials Letters, 2018, 213, 218-221.	1.3	18
40	Facile synthesis of ZnFe2O4/ \hat{l} ±-Fe2O3 porous microrods with enhanced TEA-sensing performance. Journal of Alloys and Compounds, 2018, 737, 255-262.	2.8	62
41	A novel visual ratiometric fluorescent sensing platform for highly-sensitive visual detection of tetracyclines by a lanthanide-functionalized palygorskite nanomaterial. Journal of Hazardous Materials, 2018, 342, 158-165.	6.5	119
42	Synthesis of gâ€C ₃ N ₄ â€Decorated Magnesium Ferrite Nanoparticle Composites for Improved Ethanol Sensing. ChemistrySelect, 2018, 3, 12269-12273.	0.7	11
43	Ultrasonic-Assisted Synthesis of 2D α-Fe2O3@g-C3N4 Composite with Excellent Visible Light Photocatalytic Activity. Catalysts, 2018, 8, 457.	1.6	26
44	Hydrothermal Synthesis of CeO2-SnO2 Nanoflowers for Improving Triethylamine Gas Sensing Property. Nanomaterials, 2018, 8, 1025.	1.9	39
45	Oxygen Reduction Activity and Stability of Composite Pdx/Co-Nanofilms/C Electrocatalysts in Acid and Alkaline Media. Frontiers in Chemistry, 2018, 6, 596.	1.8	11
46	Carbon dioxide adsorption of two-dimensional carbide MXenes. Journal of Advanced Ceramics, 2018, 7, 237-245.	8.9	119
47	SnO2/Graphene Nanoplatelet Nanocomposites: Solid-State Method Synthesis With High Ethanol Gas-Sensing Performance. Frontiers in Chemistry, 2018, 6, 337.	1.8	5
48	2D a-Fe2O3 doped Ti3C2 MXene composite with enhanced visible light photocatalytic activity for degradation of Rhodamine B. Ceramics International, 2018, 44, 19958-19962.	2.3	115
49	Carbon Nitride Decorated Ball-Flower like Co3O4 Hybrid Composite: Hydrothermal Synthesis and Ethanol Gas Sensing Application. Nanomaterials, 2018, 8, 132.	1.9	55
50	Facile Fabrication of Highly Active Magnetic Aminoclay Supported Palladium Nanoparticles for the Room Temperature Catalytic Reduction of Nitrophenol and Nitroanilines. Nanomaterials, 2018, 8, 409.	1.9	7
51	Highly Sensitive Acetone Gas Sensor Based on g-C3N4 Decorated MgFe2O4 Porous Microspheres Composites. Sensors, 2018, 18, 2211.	2.1	47
52	Generation and thermally adjustable catalysis of silver nanoparticle immobilized temperature-sensitive nanocomposite. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	8
53	Synthesis of g-C ₃ N ₄ nanosheet modified SnO ₂ composites with improved performance for ethanol gas sensing. RSC Advances, 2017, 7, 25504-25511.	1.7	62
54	Synthesis and characterization of PdRu alloy-coated palygorskite-based nanocomposites as a magnetically recyclable multifunctional catalyst for reduction of nitroarenes and azo dyes. Materials Letters, 2017, 197, 24-27.	1.3	9

#	Article	IF	Citations
55	Cocoon-like ZnO decorated graphitic carbon nitride nanocomposite: Hydrothermal synthesis and ethanol gas sensing application. Materials Letters, 2017, 198, 76-80.	1.3	68
56	Synthesis of g-C3N4 nanosheets decorated flower-like tin oxide composites and their improved ethanol gas sensing properties. Journal of Alloys and Compounds, 2017, 728, 1101-1109.	2.8	43
57	Synthesis, characterization, and gas-sensing properties of Ag/SnO2/rGO composite by a hydrothermal method. Journal of Materials Science: Materials in Electronics, 2017, 28, 17049-17057.	1.1	15
58	COBALT OXIDE DECORATED FLOWER-LIKE g-C ₃ N ₄ HYBRID NANOMATERIALS FOR CARBON MONOXIDE OXIDATION. Surface Review and Letters, 2017, 24, 1750058.	0.5	8
59	Solid-State Method Synthesis of SnO2-Decorated g-C3N4 Nanocomposites with Enhanced Gas-Sensing Property to Ethanol. Materials, 2017, 10, 604.	1.3	87
60	Calcination Method Synthesis of SnO2/g-C3N4 Composites for a High-Performance Ethanol Gas Sensing Application. Nanomaterials, 2017, 7, 98.	1.9	39
61	Synthesis and Enhanced Ethanol Gas Sensing Properties of the g-C3N4 Nanosheets-Decorated Tin Oxide Flower-Like Nanorods Composite. Nanomaterials, 2017, 7, 285.	1.9	23
62	Highly Dispersed PdNPs/α-Al2O3 Catalyst for the Selective Hydrogenation of Acetylene Prepared with Monodispersed Pd Nanoparticles. Catalysts, 2017, 7, 128.	1.6	13
63	One-Step Synthesis of Hierarchical Micro-Mesoporous SiO ₂ /Reduced Graphene Oxide Nanocomposites for Adsorption of Aqueous Cr(VI). Journal of Nanomaterials, 2017, 2017, 1-10.	1.5	22
64	Preparation of TiO ₂ /Activated Carbon Composites for Photocatalytic Degradation of RhB under UV Light Irradiation. Journal of Nanomaterials, 2016, 2016, 1-10.	1.5	100
65	CuO Nanorods-Decorated Reduced Graphene Oxide Nanocatalysts for Catalytic Oxidation of CO. Catalysts, 2016, 6, 214.	1.6	31
66	Synthesis and triethylamine sensing properties of mesoporous \hat{l}_{\pm} -Fe2O3 microrods. Materials Letters, 2016, 178, 213-216.	1.3	90
67	Synthesis and improved gas sensing properties of NiO-decorated SnO2 microflowers assembled with porous nanorods. Sensors and Actuators B: Chemical, 2016, 233, 180-192.	4.0	70
68	Interacting Carbon Nitride and Titanium Carbide Nanosheets for Highâ€Performance Oxygen Evolution. Angewandte Chemie, 2016, 128, 1150-1154.	1.6	96
69	Interacting Carbon Nitride and Titanium Carbide Nanosheets for Highâ€Performance Oxygen Evolution. Angewandte Chemie - International Edition, 2016, 55, 1138-1142.	7.2	597
70	Preparation and methane adsorption of two-dimensional carbide Ti2C. Adsorption, 2016, 22, 915-922.	1.4	85
71	An alumina-coated, egg-shell $Pd\hat{l}\pm$ -Al2O3@SiC catalyst with enhanced ethylene selectivity in the selective hydrogenation of acetylene. RSC Advances, 2016, 6, 57174-57182.	1.7	6
72	Preparation of lignite-based activated carbon with high specific capacitance for electrochemical capacitors. Functional Materials Letters, 2015, 08, 1550031.	0.7	9

#	Article	IF	CITATIONS
73	Hydrothermal synthesis of SnO 2 \hat{a} \in "Zn 2 SnO 4 \hat{a} \in "graphene composites with high activity for photodegradation of rhodamine B. Micro and Nano Letters, 2015, 10, 443-446.	0.6	3
74	Oil shale ash supported CuO nanocatalysts: Preparation, characterization and catalytic activity for CO oxidation. Journal of Environmental Chemical Engineering, 2015, 3, 1725-1730.	3.3	3
75	Hydrothermal synthesis and visible-light photocatalytic activities of SnS2 nanoflakes. Journal Wuhan University of Technology, Materials Science Edition, 2015, 30, 276-281.	0.4	2
76	Structurally and Elementally Promoted Nanomaterials for Photocatalysis. International Journal of Photoenergy, 2014, 2014, 1-2.	1.4	1
77	Synthesis and Characterization of Hierarchical Porous <mml:math id="M1" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="bold-italic">α</mml:mi></mml:mrow></mml:math> -FeOOH for the Adsorption and Photodegradation of Rhodamine B. International Journal of Photoenergy, 2014, 2014, 1-8.	1.4	7
78	Solvothermal synthesis and characterization of ultrathin SnO nanosheets. Materials Letters, 2014, 118, 69-71.	1.3	20
79	High open circuit voltages of solar cells based on quantum dot and dye hybrid-sensitization. Applied Physics Letters, 2014, 104, 013901.	1.5	4
80	Mesoporous Co–Fe–O nanocatalysts: Preparation, characterization and catalytic carbon monoxide oxidation. Journal of Environmental Chemical Engineering, 2014, 2, 477-483.	3.3	19
81	Mesoporous modified-red-mud supported Ni catalysts for ammonia decomposition to hydrogen. International Journal of Hydrogen Energy, 2014, 39, 5747-5755.	3.8	57
82	Homogeneous precipitation method preparation of modified red mud supported Ni mesoporous catalysts for ammonia decomposition. Catalysis Science and Technology, 2014, 4, 361-368.	2.1	58
83	Synthesis and enhanced gas sensing properties of flower-like SnO 2 hierarchical structures decorated with discrete ZnO nanoparticles. Journal of Alloys and Compounds, 2014, 617, 192-199.	2.8	32
84	Synthesis, characterization, and gas-sensing properties of monodispersed SnO2 nanocubes. Applied Physics Letters, 2014, 105, .	1.5	11
85	Polystyrene microspheresâ€ŧemplated preparation of hierarchical porous modified red mud with high rhodamine B dye adsorption performance. Micro and Nano Letters, 2014, 9, 229-231.	0.6	8
86	Porous \hat{l}_{\pm} -Fe2O3 hollow microspheres: Hydrothermal synthesis and their application in ethanol sensors. Materials Letters, 2013, 100, 102-105.	1.3	34
87	CTAB-assisted synthesis of mesoporous CoFe2O4 with high carbon monoxide oxidation activity. Materials Letters, 2013, 106, 322-325.	1.3	20
88	Hydrothermal synthesis of honeycomb-like SnO hierarchical microstructures assembled with nanosheets. Materials Letters, 2013, 98, 234-237.	1.3	15
89	Thickness-dependent electron transport performance of mesoporous TiO2 thin film for dye-sensitized solar cells. Electrochimica Acta, 2013, 114, 318-324.	2.6	36
90	Ethanol Sensor Based on Hydrothermal Method Prepared Porous α-Fe ₂ O ₃ Nanorods. Advanced Materials Research, 2012, 476-478, 1075-1078.	0.3	3

#	Article	IF	Citations
91	Impregnation method prepared Cu-Co-Ce-O catalysts and their activities for low-temperature carbon monoxide oxidation. , 2012 , , .		0
92	Synthesis of Co3O4 nanoparticles via the CTAB-assisted method. Materials Letters, 2011, 65, 222-224.	1.3	28
93	Synthesis of porous hematite nanorods loaded with CuO nanocrystals as catalysts for CO oxidation. Journal of Natural Gas Chemistry, 2011, 20, 669-676.	1.8	29
94	Mesoporous CuO/ZrO2 nanocatalysts: synthesis, characterization and low-temperature CO oxidation activities. Journal of Porous Materials, 2011, 18, 667-672.	1.3	5
95	CuO/Ce x Sn1â^x O2 catalysts: synthesis, characterization, and catalytic performance for low-temperature CO oxidation. Transition Metal Chemistry, 2011, 36, 107-112.	0.7	9
96	Temperature Induced Morphology Transformation of ZnO under Hydrothermal Condition. Materials Science Forum, 2011, 694, 559-564.	0.3	0
97	Hydrangeaâ€Like Mesoâ€/Macroporous ZnOâ€CeO ₂ Binary Oxide Materials: Synthesis, Photocatalysis and CO Oxidation. European Journal of Inorganic Chemistry, 2010, 2010, 716-724.	1.0	71
98	Mesoporous CuO-Fe2O3 composite catalysts for complete n-hexane oxidation. Studies in Surface Science and Catalysis, 2010, , 547-550.	1.5	4
99	Mesoporous Ce0.8Zr0.2O2 solid solutions-supported CuO nanocatalysts for CO oxidation: a comparative study of preparation methods. Journal of Materials Science, 2009, 44, 6663-6669.	1.7	28
100	Hierarchical meso–macroporous titania-supported CuO nanocatalysts: preparation, characterization and catalytic CO oxidation. Journal of Materials Science, 2009, 44, 6717-6726.	1.7	54
101	Porous ceria hollow microspheres: Synthesis and characterization. Microporous and Mesoporous Materials, 2009, 123, 349-353.	2.2	56
102	Hierarchically Structured Squama-like Cerium-Doped Titania: Synthesis, Photoactivity, and Catalytic CO Oxidation. Journal of Physical Chemistry C, 2009, 113, 16658-16667.	1.5	59
103	Synthesis of transition metal oxide nanoparticles with ultrahigh oxygen adsorption capacity and efficient catalytic oxidation performance. Journal of Materials Chemistry, 2009, 19, 6097.	6.7	39
104	Comparative Study on Catalytic Performances for Low-temperature CO Oxidation of Cu–Ce–O and Cu–Co–Ce–O Catalysts. Catalysis Letters, 2008, 124, 405-412.	1.4	25
105	Low-temperature H2S sensors based on Ag-doped \hat{l}_{\pm} -Fe2O3 nanoparticles. Sensors and Actuators B: Chemical, 2008, 131, 183-189.	4.0	182
106	Preparation, characterization and catalytic behavior of nanostructured mesoporous CuO/Ce0.8Zr0.2O2 catalysts for low-temperature CO oxidation. Applied Catalysis B: Environmental, 2008, 78, 120-128.	10.8	177
107	Mesoporous CuO–Fe2O3 composite catalysts for low-temperature carbon monoxide oxidation. Applied Catalysis B: Environmental, 2008, 79, 26-34.	10.8	200
108	Facile Synthesis of Porous α-Fe ₂ O ₃ Nanorods and Their Application in Ethanol Sensors. Journal of Physical Chemistry C, 2008, 112, 17804-17808.	1.5	151

#	Article	IF	CITATIONS
109	CuO catalysts supported on attapulgite clay for low-temperature CO oxidation. Catalysis Communications, 2008, 9, 2555-2559.	1.6	159
110	Ordered Macroporous Titanium Phosphonate Materials:  Synthesis, Photocatalytic Activity, and Heavy Metal Ion Adsorption. Journal of Physical Chemistry C, 2008, 112, 3090-3096.	1.5	96
111	Hydrothermal Synthesis of Porous α-Fe ₂ O ₃ Nanorods. Materials Science Forum, 0, 694, 195-199.	0.3	2
112	Ultrasound-Assisted Solution Synthesis and Characterization of Sea Urchin-Like ZnO Hierarchical Microstructures. Advanced Materials Research, 0, 602-604, 209-213.	0.3	0
113	Hydrothermal Synthesis and Photocatalytic Property of Flower-Like ZnO Hierarchical Microstructures. Advanced Materials Research, 0, 518-523, 740-745.	0.3	1