Patrick H Brown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/889016/publications.pdf

Version: 2024-02-01

165 papers 12,850 citations

29994 54 h-index 28224 105 g-index

170 all docs

170 docs citations

170 times ranked

11288 citing authors

#	Article	IF	Citations
1	Nutrient dynamics from surfaceâ€applied organic matter amendments on noâ€till orchard soil. Soil Use and Management, 2022, 38, 649-662.	2.6	8
2	What is a plant nutrient? Changing definitions to advance science and innovation in plant nutrition. Plant and Soil, 2022, 476, $11-23$.	1.8	38
3	Foliar Application of an Inositol-Based Plant Biostimulant Boosts Zinc Accumulation in Wheat Grains: A μ-X-Ray Fluorescence Case Study. Frontiers in Plant Science, 2022, 13, 837695.	1.7	4
4	Grounds for Collaboration: A Model for Improving Coffee Sustainability Initiatives. Sustainability, 2022, 14, 6677.	1.6	1
5	A farm systems approach to the adoption of sustainable nitrogen management practices in California. Agriculture and Human Values, 2021, 38, 783-801.	1.7	10
6	Spatial imaging reveals the pathways of Zn transport and accumulation during reproductive growth stage in almond plants. Plant, Cell and Environment, 2021, 44, 1858-1868.	2.8	6
7	A Review of Potassium-Rich Crop Residues Used as Organic Matter Amendments in Tree Crop Agroecosystems. Agriculture (Switzerland), 2021, 11, 580.	1.4	27
8	Organic matter amendments improve soil fertility in almond orchards of contrasting soil texture. Nutrient Cycling in Agroecosystems, 2021, 120, 343-361.	1,1	18
9	Boron: an essential element for vascular plants. New Phytologist, 2020, 226, 1232-1237.	3.5	62
10	Impacts of repeated glyphosate use on growth of orchard crops. Weed Technology, 2020, 34, 888-896.	0.4	2
11	Penetration of foliar-applied Zn and its impact on apple plant nutrition status: in vivo evaluation by synchrotron-based X-ray fluorescence microscopy. Horticulture Research, 2020, 7, 147.	2.9	19
12	Seasonal Zinc Storage and a Strategy for Its Use in Buds of Fruit Trees. Plant Physiology, 2020, 183, 1200-1212.	2.3	12
13	Intensive fertilizer use increases orchard N cycling and lowers net global warming potential. Science of the Total Environment, 2020, 722, 137889.	3.9	24
14	Nutrient Storage in the Perennial Organs of Deciduous Trees and Remobilization in Spring – A Study in Almond (Prunus dulcis) (Mill.) D. A. Webb. Frontiers in Plant Science, 2020, 11, 658.	1.7	13
15	Advancing Agricultural Production With Machine Learning Analytics: Yield Determinants for California's Almond Orchards. Frontiers in Plant Science, 2020, 11, 290.	1.7	21
16	Complete Genomic Sequences of Three Salmonella enterica subsp. <i>enterica</i> Serovar Muenchen Strains from an Orchard in San Joaquin County, California. Microbiology Resource Announcements, 2020, 9, .	0.3	0
17	An enhanced bloom index for quantifying floral phenology using multi-scale remote sensing observations. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 156, 108-120.	4.9	66
18	California Almond Yield Prediction at the Orchard Level With a Machine Learning Approach. Frontiers in Plant Science, 2019, 10, 809.	1.7	50

#	Article	IF	CITATIONS
19	Efficient phloem remobilization of Zn protects apple trees during the early stages of Zn deficiency. Plant, Cell and Environment, 2019, 42, 3167-3181.	2.8	18
20	Impact of organic matter amendments on soil and tree water status in a California orchard. Agricultural Water Management, 2019, 222, 204-212.	2.4	23
21	Automatic mapping of planting year for tree crops with Landsat satellite time series stacks. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 151, 176-188.	4.9	28
22	Bacterial population dynamics after foliar fertilization of almond leaves. Journal of Applied Microbiology, 2019, 126, 945-953.	1.4	5
23	Understanding nitrogen cycling in an irrigated deciduous permanent crop. Acta Horticulturae, 2019, , 207-212.	0.1	4
24	Spatial patterns of tree yield explained by endogenous forces through a correspondence between the Ising model and ecology. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1825-1830.	3.3	36
25	Foliar zinc applications in Prunus: From lab experience to orchard management. Scientia Horticulturae, 2018, 233, 233-237.	1.7	11
26	Fruit load in almond spurs define starch and total soluble carbohydrate concentration and therefore their survival and bloom probabilities in the next season. Scientia Horticulturae, 2018, 237, 269-276.	1.7	16
27	Optimization of nitrogen and potassium nutrition to improve yield and yield parameters of irrigated almond (Prunus dulcis (Mill.) D. A. webb). Scientia Horticulturae, 2018, 228, 204-212.	1.7	29
28	Uptake, sequestration and tolerance of cadmium at cellular levels in the hyperaccumulator plant species Sedum alfredii. Journal of Experimental Botany, 2017, 68, 2387-2398.	2.4	70
29	Increases in leaf nitrogen concentration and leaf area did not enhance spur survival and return bloom in almonds (Prunus dulcis [Mill.] DA Webb). Acta Physiologiae Plantarum, 2017, 39, 1.	1.0	8
30	Colour and in vitro quality attributes of walnuts from different growing conditions correlate with key precursors of primary and secondary metabolism. Food Chemistry, 2017, 232, 664-672.	4.2	78
31	Spur behavior in Almond trees (Prunus dulcis [Mill.] DAWebb): effects of flowers, fruit, and "June drop―on leaf area, leaf nitrogen, spur survival and return bloom. Scientia Horticulturae, 2017, 215, 15-19.	1.7	7
32	Grower Analysis of Organic Matter Amendments in California Orchards. Journal of Environmental Quality, 2017, 46, 649-658.	1.0	18
33	Estimating Nitrate Leaching to Groundwater from Orchards: Comparing Crop Nitrogen Excess, Deep Vadose Zone Dataâ€Driven Estimates, and HYDRUS Modeling. Vadose Zone Journal, 2016, 15, 1-13.	1.3	55
34	Calcium Deficiency Triggers Phloem Remobilization of Cadmium in a Hyperaccumulating Species. Plant Physiology, 2016, 172, 2300-2313.	2.3	47
35	Leaf litter C and N cycling from a deciduous permanent crop. Soil Science and Plant Nutrition, 2016, 62, 271-276.	0.8	11
36	Assessment of orchard N losses to groundwater with a vadose zone monitoring network. Agricultural Water Management, 2016, 172, 83-95.	2.4	32

#	Article	IF	CITATIONS
37	Nitrogen increases hull rot and interferes with the hull split phenology in almond (Prunus dulcis). Scientia Horticulturae, 2016, 199, 41-48.	1.7	14
38	Biostimulants in Plant Science: A Global Perspective. Frontiers in Plant Science, 2016, 7, 2049.	1.7	788
39	Biostimulants in agriculture. Frontiers in Plant Science, 2015, 6, 671.	1.7	214
40	Seasonal changes in nutrient content and concentrations in a mature deciduous tree species: Studies in almond (Prunus dulcis (Mill.) D. A. Webb). European Journal of Agronomy, 2015, 65, 52-68.	1.9	53
41	Light interception, leaf nitrogen and yield prediction in almonds: A case study. European Journal of Agronomy, 2015, 66, 1-7.	1.9	27
42	Foliar application of microbial and plant based biostimulants increases growth and potassium uptake in almond (Prunus dulcis [Mill.] D. A. Webb). Frontiers in Plant Science, 2015, 6, 87.	1.7	89
43	Short-term water stress affecting NO 3 â^ absorption by almond plants. Scientia Horticulturae, 2015, 197, 50-56.	1.7	10
44	Nut crop yield records show that budbreak-based chilling requirements may not reflect yield decline chill thresholds. International Journal of Biometeorology, 2015, 59, 707-715.	1.3	30
45	Spatial imaging of Zn and other elements in Huanglongbing-affected grapefruit by synchrotron-based micro X-ray fluorescence investigation. Journal of Experimental Botany, 2014, 65, 953-964.	2.4	42
46	Fruit presence negatively affects photosynthesis by reducing leaf nitrogen in almond. Functional Plant Biology, 2014, 41, 884.	1.1	28
47	A biologically based approach to modeling spring phenology in temperate deciduous trees. Agricultural and Forest Meteorology, 2014, 198-199, 15-23.	1.9	81
48	Speciation and localization of Zn in the hyperaccumulator Sedum alfredii by extended X-ray absorption fine structure and micro-X-ray fluorescence. Plant Physiology and Biochemistry, 2014, 84, 224-232.	2.8	30
49	Prediction of leaf nitrogen from early season samples and development of field sampling protocols for nitrogen management in Almond (Prunus dulcis [Mill.] DA Webb). Plant and Soil, 2014, 380, 153-163.	1.8	16
50	Evaluated Crop Evapotranspiration over a Region of Irrigated Orchards with the Improved ACASA–WRF Model. Journal of Hydrometeorology, 2014, 15, 744-758.	0.7	22
51	The use of Bayesian inference to inform the surveillance of temperature-related occupational morbidity in Ontario, Canada, 2004–2010. Environmental Research, 2014, 132, 449-456.	3.7	7
52	YIELD POTENTIAL ANALYSIS TO MODEL DORMANCY REQUIREMENTS IN PISTACHIO. Acta Horticulturae, 2014, , 103-106.	0.1	1
53	Supplemental macronutrients and microbial fermentation products improve the uptake and transport of foliar applied zinc in sunflower (Helianthus annuus L.) plants. Studies utilizing micro X-ray florescence. Frontiers in Plant Science, 2014, 5, 808.	1.7	30
54	Detecting nonlinear response of spring phenology to climate change by <scp>B</scp> ayesian analysis. Global Change Biology, 2013, 19, 1518-1525.	4.2	103

#	Article	IF	CITATIONS
55	Efficient xylem transport and phloem remobilization of <scp>Z</scp> n in the hyperaccumulator plant species <i><scp>S</scp>edum alfredii</i> . New Phytologist, 2013, 198, 721-731.	3.5	106
56	From plant surface to plant metabolism: the uncertain fate of foliar-applied nutrients. Frontiers in Plant Science, 2013, 4, 289.	1.7	287
57	TESTING THE EFFECTIVENESS OF ZINC FORMULATIONS USING PEACH SEEDLINGS. Acta Horticulturae, 2013, , 125-130.	0.1	2
58	EFFECT OF SPUR TYPE, FOLIAR SPRAYS, AND DIFFERENTIAL NITROGEN RATES ON LEAF NUTRIENT CONTENT AND SPUR LEAF AREA OF ALMOND TREES (PRUNUS DULCIS (MILL.) D.A.WEBB). Acta Horticulturae, 2013, , 139-142.	0.1	1
59	DEVELOPMENT OF LEAF SAMPLING AND INTERPRETATION METHODS AND NUTRIENT BUDGET APPROACH TO NUTRIENT MANAGEMENT IN ALMOND (PRUNUS DULCIS (MILL.) D.A.WEBB). Acta Horticulturae, 2013, , 291-296.	0.1	8
60	A possible mechanism for phloem transport of boron in †Hass†avocado (<i>Persea americana</i> Mill.) trees. Journal of Horticultural Science and Biotechnology, 2012, 87, 23-28.	0.9	15
61	Beneficial Elements. , 2012, , 249-269.		70
62	Function of Nutrients. , 2012, , 191-248.		383
63	Envisioning the transition to a nextâ€generation biofuels industry in the US Midwest. Biofuels, Bioproducts and Biorefining, 2012, 6, 376-386.	1.9	26
64	Yield-scaled global warming potential from N2O emissions and CH4 oxidation for almond (Prunus) Tj ETQq $0\ 0\ 0$ 2012, 155, 7-15.	rgBT /Ove 2.5	rlock 10 Tf 50 63
65	Prediction of leaf area index in almonds by vegetation indexes. Computers and Electronics in Agriculture, 2012, 85, 24-32.	3.7	60
66	Root adaptations to cadmium-induced oxidative stress contribute to Cd tolerance in the hyperaccumulator Sedum alfredii. Biologia Plantarum, 2012, 56, 344-350.	1.9	49
67	Climate Change Affects Winter Chill for Temperate Fruit and Nut Trees. PLoS ONE, 2011, 6, e20155.	1.1	267
68	Climate change effects on walnut pests in California. Global Change Biology, 2011, 17, 228-238.	4.2	49
69	Testing Moran's theorem in an agroecosystem. Oikos, 2011, 120, 1434-1440.	1.2	23
70	The impact of EDTA on lead distribution and speciation in the accumulator Sedum alfredii by synchrotron X-ray investigation. Environmental Pollution, 2011, 159, 782-788.	3.7	34
71	Calcium protects roots of Sedum alfredii H. against cadmium-induced oxidative stress. Chemosphere, 2011, 84, 63-69.	4.2	101
72	A global analysis of the comparability of winter chill models for fruit and nut trees. International Journal of Biometeorology, 2011, 55, 411-421.	1.3	225

#	Article	IF	CITATIONS
73	N ₂ O Emissions and Water Management in California Perennial Crops. ACS Symposium Series, 2011, , 227-255.	0.5	14
74	Cellular Sequestration of Cadmium in the Hyperaccumulator Plant Species <i>Sedum alfredii</i> \hat{A} \hat{A} \hat{A} . Plant Physiology, 2011, 157, 1914-1925.	2.3	172
75	Foliar Application of Zinc and Boron Improves Walnut Vegetative and Reproductive Growth. HortTechnology, 2011, 21, 181-186.	0.5	31
76	Using focus groups to assess almond growers' plant nutrition information needs. Renewable Agriculture and Food Systems, 2010, 25, 309-315.	0.8	1
77	Spatial Imaging and Speciation of Lead in the Accumulator Plant <i>Sedum alfredii</i> by Microscopically Focused Synchrotron X-ray Investigation. Environmental Science & Envi	4.6	89
78	A reevaluation of alternate bearing in pistachio. Scientia Horticulturae, 2010, 124, 149-152.	1.7	42
79	Plant nutrition for sustainable development and global health. Annals of Botany, 2010, 105, 1073-1080.	1.4	814
80	Survey examines the adoption of perceived best management practices for almond nutrition. California Agriculture, 2010, 64, 149-154.	0.5	24
81	The role of large environmental noise in masting: General model and example from pistachio trees. Journal of Theoretical Biology, 2009, 259, 701-713.	0.8	43
82	Stem and leaf sequestration of zinc at the cellular level in the hyperaccumulator <i>Sedum alfredii</i> . New Phytologist, 2009, 182, 116-126.	3.5	73
83	Distribution and ratios of 137Cs and K in control and K-treated coconut trees at Bikini Island where nuclear test fallout occurred: effects and implications. Journal of Environmental Radioactivity, 2009, 100, 76-83.	0.9	23
84	Evaluating foliar nitrogen compounds as indicators of nitrogen status in Prunus persica trees. Scientia Horticulturae, 2009, 120, 27-33.	1.7	36
85	Genetic Properties of the Maize Nested Association Mapping Population. Science, 2009, 325, 737-740.	6.0	959
86	Micronutrient Use in Agriculture in the United States of America., 2008, , 267-286.		10
87	Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii. Journal of Experimental Botany, 2008, 59, 3203-3213.	2.4	188
88	Site-Specific Water and Nutrient Application by Wireless Valve Controller Network., 2007,,.		0
89	Boron translocation in coffee trees. Plant and Soil, 2007, 290, 221-229.	1.8	15
90	Design of a System for Individual Microsprinkler Control. Transactions of the ASABE, 2006, 49, 1963-1970.	1.1	14

#	Article	IF	CITATIONS
91	Control of individual microsprinklers and fault detection strategies. Precision Agriculture, 2006, 7, 85-99.	3.1	20
92	Boron deficiency affects cell viability, phenolic leakage and oxidative burst in rose cell cultures. Plant and Soil, 2005, 268, 293-301.	1.8	60
93	Boron response in wheat is genotype-dependent and related to boron uptake, translocation, allocation, plant phenological development and growth rate. Functional Plant Biology, 2005, 32, 507.	1.1	26
94	Sensitivity of yield determinants to potassium deficiency in â€~Nonpareil' almond (<i>Prunus) Tj ETQq0 0 0</i>	rgBT /Ovei	·lock 10 Tf 50
95	Use of Phenylboronic Acids to Investigate Boron Function in Plants. Possible Role of Boron in Transvacuolar Cytoplasmic Strands and Cell-to-Wall Adhesion. Plant Physiology, 2004, 136, 3383-3395.	2.3	106
96	Transgenically enhanced sorbitol synthesis facilitates phloem-boron mobility in rice. Physiologia Plantarum, 2003, 117, 79-84.	2.6	35
97	The interaction between salinity and boron toxicity affects the subcellular distribution of ions and proteins in wheat leaves. Plant, Cell and Environment, 2003, 26, 1267-1274.	2.8	99
98	APPLICATION OF SELECTED MACRONUTRIENTS (N, K) IN DECIDUOUS ORCHARDS: PHYSIOLOGICAL AND AGROTECHNICAL PERSPECTIVES. Acta Horticulturae, 2002, , 59-64.	0.1	11
99	Boron in Plant Biology. Plant Biology, 2002, 4, 205-223.	1.8	629
100	Uptake and Transport of Boron. , 2002, , 87-101.		4
101	NECESSITY FOR WHOLE TREE EXCAVATIONS IN DETERMINING PATTERNS AND MAGNITUDE OF MACRONUTRIENT UPTAKE BY MATURE DECIDUOUS FRUIT TREES. Acta Horticulturae, 2001, , 41-49.	0.1	12
102	TRANSIENT NUTRIENT DEFICIENCIES AND THEIR IMPACT ON YIELD - A RATIONALE FOR FOLIAR FERTILIZERS?. Acta Horticulturae, 2001, , 217-223.	0.1	4
103	Kinetic analysis of boron transport in Chara. Planta, 2001, 213, 142-146.	1.6	98
104	Evidence for channel mediated transport of boric acid in squash (Cucurbita pepo). Plant and Soil, 2001, 235, 95-103.	1.8	80
105	Permeability and the Mechanism of Transport of Boric Acid Across the Plasma Membrane of Xenopus laevis Oocytes. Biological Trace Element Research, 2001, 81, 127-139.	1.9	29
106	The efficiency of boron utilisation in canola. Functional Plant Biology, 2001, 28, 1109.	1.1	27
107	Potassium Fertilization Affects Soil K, Leaf K Concentration, and Nut Yield and Quality of Mature Pistachio Trees. Hortscience: A Publication of the American Society for Hortcultural Science, 2001, 36, 85-89.	0.5	29
108	Foliar Boron Application Improves Flower Fertility and Fruit Set of Olive. Hortscience: A Publication of the American Society for Hortcultural Science, 2001, 36, 714-716.	0.5	87

#	Article	IF	Citations
109	Boron Transport and Soluble Carbohydrate Concentrations in Olive. Journal of the American Society for Horticultural Science, 2001, 126, 291-296.	0.5	36
110	Relationship between tree nitrogen status, xylem and phloem sap amino acid concentrations, and apparent soil nitrogen uptake by almond trees <i>(Prunus dulcis)</i>). Journal of Horticultural Science and Biotechnology, 2000, 75, 62-68.	0.9	26
111	Soil potassium mobility and uptake by corn under differential soil moisture regimes. Plant and Soil, 2000, 221, 121-134.	1.8	70
112	Title is missing!. Plant and Soil, 2000, 227, 273-281.	1.8	15
113	Permeability of Boric Acid Across Lipid Bilayers and Factors Affecting It. Journal of Membrane Biology, 2000, 175, 95-105.	1.0	150
114	Foliar Application of Boron to Almond Trees Affects Pollen Quality. Journal of the American Society for Horticultural Science, 2000, 125, 265-270.	0.5	55
115	Permeability and Channel-Mediated Transport of Boric Acid across Membrane Vesicles Isolated from Squash Roots. Plant Physiology, 2000, 124, 1349-1362.	2.3	269
116	Al Binding in the Epidermis Cell Wall Inhibits Cell Elongation of Okra Hypocotyl. Plant and Cell Physiology, 1999, 40, 549-556.	1.5	44
117	Transgenically Enhanced Sorbitol Synthesis Facilitates Phloem Boron Transport and Increases Tolerance of Tobacco to Boron Deficiency1. Plant Physiology, 1999, 119, 17-20.	2.3	122
118	Manipulation of in Vivo Sorbitol Production Alters Boron Uptake and Transport in Tobacco 1. Plant Physiology, 1999, 119, 735-742.	2.3	76
119	Rate and Time of Boron Application Increase Almond Productivity and Tissue Boron Concentration. Hortscience: A Publication of the American Society for Hortcultural Science, 1999, 34, 242-245.	0.5	45
120	The Mechanism of Foliar Zinc Absorption in Pistachio and Walnut. Journal of the American Society for Horticultural Science, 1999, 124, 312-317.	0.5	28
121	Occurrence of Sugar Alcohols Determines Boron Toxicity Symptoms of Ornamental Species. Journal of the American Society for Horticultural Science, 1999, 124, 347-352.	0.5	27
122	Distribution and Transport of Foliar Applied Zinc in Pistachio. Journal of the American Society for Horticultural Science, 1999, 124, 433-436.	0.5	43
123	Title is missing!. Plant and Soil, 1998, 198, 153-158.	1.8	82
124	Isotope ratio determination in boron analysis. Biological Trace Element Research, 1998, 66, 39-53.	1.9	28
125	Alternate Bearing Affects Nitrogen, Phosphorus, Potassium and Starch Storage Pools in Mature Pistachio Trees. Annals of Botany, 1998, 82, 463-470.	1.4	78
126	Phloem Boron Mobility in Diverse Plant Species. Botanica Acta, 1998, 111, 331-335.	1.6	65

#	Article	IF	Citations
127	THE EFFECTS OF ALTERNATE BEARING, SOIL MOISTURE AND GYPSUM ON POTASSIUM NUTRITION OF PISTACHIO (PISTACIA VERA L.). Acta Horticulturae, 1998, , 412-420.	0.1	4
128	PATTERNS OF NITROGEN UPTAKE AND STORAGE IN MATURE, ALTERNATE BEARING PISTACHIO TREES. Acta Horticulturae, 1998, , 387-393.	0.1	0
129	Isolation and Characterization of Soluble Boron Complexes in Higher Plants (The Mechanism of) Tj ETQq1 1 0.784	1314 rgBT 2.3	/Overlock 1
130	Direct Analysis of Sugar Alcohol Borate Complexes in Plant Extracts by Matrix-Assisted Laser Desorption/Ionization Fourier Transform Mass Spectrometry. Analytical Chemistry, 1997, 69, 2471-2477.	3.2	53
131	Boron mobility in plants. Plant and Soil, 1997, 193, 85-101.	1.8	386
132	Does boron play only a structural role in the growing tissues of higher plants? Plant and Soil, 1997, 196, 211-215.	1.8	55
133	Techniques for boron determination and their application to the analysis of plant and soil samples. Plant and Soil, 1997, 193, 15-33.	1.8	62
134	Absorption of boron by plant roots. Plant and Soil, 1997, 193, 49-58.	1.8	186
135	Boron determination in biological materials by inductively coupled plasma atomic emission and mass spectrometry: effects of sample dissolution methods. Fresenius' Journal of Analytical Chemistry, 1997, 357, 1185-1191.	1.5	67
136	Boron Determinationâ€"A Review of Analytical Methods. Microchemical Journal, 1997, 56, 285-304.	2.3	180
137	The mechanism of phloem mobility of boron. , 1997, , 153-156.		4
138	Does boron play only a structural role in the growing tissues of higher plants?., 1997,, 63-67.		18
139	Absorption of boron by plant roots. , 1997, , 49-58.		16
140	Boron mobility in plants., 1997,, 85-101.		14
141	Macronutrient Allocation to Leaves and Fruit of Mature, Alternate-bearing Pistachio Trees: Magnitude and Seasonal Patterns at the Whole-canopy Level. Journal of the American Society for Horticultural Science, 1997, 122, 267-274.	0.5	53
142	Fall Foliar-applied Boron Increases Tissue Boron Concentration and Nut Set of Almond. Journal of the American Society for Horticultural Science, 1997, 122, 405-410.	0.5	70
143	Techniques for boron determination and their application to the analysis of plant and soil samples. , $1997, , 15-33.$		0
144	Phloem Mobility of Boron is Species Dependent: Evidence for Phloem Mobility in Sorbitol-rich Species. Annals of Botany, 1996, 77, 497-506.	1.4	235

#	Article	IF	Citations
145	Species variability in boron requirement is correlated with cell wall pectin. Journal of Experimental Botany, 1996, 47, 227-232.	2.4	194
146	Assessment of nitrogen, phosphorus, and potassium uptake capacity and root growth in mature alternate-bearing pistachio (Pistacia vera) trees. Tree Physiology, 1996, 16, 949-956.	1.4	65
147	Alternate bearing influences annual nutrient consumption and the total nutrient content of mature pistachio trees. Trees - Structure and Function, 1995, 9, 158-164.	0.9	55
148	Localization of Boron in Cell Walls of Squash and Tobacco and Its Association with Pectin (Evidence) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf 326
149	Boron uptake by sunflower, squash and cultured tobacco cells. Physiologia Plantarum, 1994, 91, 435-441.	2.6	90
150	Influence of rootstock on nutrient acquisition by pistachio. Journal of Plant Nutrition, 1994, 17, 1137-1148.	0.9	29
151	Fertilizer Nitrogen and Boron Uptake, Storage, and Allocation Vary during the Alternate-bearing Cycle in Pistachio Trees. Journal of the American Society for Horticultural Science, 1994, 119, 24-31.	0.5	48
152	Investigations of boron uptake at the cellular level. Plant and Soil, 1993, 155-156, 143-146.	1.8	0
153	Boron uptake in sunflower, squash and cultured tobacco cells: Studies with stable isotope and ICP-MS. Plant and Soil, 1993, 155-156, 147-150.	1.8	3
154	Inhibition of Lipid Synthesis by Diclofop-Methyl Is Age Dependent in Roots of Oat and Corn. Pesticide Biochemistry and Physiology, 1993, 45, 210-219.	1.6	6
155	Form and Function of Zinc Plants. , 1993, , 93-106.		130
156	Use of ICPâ€MS and 10B to trace the movement of boron in plants and soil. Communications in Soil Science and Plant Analysis, 1992, 23, 2781-2807.	0.6	25
157	Effects of Diclofop and Diclofop-Methyl on Membrane Potentials in Roots of Intact Oat, Maize, and Pea Seedlings. Plant Physiology, 1991, 95, 1063-1069.	2.3	18
158	Effect of nickel deficiency on soluble anion, amino acid, and nitrogen levels in barley. Plant and Soil, 1990, 125, 19-27.	1.8	92
159	Chapter 92 Rare earth elements in biological systems. Fundamental Theories of Physics, 1990, , 423-452.	0.1	7 3
160	Nitrogen Partitioning During Early Development of Supernodulating Soybean (Glycine max[L.] Merrill) Mutants and their Wild-Type Parent. Journal of Experimental Botany, 1990, 41, 1239-1244.	2.4	13
161	Influence of Redox Potential and Plant Species on the Uptake of Nickel and Cadmium from Soils. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1989, 152, 85-91.	0.4	43
162	Micronutrients. Journal of Plant Nutrition, 1987, 10, 2125-2135.	0.9	86

#	Article	IF	CITATIONS
163	Nickel: A Micronutrient Essential for Higher Plants. Plant Physiology, 1987, 85, 801-803.	2.3	421
164	The effects of managanese and nitrate supply on the levels of phenolics and lignin in young wheat plants. Plant and Soil, 1984, 81, 437-440.	1.8	79
165	Linking Agronomic and Knowledge Barriers to Adoption of Conservation Practices for Nitrogen Management. Frontiers in Agronomy, 0, 4, .	1.5	3