
## **Catherine Duport**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8889976/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Expanding the Known Repertoire of Virulence Factors Produced by Bacillus cereus through Early<br>Secretome Profiling in Three Redox Conditions. Molecular and Cellular Proteomics, 2010, 9, 1486-1498.               | 3.8 | 105       |
| 2  | Control of Enterotoxin Gene Expression in Bacillus cereus F4430/73 Involves the Redox-Sensitive<br>ResDE Signal Transduction System. Journal of Bacteriology, 2006, 188, 6640-6651.                                  | 2.2 | 81        |
| 3  | Exoproteomics: exploring the world around biological systems. Expert Review of Proteomics, 2012, 9, 561-575.                                                                                                         | 3.0 | 80        |
| 4  | Adaptation of Bacillus cereus, an ubiquitous worldwide-distributed foodborne pathogen, to a changing environment. Food Research International, 2010, 43, 1885-1894.                                                  | 6.2 | 76        |
| 5  | Characterization of aerobic and anaerobic vegetative growth of the food-borne pathogen Bacillus cereus F4430/73 strain. Canadian Journal of Microbiology, 2005, 51, 149-158.                                         | 1.7 | 68        |
| 6  | The Redox Regulator Fnr Is Required for Fermentative Growth and Enterotoxin Synthesis in Bacillus cereus F4430/73. Journal of Bacteriology, 2007, 189, 2813-2824.                                                    | 2.2 | 66        |
| 7  | Adaptation in Bacillus cereus: From Stress to Disease. Frontiers in Microbiology, 2016, 7, 1550.                                                                                                                     | 3.5 | 57        |
| 8  | Anaerobiosis and low specific growth rates enhance hemolysin BL production by Bacillus cereus F4430/73. Archives of Microbiology, 2004, 182, 90-95.                                                                  | 2.2 | 53        |
| 9  | Restricting Fermentative Potential by Proteome Remodeling. Molecular and Cellular Proteomics, 2012, 11, M111.013102.                                                                                                 | 3.8 | 44        |
| 10 | ApoFnr Binds as a Monomer to Promoters Regulating the Expression of Enterotoxin Genes of<br><i>Bacillus cereus</i> . Journal of Bacteriology, 2008, 190, 4242-4251.                                                  | 2.2 | 36        |
| 11 | Time dynamics of the Bacillus cereus exoproteome are shaped by cellular oxidation. Frontiers in<br>Microbiology, 2015, 6, 342.                                                                                       | 3.5 | 31        |
| 12 | ResDE-Dependent Regulation of Enterotoxin Gene Expression in <i>Bacillus cereus</i> : Evidence for<br>Multiple Modes of Binding for ResD and Interaction with Fnr. Journal of Bacteriology, 2009, 191,<br>4419-4426. | 2.2 | 30        |
| 13 | OhrRA functions as a redox-responsive system controlling toxinogenesis in Bacillus cereus. Journal of Proteomics, 2013, 94, 527-539.                                                                                 | 2.4 | 26        |
| 14 | Proteomics identifies Bacillus cereus EntD as a pivotal protein for the production of numerous virulence factors. Frontiers in Microbiology, 2015, 6, 1004.                                                          | 3.5 | 26        |
| 15 | Bacillus cereus Fnr binds a [4Fe-4S] cluster and forms a ternary complex with ResD and PlcR. BMC<br>Microbiology, 2012, 12, 125.                                                                                     | 3.3 | 24        |
| 16 | Proteomic Evidences for Rex Regulation of Metabolism in Toxin-Producing Bacillus cereus ATCC 14579.<br>PLoS ONE, 2014, 9, e107354.                                                                                   | 2,5 | 21        |
| 17 | Lactate Dehydrogenase A Promotes Communication between Carbohydrate Catabolism and Virulence<br>in <i>Bacillus cereus</i> . Journal of Bacteriology, 2011, 193, 1757-1766.                                           | 2.2 | 20        |
| 18 | Fnr mediates carbohydrate-dependent regulation of catabolic and enterotoxin genes in Bacillus cereus F4430/73. Research in Microbiology, 2010, 161, 30-39.                                                           | 2.1 | 19        |

**CATHERINE DUPORT** 

| #  | Article                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Deciphering the interactions between the Bacillus cereus linear plasmid, pBClin15, and its host by high-throughput comparative proteomics. Journal of Proteomics, 2016, 146, 25-33.        | 2.4 | 15        |
| 20 | Methionine Residues in Exoproteins and Their Recycling by Methionine Sulfoxide Reductase AB Serve as an Antioxidant Strategy in Bacillus cereus. Frontiers in Microbiology, 2017, 8, 1342. | 3.5 | 14        |
| 21 | Advanced Proteomics as a Powerful Tool for Studying Toxins of Human Bacterial Pathogens. Toxins, 2019, 11, 576.                                                                            | 3.4 | 8         |
| 22 | Bacillus cereus Decreases NHE and CLO Exotoxin Synthesis to Maintain Appropriate Proteome<br>Dynamics During Growth at Low Temperature. Toxins, 2020, 12, 645.                             | 3.4 | 7         |
| 23 | Proteome data to explore the impact of pBClin15 on Bacillus cereus ATCC 14579. Data in Brief, 2016, 8, 1243-1246.                                                                          | 1.0 | 6         |
| 24 | Groundwater promotes emergence of asporogenic mutants of emetic Bacillus cereus. Environmental<br>Microbiology, 2020, 22, 5248-5264.                                                       | 3.8 | 6         |
| 25 | Cysteine Proteome Reveals Response to Endogenous Oxidative Stress in Bacillus cereus. International<br>Journal of Molecular Sciences, 2021, 22, 7550.                                      | 4.1 | 5         |
| 26 | Heme A Synthase Deficiency Affects the Ability of Bacillus cereus to Adapt to a Nutrient-Limited Environment. International Journal of Molecular Sciences, 2022, 23, 1033.                 | 4.1 | 4         |
| 27 | Redox proteomic study of Bacillus cereus thiol proteome during fermentative anaerobic growth. BMC<br>Genomics, 2021, 22, 648.                                                              | 2.8 | 3         |
| 28 | Time-course proteomics dataset to monitor protein-bound methionine oxidation in Bacillus cereus ATCC 14579. Data in Brief, 2018, 18, 394-398.                                              | 1.0 | 2         |
| 29 | Methionine Sulfoxide Reductases Contribute to Anaerobic Fermentative Metabolism in Bacillus cereus. Antioxidants, 2021, 10, 819.                                                           | 5.1 | 2         |
| 30 | Dynamic Profile of S-Layer Proteins Controls Surface Properties of Emetic Bacillus cereus AH187<br>Strain. Frontiers in Microbiology, 0, 13, .                                             | 3.5 | 2         |