Kripa Shankar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8889951/publications.pdf Version: 2024-02-01

Κρίολ ζηλικλο

#	Article	IF	CITATIONS
1	"A LEAP 2 conclusions? Targeting the ghrelin system to treat obesity and diabetes― Molecular Metabolism, 2021, 46, 101128.	3.0	27
2	Role of Growth Hormone in Ghrelin's Metabolic Actions. Journal of the Endocrine Society, 2021, 5, A553-A553.	0.1	0
3	High Coexpression of the Ghrelin and LEAP2 Receptor GHSR With Pancreatic Polypeptide in Mouse and Human Islets. Endocrinology, 2021, 162, .	1.4	14
4	Ghrelin cell–expressed insulin receptors mediate meal- and obesity-induced declines in plasma ghrelin. JCI Insight, 2021, 6, .	2.3	10
5	Disrupting the ghrelin-growth hormone axis limits ghrelin's orexigenic but not glucoregulatory actions. Molecular Metabolism, 2021, 53, 101258.	3.0	22
6	LEAP2 deletion in mice enhances ghrelin's actions as an orexigen and growth hormone secretagogue. Molecular Metabolism, 2021, 53, 101327.	3.0	37
7	Acyl-ghrelin Is Permissive for the Normal Counterregulatory Response to Insulin-Induced Hypoglycemia. Diabetes, 2020, 69, 228-237.	0.3	17
8	Ghrelin Protects Against Insulin-Induced Hypoglycemia in a Mouse Model of Type 1 Diabetes Mellitus. Frontiers in Endocrinology, 2020, 11, 606.	1.5	6
9	254-LB: Characterization of Ghrelin Receptor Expression in Mouse Islets Reveals Pancreatic Polypeptide Cells as a Key Ghrelin Target. Diabetes, 2020, 69, 254-LB.	0.3	Ο
10	1892-P: Meal- and Glucose-Induced Suppression of Ghrelin Release Is Mediated Primarily by Ghrelin Cell-Expressed Insulin Receptors. Diabetes, 2020, 69, 1892-P.	0.3	0
11	Ghrelin's Relationship to Blood Glucose. Endocrinology, 2019, 160, 1247-1261.	1.4	61
12	β1-adrenergic receptors mediate plasma acyl-ghrelin elevation and depressive-like behavior induced by chronic psychosocial stress. Neuropsychopharmacology, 2019, 44, 1319-1327.	2.8	23
13	Role of brown adipose tissue in modulating adipose tissue inflammation and insulin resistance in high-fat diet fed mice. European Journal of Pharmacology, 2019, 854, 354-364.	1.7	40
14	Temporal immmunometabolic profiling of adipose tissue in HFD-induced obesity: manifestations of mast cells in fibrosis and senescence. International Journal of Obesity, 2019, 43, 1281-1294.	1.6	19
15	Chronic hyperinsulinemia induced miR-27b is linked to adipocyte insulin resistance by targeting insulin receptor. Journal of Molecular Medicine, 2018, 96, 315-331.	1.7	30
16	Saroglitazar reduces obesity and associated inflammatory consequences in murine adipose tissue. European Journal of Pharmacology, 2018, 822, 32-42.	1.7	20
17	Aegeline inspired synthesis of novel β3-AR agonist improves insulin sensitivity in vitro and in vivo models of insulin resistance. Metabolism: Clinical and Experimental, 2018, 85, 1-13.	1.5	19
18	Novel indole and triazole based hybrid molecules exhibit potent anti-adipogenic and antidyslipidemic activity by activating Wnt3a/β-catenin pathway. European Journal of Medicinal Chemistry, 2018, 143, 1345-1360.	2.6	41

KRIPA SHANKAR

#	Article	IF	CITATIONS
19	Ecliptal, a promising natural lead isolated from Eclipta alba modulates adipocyte function and ameliorates metabolic syndrome. Toxicology and Applied Pharmacology, 2018, 338, 134-147.	1.3	11
20	Ghrelin Receptor Agonist Rescues Excess Neonatal Mortality in a Prader-Willi Syndrome Mouse Model. Endocrinology, 2018, 159, 4006-4022.	1.4	20
21	Chronic hyperinsulinemia promotes meta-inflammation and extracellular matrix deposition in adipose tissue: Implications of nitric oxide. Molecular and Cellular Endocrinology, 2018, 477, 15-28.	1.6	34
22	miR-876-3p regulates glucose homeostasis and insulin sensitivity by targeting adiponectin. Journal of Endocrinology, 2018, 239, 1-17.	1.2	15
23	Reduced Insulin Receptor Expression Enhances Proximal Tubule Gluconeogenesis. Journal of Cellular Biochemistry, 2017, 118, 276-285.	1.2	29
24	Curcumin-3,4-Dichloro Phenyl Pyrazole (CDPP) overcomes curcumin's low bioavailability, inhibits adipogenesis and ameliorates dyslipidemia by activating reverse cholesterol transport. Metabolism: Clinical and Experimental, 2017, 73, 109-124.	1.5	29
25	Ethyl acetate fraction of Eclipta alba: a potential phytopharmaceutical targeting adipocyte differentiation. Biomedicine and Pharmacotherapy, 2017, 96, 572-583.	2.5	13
26	Chronic hyper-leptinemia induces insulin signaling disruption in adipocytes: Implications of NOS2. Free Radical Biology and Medicine, 2017, 112, 93-108.	1.3	12
27	PPP2R5B, a regulatory subunit of PP2A, contributes to adipocyte insulin resistance. Molecular and Cellular Endocrinology, 2016, 437, 97-107.	1.6	19
28	Chronic hyperinsulinemia reduces insulin sensitivity and metabolic functions of brown adipocyte. Journal of Endocrinology, 2016, 230, 275-290.	1.2	35
29	A clerodane diterpene inhibit adipogenesis by cell cycle arrest and ameliorate obesity in C57BL/6 mice. Molecular and Cellular Endocrinology, 2015, 399, 373-385.	1.6	27
30	<i>Cucumis melo ssp. Agrestis var. Agrestis</i> Ameliorates High Fat Diet Induced Dyslipidemia in Syrian Golden Hamsters and Inhibits Adipogenesis in 3T3-L1 Adipocytes. Pharmacognosy Magazine, 2015, 11, 501.	0.3	11
31	Adipocyte transdifferentiation and its molecular targets. Differentiation, 2014, 87, 183-192.	1.0	24
32	A withanolide coagulin-L inhibits adipogenesis modulating Wnt/β-catenin pathway and cell cycle in mitotic clonal expansion. Phytomedicine, 2014, 21, 406-414.	2.3	30
33	Rohitukine inhibits in vitro adipogenesis arresting mitotic clonal expansion and improves dyslipidemia in vivo. Journal of Lipid Research, 2014, 55, 1019-1032.	2.0	50