Janis Louie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8889592/publications.pdf

Version: 2024-02-01

66343 64796 7,576 76 42 79 citations h-index g-index papers 99 99 99 5975 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Improved Total Synthesis of Indolizidine and Quinolizidine Alkaloids via Nickel-Catalyzed (4 + 2) Cycloaddition. Journal of Organic Chemistry, 2022, 87, 8871-8883.	3.2	3
2	Semiconducting to Metallic Electronic Landscapes in Defectsâ€Controlled 2D Ï€â€d Conjugated Coordination Polymer Thin Films. Advanced Functional Materials, 2021, 31, 2006920.	14.9	19
3	Origins of Regio- and Chemoselectivity in Iron-PDAI-Catalyzed [2+2+2] Cycloaddition Syntheses of 4,6-Disubstituted 2-Aminopyridines. ACS Catalysis, 2021, 11, 14677-14687.	11.2	6
4	Total Synthesis of Indolizidine Alkaloids via Nickel-Catalyzed (4 + 2) Cyclization. Organic Letters, 2020, 22, 924-928.	4.6	6
5	Unique Thermoelectric Properties Induced by Intrinsic Nanostructuring in a Polycrystalline Thinâ€Film Twoâ€Dimensional Metal–Organic Framework, Copper Benzenehexathiol. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000437.	1.8	16
6	Trends in the Usage of Bidentate Phosphines as Ligands in Nickel Catalysis. Chemical Reviews, 2020, 120, 6124-6196.	47.7	122
7	Electronic Effect of Ligands on the Stability of Nickel–Ketene Complexes. Organometallics, 2018, 37, 3750-3755.	2.3	10
8	Hierarchical Self-Assembly of a Water-Soluble Organoplatinum(II) Metallacycle into Well-Defined Nanostructures. Organic Letters, 2018, 20, 7020-7023.	4.6	13
9	Synthesis and Characterization of [(NHC)Ni(styrene)2] Complexes: Isolation of Monocarbene Nickel Complexes and Benchmarking of %VBur in (NHC)Ni-Ï€ Systems. Organometallics, 2018, 37, 3687-3697.	2.3	16
10	Orthogonal self-assembly of an organoplatinum(II) metallacycle and cucurbit[8]uril that delivers curcumin to cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8087-8092.	7.1	88
11	Comprehensive Study of the Reactions Between Chelating Phosphines and Ni(cod) < sub>2 < /sub>. Organometallics, 2018, 37, 3259-3268.	2.3	31
12	Hexaaminobenzene as a building block for a Family of 2D Coordination Polymers. Journal of the American Chemical Society, 2017 , 139 , $19-22$.	13.7	229
13	Regioselective Iron-Catalyzed $[2+2+2]$ Cycloaddition Reaction Forming 4,6-Disubstituted 2-Aminopyridines from Terminal Alkynes and Cyanamides. Journal of Organic Chemistry, 2017, 82, 234-242.	3.2	47
14	Synergy between Experimental and Computational Chemistry Reveals the Mechanism of Decomposition of Nickel–Ketene Complexes. Journal of the American Chemical Society, 2016, 138, 14083-14091.	13.7	16
15	3,5-Disubstituted 2-Aminopyridines via Nickel-Catalyzed Cycloaddition of Terminal Alkynes and Cyanamides. Synlett, 2015, 26, 307-312.	1.8	17
16	Advances in Nickel-Catalyzed Cycloaddition Reactions To Construct Carbocycles and Heterocycles. Accounts of Chemical Research, 2015, 48, 2354-2365.	15.6	107
17	An <i>in Situ</i> Approach to Nickel-Catalyzed Cycloaddition of Alkynes and 3-Azetidinones. Journal of Organic Chemistry, 2015, 80, 9951-9958.	3.2	22
18	Ni(NHC)]-Catalyzed Cycloaddition of Diynes and Tropone: Apparent Enone Cycloaddition Involving an 8Ï€ Insertion. Journal of the American Chemical Society, 2014, 136, 17844-17851.	13.7	30

#	Article	IF	CITATIONS
19	Synthesis, mechanism of formation, and catalytic activity of Xantphos nickel π-complexes. Chemical Communications, 2014, 50, 15577-15580.	4.1	30
20	<i>Organometallics</i> Roundtable 2013–2014. Organometallics, 2014, 33, 1505-1527.	2.3	24
21	The iron-catalyzed construction of 2-aminopyrimidines from alkynenitriles and cyanamides. Chemical Communications, 2013, 49, 7735.	4.1	46
22	Mechanistic Evaluation of the Ni(IPr) < sub>2 < /sub>-Catalyzed Cycloaddition of Alkynes and Nitriles To Afford Pyridines: Evidence for the Formation of a Key \hat{l} < sup>1 < /sup>-Ni(IPr) < sub>2 < /sub> (RCN) Intermediate. Organometallics, 2013, 32, 4952-4960.	2.3	43
23	Nickelâ€Catalyzed Cycloaddition of 1,3â€Dienes with 3â€Azetidinones and 3â€Oxetanones. Angewandte Chemie International Edition, 2013, 52, 12161-12165.	- 13.8	65
24	Nickelâ€Catalyzed Cycloaddition of 1,3â€Dienes with 3â€Azetidinones and 3â€Oxetanones. Angewandte Chemie 2013, 125, 12383-12387.	'2.0	17
25	The Discovery of [Ni(NHC)RCN] < sub > 2 < /sub > Species and Their Role as Cycloaddition Catalysts for the Formation of Pyridines. Journal of the American Chemical Society, 2012, 134, 15154-15162.	13.7	71
26	Palladium-Catalyzed Arylation of Cyanamides. Organic Letters, 2012, 14, 322-325.	4.6	22
27	A Single Step Approach to Piperidines via Ni-Catalyzed \hat{l}^2 -Carbon Elimination. Organic Letters, 2012, 14, 2026-2029.	4.6	78
28	Iron-Catalyzed Formation of 2-Aminopyridines from Diynes and Cyanamides. Journal of Organic Chemistry, 2012, 77, 7555-7563.	3.2	79
29	An Expeditious Route to Eightâ€Membered Heterocycles By Nickelâ€Catalyzed Cycloaddition: Lowâ€Temperature CC Bond Cleavage. Angewandte Chemie - International Edition, 2012, 51, 8602-8606.	13.8	71
30	Ni-Catalyzed Ketene Cycloaddition: A System That Resists the Formation of Decarbonylation Side Products. Journal of the American Chemical Society, 2011, 133, 7719-7721.	13.7	61
31	Imidazolidene Carboxylate Bound MBPh ₄ Complexes (M = Li, Na) and Their Relevance in Transcarboxylation Reactions. Journal of Organic Chemistry, 2011, 76, 8413-8420.	3.2	39
32	Iron-Catalyzed Cycloaddition of Alkynenitriles and Alkynes. Organic Letters, 2011, 13, 2936-2939.	4.6	120
33	Rhodium-Catalyzed Decarboxylative Cycloaddition Route to Substituted Anilines. Journal of Organic Chemistry, 2011, 76, 4686-4691.	3.2	23
34	N-Heterocyclic Carbene Bound Nickel(I) Complexes and Their Roles in Catalysis. Organometallics, 2011, 30, 2546-2552.	2.3	141
35	Nickelâ€Catalyzed [2+2+2] Cycloaddition of Diynes and Cyanamides. European Journal of Organic Chemistry, 2011, 2011, 3815-3824.	2.4	74
36	Nickelâ€Mediated Cycloaddition by Two Sequential CH Activations. Angewandte Chemie - International Edition, 2011, 50, 10768-10769.	13.8	13

#	Article	IF	Citations
37	A Serendipitous Discovery: Nickel Catalyst for the Cycloaddition of Diynes with Unactivated Nitriles. Angewandte Chemie - International Edition, 2011, 50, 10694-10698.	13.8	111
38	N-Heterocyclic Carbene Complexes in Cyclisation Reactions. Catalysis By Metal Complexes, 2010, , 131-156.	0.6	0
39	Nickel-Catalyzed Cycloadditive Couplings of Enynes and Isocyanates. Organic Letters, 2009, 11, 4168-4171.	4.6	24
40	Mechanism of the Ni(0)-Catalyzed Vinylcyclopropaneâ^'Cyclopentene Rearrangement. Journal of Organic Chemistry, 2009, 74, 7822-7833.	3. 2	59
41	A Systematic Investigation of Factors Influencing the Decarboxylation of Imidazolium Carboxylates. Journal of Organic Chemistry, 2009, 74, 7935-7942.	3.2	225
42	Coupling of vinyl aziridines and phenyl isocyanate. Tetrahedron Letters, 2008, 49, 4306-4309.	1.4	36
43	Nickel-catalyzed cycloisomerization of enynes: catalyst generation via C–H activation of carbene ligands. Tetrahedron, 2008, 64, 6870-6875.	1.9	21
44	Nickel-catalyzed reactions of vinyl aziridines and aziridinylen-ynes. Tetrahedron Letters, 2008, 49, 6797-6799.	1.4	19
45	Nickel-Catalyzed Cycloadditions of Unsaturated Hydrocarbons, Aldehydes, and Ketones. Journal of Organic Chemistry, 2008, 73, 2641-2648.	3.2	83
46	Ni-NHC Mediated Catalysis. , 2006, , 163-182.		7
47	A nickel(0) catalyzed cycloaddition of alkynes and isocyanates that affords pyrimidine-diones. Tetrahedron, 2006, 62, 7552-7559.	1.9	50
48	An in Situ Approach for Nickel-Catalyzed Cycloaddition. Journal of Organic Chemistry, 2006, 71, 5834-5836.	3.2	72
49	[2+2+2] Cycloaddition Reactions Catalyzed by Transition Metal Complexes. Advanced Synthesis and Catalysis, 2006, 348, 2307-2327.	4.3	653
50	Regioselectivity in nickel(0)/phosphine catalyzed cycloadditions of alkynes and isocyanates. Journal of Organometallic Chemistry, 2005, 690, 5098-5104.	1.8	41
51	A Nickel-Catalyzed Route to Pyridines. Journal of the American Chemical Society, 2005, 127, 5030-5031.	13.7	211
52	Transition Metal Catalyzed Reactions of Carbon Dioxide and Other Heterocumulenes. Current Organic Chemistry, 2005, 9, 605-623.	1.6	180
53	Selectivity in Nickel-Catalyzed Rearrangements of Cyclopropylen-ynes. Journal of the American Chemical Society, 2005, 127, 5798-5799.	13.7	123
54	Nickel-Catalyzed Cycloaddition of Unsaturated Hydrocarbons and Carbonyl Compounds. Organic Letters, 2005, 7, 4037-4039.	4.6	83

#	Article	IF	CITATIONS
55	Nickel-Catalyzed Cycloaddition of Alkynes and Isocyanates. Journal of the American Chemical Society, 2004, 126, 11438-11439.	13.7	155
56	Regioselectivity in nickel(0) catalyzed cycloadditions of carbon dioxide with diynes. Tetrahedron, 2004, 60, 7431-7437.	1.9	126
57	Highly Active Nickel Catalysts for the Isomerization of Unactivated Vinyl Cyclopropanes to Cyclopentenes. Angewandte Chemie - International Edition, 2004, 43, 2277-2279.	13.8	121
58	Highly Active Nickel Catalysts for the Isomerization of Unactivated Vinyl Cyclopropanes to Cyclopentenes ChemInform, 2004, 35, no.	0.0	0
59	Regioselectivity in Nickel(0) Catalyzed Cycloadditions of Carbon Dioxide with Diynes ChemInform, 2004, 35, no.	0.0	0
60	Rhodium-catalyzed addition of alcohols to terminal enones. Tetrahedron Letters, 2004, 45, 7441-7443.	1.4	29
61	N-Heterocyclic Carbenes as Highly Efficient Catalysts for the Cyclotrimerization of Isocyanates. Organic Letters, 2004, 6, 4679-4681.	4.6	165
62	Efficient Nickel-Catalyzed [2 + 2 + 2] Cycloaddition of CO2 and Diynes ChemInform, 2003, 34, no.	0.0	0
63	Efficient Nickel-Catalyzed $[2 + 2 + 2]$ Cycloaddition of CO2and Diynes. Journal of the American Chemical Society, 2002, 124, 15188-15189.	13.7	309
64	Femtosecond Excitation Energy Transport in Triarylamine Dendrimers. Journal of the American Chemical Society, 2002, 124, 6520-6521.	13.7	111
65	Metathesis of Electron-Rich Olefins:  Structure and Reactivity of Electron-Rich Carbene Complexes. Organometallics, 2002, 21, 2153-2164.	2.3	268
66	Reaction of Diazoalkanes with Iron Phosphine Complexes Affords Novel Phosphazine Complexes. Organometallics, 2001, 20, 481-484.	2.3	34
67	Tandem Catalysis:  The Sequential Mediation of Olefin Metathesis, Hydrogenation, and Hydrogen Transfer with Single-Component Ru Complexes. Journal of the American Chemical Society, 2001, 123, 11312-11313.	13.7	416
68	Highly Active Metathesis Catalysts Generated In Situ from Inexpensive and Air-Stable Precursors J.L. acknowledges the National Institute of Health for a postdoctoral fellowship. We thank Christopher W. Bielawski for helpful discussions Angewandte Chemie - International Edition, 2001, 40, 247-249.	13.8	2
69	Tandem Catalysis:Â Three Mechanistically Distinct Reactions from a Single Ruthenium Complex. Journal of the American Chemical Society, 2000, 122, 12872-12873.	13.7	218
70	The Largest Discrete Oligo(m-aniline). An Exponential Growth Strategy Using Palladium-Catalyzed Amination of Aryl Sulfonates. Macromolecules, 1998, 31, 6737-6739.	4.8	55
71	Discrete High Molecular Weight Triarylamine Dendrimers Prepared by Palladium-Catalyzed Amination. Journal of the American Chemical Society, 1997, 119, 11695-11696.	13.7	191
72	Palladium-Catalyzed Amination of Aryl Triflates and Importance of Triflate Addition Rate. Journal of Organic Chemistry, 1997, 62, 1268-1273.	3.2	220

#	Article	IF	CITATIONS
73	Catalysis with Platinum-Group Alkylamido Complexes. The Active Palladium Amide in Catalytic Aryl Halide Aminations As Deduced from Kinetic Data and Independent Generation. Organometallics, 1996, 15, 2794-2805.	2.3	86
74	A Route to Pdo from PdII Metallacycles in Animation and Cross-Coupling Chemistry. Angewandte Chemie International Edition in English, 1996, 35, 2359-2361.	4.4	164
75	Palladium-catalyzed synthesis of arylamines from aryl halides. Mechanistic studies lead to coupling in the absence of tin reagents. Tetrahedron Letters, 1995, 36, 3609-3612.	1.4	801
76	Transmetalation, Involving Organotin Aryl, Thiolate, and Amide Compounds. An Unusual Type of Dissociative Ligand Substitution Reaction. Journal of the American Chemical Society, 1995, 117, 11598-11599.	13.7	164