
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8889368/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fibrotic alterations in human annulus fibrosus correlate with progression of intervertebral disc herniation. Arthritis Research and Therapy, 2022, 24, 25.	3.5	9
2	Stress-induced depressive-like behavior in male rats is associated with microglial activation and inflammation dysregulation in the hippocampus in adulthood. Brain, Behavior, and Immunity, 2022, 99, 397-408.	4.1	21
3	Harnessing chitosan and poly-(γ-glutamic acid)-based biomaterials towards cancer immunotherapy. Materials Today Advances, 2022, 15, 100252.	5.2	5
4	Alkaline phosphatase dualâ€binding sites for collagen dictate cell migration and microvessel assembly in vitro. Journal of Cellular Biochemistry, 2021, 122, 116-129.	2.6	4
5	Immunomodulatory potential of chitosan-based materials for cancer therapy: a systematic review of <i>in vitro</i> , <i>in vivo</i> and clinical studies. Biomaterials Science, 2021, 9, 3209-3227.	5.4	22
6	IL-1β-pre-conditioned mesenchymal stem/stromal cells' secretome modulates the inflammatory response and aggrecan deposition in intervertebral disc. , 2021, 41, 431-543.		17
7	Immunomodulatory properties of Musa paradisiaca L. inflorescence in Combined Allergic Rhinitis and Asthma Syndrome (CARAS) model towards NFκB pathway inhibition. Journal of Functional Foods, 2021, 83, 104540.	3.4	7
8	Circulating microRNAs Correlate with Multiple Myeloma and Skeletal Osteolytic Lesions. Cancers, 2021, 13, 5258.	3.7	4
9	Osteoclasts degrade fibrinogen scaffolds and induce mesenchymal stem/stromal osteogenic differentiation. Journal of Biomedical Materials Research - Part A, 2020, 108, 851-862.	4.0	8
10	Chitosan/Ĵ³-PGA nanoparticles-based immunotherapy as adjuvant to radiotherapy in breast cancer. Biomaterials, 2020, 257, 120218.	11.4	60
11	Fibrinogen and magnesium combination biomaterials modulate macrophage phenotype, NF-kB signaling and crosstalk with mesenchymal stem/stromal cells. Acta Biomaterialia, 2020, 114, 471-484.	8.3	42
12	TNF-alpha-induced microglia activation requires miR-342: impact on NF-kB signaling and neurotoxicity. Cell Death and Disease, 2020, 11, 415.	6.3	108
13	Decellularized Scaffolds for Intervertebral Disc Regeneration. Trends in Biotechnology, 2020, 38, 947-951.	9.3	25
14	Modulation of the In Vivo Inflammatory Response by Pro- Versus Anti-Inflammatory Intervertebral Disc Treatments. International Journal of Molecular Sciences, 2020, 21, 1730.	4.1	15
15	Articular Repair/Regeneration in Healthy and Inflammatory Conditions: From Advanced In Vitro to In Vivo Models. Advanced Functional Materials, 2020, 30, 1909523.	14.9	7
16	miR-99a in bone homeostasis: Regulating osteogenic lineage commitment and osteoclast differentiation. Bone, 2020, 134, 115303.	2.9	22
17	The Two Faces of Tumor-Associated Macrophages and Their Clinical Significance in Colorectal Cancer. Frontiers in Immunology, 2019, 10, 1875.	4.8	144
18	Macrophages Down-Regulate Gene Expression of Intervertebral Disc Degenerative Markers Under a Pro-inflammatory Microenvironment. Frontiers in Immunology, 2019, 10, 1508.	4.8	50

#	Article	IF	CITATIONS
19	Genetically Engineered-MSC Therapies for Non-unions, Delayed Unions and Critical-size Bone Defects. International Journal of Molecular Sciences, 2019, 20, 3430.	4.1	32
20	The Contribution of Inflammation to Autism Spectrum Disorders: Recent Clinical Evidence. Methods in Molecular Biology, 2019, 2011, 493-510.	0.9	24
21	Peripheral Biomarkers of Inflammation in Depression: Evidence from Animal Models and Clinical Studies. Methods in Molecular Biology, 2019, 2011, 467-492.	0.9	11
22	The Systemic Immune Response to Collagen-Induced Arthritis and the Impact of Bone Injury in Inflammatory Conditions. International Journal of Molecular Sciences, 2019, 20, 5436.	4.1	11
23	The blood compatibility challenge. Part 4: Surface modification for hemocompatible materials: Passive and active approaches to guide blood-material interactions. Acta Biomaterialia, 2019, 94, 33-43.	8.3	78
24	Chitosan/poly(γ-glutamic acid) nanoparticles incorporating IFN-γ for immune response modulation in the context of colorectal cancer. Biomaterials Science, 2019, 7, 3386-3403.	5.4	32
25	3D chitosan scaffolds impair NLRP3 inflammasome response in macrophages. Acta Biomaterialia, 2019, 91, 123-134.	8.3	26
26	Comparable Decellularization of Fetal and Adult Cardiac Tissue Explants as 3D-like Platforms for In Vitro Studies. Journal of Visualized Experiments, 2019, , .	0.3	4
27	Long noncoding RNAs: a missing link in osteoporosis. Bone Research, 2019, 7, 10.	11.4	77
28	Osteogenic, anti-osteoclastogenic and immunomodulatory properties of a strontium-releasing hybrid scaffold for bone repair. Materials Science and Engineering C, 2019, 99, 1289-1303.	7.3	55
29	Fibroblast growth factor improves the motility of human mesenchymal stem cells expanded in a human plasma-derived xeno-free medium through αVβ3 integrin. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 36-45.	2.7	5
30	The inflammasome in host response to biomaterials: Bridging inflammation and tissue regeneration. Acta Biomaterialia, 2019, 83, 1-12.	8.3	84
31	Chitosan porous 3D scaffolds embedded with resolvin D1 to improve in vivo bone healing. Journal of Biomedical Materials Research - Part A, 2018, 106, 1626-1633.	4.0	27
32	Age-Correlated Phenotypic Alterations in Cells Isolated From Human Degenerated Intervertebral Discs With Contained Hernias. Spine, 2018, 43, E274-E284.	2.0	12
33	A coâ€culture system with three different primary human cell populations reveals that biomaterials and MSC modulate macrophageâ€driven fibroblast recruitment. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1433-e1440.	2.7	19
34	Immunomodulation of Human Mesenchymal Stem/Stromal Cells in Intervertebral Disc Degeneration. Spine, 2018, 43, E673-E682.	2.0	49
35	The inflammatory response in the regression of lumbar disc herniation. Arthritis Research and Therapy, 2018, 20, 251.	3.5	130
36	Mesenchymal Stromal Cell Secretome: Influencing Therapeutic Potential by Cellular Pre-conditioning. Frontiers in Immunology, 2018, 9, 2837.	4.8	350

#	Article	IF	CITATIONS
37	Extracellular vesicles: intelligent delivery strategies for therapeutic applications. Journal of Controlled Release, 2018, 289, 56-69.	9.9	85
38	Fundamentals of protein and cell interactions in biomaterials. , 2018, , 1-27.		23
39	Profiling the circulating miRnome reveals a temporal regulation of the bone injury response. Theranostics, 2018, 8, 3902-3917.	10.0	9
40	Stromal Cell Derived Factor-1-Mediated Migration of Mesenchymal Stem Cells Enhances Collagen Type Il Expression in Intervertebral Disc. Tissue Engineering - Part A, 2018, 24, 1818-1830.	3.1	10
41	Joint analysis of IVD herniation and degeneration by rat caudal needle puncture model. Journal of Orthopaedic Research, 2017, 35, 258-268.	2.3	31
42	Decellularized human colorectal cancer matrices polarize macrophages towards an anti-inflammatory phenotype promoting cancer cell invasion via CCL18. Biomaterials, 2017, 124, 211-224.	11.4	104
43	Octadecyl Chains Immobilized onto Hyaluronic Acid Coatings by Thiol–ene "Click Chemistry―Increase the Surface Antimicrobial Properties and Prevent Platelet Adhesion and Activation to Polyurethane. ACS Applied Materials & Interfaces, 2017, 9, 7979-7989.	8.0	44
44	Dendritic Cell-derived Extracellular Vesicles mediate Mesenchymal Stem/Stromal Cell recruitment. Scientific Reports, 2017, 7, 1667.	3.3	62
45	Pro-inflammatory chitosan/poly(γ-glutamic acid) nanoparticles modulate human antigen-presenting cells phenotype and revert their pro-invasive capacity. Acta Biomaterialia, 2017, 63, 96-109.	8.3	45
46	<i>In vivo</i> and clinical application of strontium-enriched biomaterials for bone regeneration. Bone and Joint Research, 2017, 6, 366-375.	3.6	59
47	Injectable hybrid system for strontium local delivery promotes bone regeneration in a rat critical-sized defect model. Scientific Reports, 2017, 7, 5098.	3.3	38
48	Adsorbed Fibrinogen stimulates TLR-4 on monocytes and induces BMP-2 expression. Acta Biomaterialia, 2017, 49, 296-305.	8.3	22
49	Stiffness of polyelectrolyte multilayer film influences endothelial function of endothelial cell monolayer. Colloids and Surfaces B: Biointerfaces, 2017, 149, 379-387.	5.0	26
50	Systemic Delivery of Bone Marrow Mesenchymal Stem Cells for In Situ Intervertebral Disc Regeneration. Stem Cells Translational Medicine, 2017, 6, 1029-1039.	3.3	31
51	Poly(γ-glutamic acid) and poly(γ-glutamic acid)-based nanocomplexes enhance type II collagen production in intervertebral disc. Journal of Materials Science: Materials in Medicine, 2017, 28, 6.	3.6	20
52	Extracellular Vesicles: Immunomodulatory messengers in the context of tissue repair/regeneration. European Journal of Pharmaceutical Sciences, 2017, 98, 86-95.	4.0	87
53	miR-195 inhibits macrophages pro-inflammatory profile and impacts the crosstalk with smooth muscle cells. PLoS ONE, 2017, 12, e0188530.	2.5	49
54	Bridging Autism Spectrum Disorders and Schizophrenia through inflammation and biomarkers - pre-clinical and clinical investigations. Journal of Neuroinflammation, 2017, 14, 179.	7.2	92

#	Article	IF	CITATIONS
55	Human Bone Marrow Mesenchymal Stem/Stromal Cells Preserve Their Immunomodulatory and Chemotactic Properties When Expanded in a Human Plasma Derived Xeno-Free Medium. Stem Cells International, 2017, 2017, 1-12.	2.5	9
56	Ibuprofen-loaded poly(trimethylene carbonate-co-Îμ-caprolactone) electrospun fibres for nerve regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, E154-E166.	2.7	48
57	Nanostructured lipid carriers loaded with resveratrol modulate human dendritic cells. International Journal of Nanomedicine, 2016, Volume 11, 3501-3516.	6.7	29
58	Intricate Macrophage-Colorectal Cancer Cell Communication in Response to Radiation. PLoS ONE, 2016, 11, e0160891.	2.5	18
59	Anti-inflammatory Chitosan/Poly-γ-glutamic acid nanoparticles control inflammation while remodeling extracellular matrix in degenerated intervertebral disc. Acta Biomaterialia, 2016, 42, 168-179.	8.3	68
60	Three-dimensional scaffolds of fetal decellularized hearts exhibit enhanced potential to support cardiac cells in comparison to the adult. Biomaterials, 2016, 104, 52-64.	11.4	57
61	Chapter 10 Corrosion of Metallic Implants. , 2016, , 509-548.		2
62	lonizing radiation modulates human macrophages towards a pro-inflammatory phenotype preserving their pro-invasive and pro-angiogenic capacities. Scientific Reports, 2016, 6, 18765.	3.3	139
63	NAP-2 Secreted by Human NK Cells Can Stimulate Mesenchymal Stem/Stromal Cell Recruitment. Stem Cell Reports, 2016, 6, 466-473.	4.8	57
64	Macrophage interactions with polylactic acid and chitosan scaffolds lead to improved recruitment of human mesenchymal stem/stromal cells: a comprehensive study with different immune cells. Journal of the Royal Society Interface, 2016, 13, 20160570.	3.4	36
65	Fibrinogen scaffolds with immunomodulatory properties promote inÂvivo bone regeneration. Biomaterials, 2016, 111, 163-178.	11.4	54
66	Circulating extracellular vesicles: Their role in tissue repair and regeneration. Transfusion and Apheresis Science, 2016, 55, 53-61.	1.0	27
67	Immune response and innervation signatures in aseptic hip implant loosening. Journal of Translational Medicine, 2016, 14, 205.	4.4	23
68	Mesenchymal Stem/Stromal Cells seeded on cartilaginous endplates promote Intervertebral Disc Regeneration through Extracellular Matrix Remodeling. Scientific Reports, 2016, 6, 33836.	3.3	37
69	The two faces of metal ions: From implants rejection to tissue repair/regeneration. Biomaterials, 2016, 84, 262-275.	11.4	95
70	Self-Healing Spongy Coating for Drug "Cocktail―Delivery. ACS Applied Materials & Interfaces, 2016, 8, 4309-4313.	8.0	39
71	A Degenerative/Proinflammatory Intervertebral Disc Organ Culture: An <i>Ex Vivo</i> Model for Anti-inflammatory Drug and Cell Therapy. Tissue Engineering - Part C: Methods, 2016, 22, 8-19.	2.1	35
72	Strontium-rich injectable hybrid system for bone regeneration. Materials Science and Engineering C, 2016, 59, 818-827.	7.3	26

#	Article	IF	CITATIONS
73	miR-195 in human primary mesenchymal stromal/stem cells regulates proliferation, osteogenesis and paracrine effect on angiogenesis. Oncotarget, 2016, 7, 7-22.	1.8	83
74	Finding and tracing human MSC in 3D microenvironments with the photoconvertible protein Dendra2. Scientific Reports, 2015, 5, 10079.	3.3	9
75	An interferon-Î ³ -delivery system based on chitosan/poly(Î ³ -glutamic acid) polyelectrolyte complexes modulates macrophage-derived stimulation of cancer cell invasion in vitro. Acta Biomaterialia, 2015, 23, 157-171.	8.3	45
76	Improvement of Bovine Nucleus Pulposus Cells Isolation Leads to Identification of Three Phenotypically Distinct Cell Subpopulations. Tissue Engineering - Part A, 2015, 21, 2216-2227.	3.1	13
77	Development of an immunomodulatory biomaterial: Using resolvin D1 to modulate inflammation. Biomaterials, 2015, 53, 566-573.	11.4	73
78	Poly(γ-Glutamic Acid) as an Exogenous Promoter of Chondrogenic Differentiation of Human Mesenchymal Stem/Stromal Cells. Tissue Engineering - Part A, 2015, 21, 1869-1885.	3.1	11
79	Macrophage response to chitosan/poly-(γ-glutamic acid) nanoparticles carrying an anti-inflammatory drug. Journal of Materials Science: Materials in Medicine, 2015, 26, 167.	3.6	36
80	Inflammation in intervertebral disc degeneration and regeneration. Journal of the Royal Society Interface, 2015, 12, 20141191.	3.4	291
81	Ultrastructural and biochemical characterization of mechanically adaptable collagenous structures in the edible sea urchin Paracentrotus lividus. Zoology, 2015, 118, 147-160.	1.2	14
82	Effect of Polyelectrolyte Film Stiffness on Endothelial Cells During Endothelial-to-Mesenchymal Transition. Biomacromolecules, 2015, 16, 3584-3593.	5.4	57
83	E-cadherin-defective gastric cancer cells depend on Laminin to survive and invade. Human Molecular Genetics, 2015, 24, 5891-5900.	2.9	28
84	Matrix metalloproteases as maestros for the dual role of LPS- and IL-10-stimulated macrophages in cancer cell behaviour. BMC Cancer, 2015, 15, 456.	2.6	22
85	Dynamic stiffness of polyelectrolyte multilayer films based on disulfide bonds for in situ control of cell adhesion. Journal of Materials Chemistry B, 2015, 3, 7546-7553.	5.8	31
86	Modulation of the inflammatory response to chitosan through M2 macrophage polarization using pro-resolution mediators. Biomaterials, 2015, 37, 116-123.	11.4	122
87	Resveratrol as a Natural Anti-Tumor Necrosis Factor-α Molecule: Implications to Dendritic Cells and Their Crosstalk with Mesenchymal Stromal Cells. PLoS ONE, 2014, 9, e91406.	2.5	25
88	Adsorbed Fibrinogen Enhances Production of Bone- and Angiogenic-Related Factors by Monocytes/Macrophages. Tissue Engineering - Part A, 2014, 20, 250-263.	3.1	33
89	Impact of 3-D printed PLA- and chitosan-based scaffolds on human monocyte/macrophage responses: Unraveling the effect of 3-D structures on inflammation. Acta Biomaterialia, 2014, 10, 613-622.	8.3	235
90	The effect of hyaluronan-based delivery of stromal cell-derived factor-1 on the recruitment of MSCs in degenerating intervertebral discs. Biomaterials, 2014, 35, 8144-8153.	11.4	78

#	Article	IF	CITATIONS
91	Selective albumin-binding surfaces modified with a thrombin-inhibiting peptide. Acta Biomaterialia, 2014, 10, 1227-1237.	8.3	8
92	Macrophages stimulate gastric and colorectal cancer invasion through EGFR Y1086, c-Src, Erk1/2 and Akt phosphorylation and smallGTPase activity. Oncogene, 2014, 33, 2123-2133.	5.9	103
93	Production, Characterization and Biocompatibility of Marine Collagen Matrices from an Alternative and Sustainable Source: The Sea Urchin Paracentrotus lividus. Marine Drugs, 2014, 12, 4912-4933.	4.6	71
94	Neonatal Human Dermal Fibroblasts Immobilized in RGD–Alginate Induce Angiogenesis. Cell Transplantation, 2014, 23, 945-957.	2.5	20
95	Modulation of stability and mucoadhesive properties of chitosan microspheres for therapeutic gastric application. International Journal of Pharmaceutics, 2013, 454, 116-124.	5.2	53
96	Adsorbed fibrinogen leads to improved bone regeneration and correlates with differences in the systemic immune response. Acta Biomaterialia, 2013, 9, 7209-7217.	8.3	46
97	Macrophage polarization following chitosan implantation. Biomaterials, 2013, 34, 9952-9959.	11.4	121
98	Endothelialization of chitosan porous conduits via immobilization of a recombinant fibronectin fragment (rhFNIII7–10). Acta Biomaterialia, 2013, 9, 5643-5652.	8.3	18
99	Fibrinogen promotes resorption of chitosan by human osteoclasts. Acta Biomaterialia, 2013, 9, 6553-6562.	8.3	15
100	Kinetics and isotherm of fibronectin adsorption to three-dimensional porous chitosan scaffolds explored by125I-radiolabelling. Biomatter, 2013, 3, e24791.	2.6	4
101	Multinuclear Cell Analysis Using Laplacian of Gaussian and Delaunay Graphs. Lecture Notes in Computer Science, 2013, , 441-449.	1.3	4
102	Implanted neonatal human dermal fibroblasts influence the recruitment of endothelial cells in mice. Biomatter, 2012, 2, 43-52.	2.6	14
103	Correlations Between the Biochemistry and Mechanical States of a Sea-Urchin Ligament: A Mutable Collagenous Structure. Biointerphases, 2012, 7, 38.	1.6	18
104	Biofunctional chemically modified pectin for cell delivery. Soft Matter, 2012, 8, 4731.	2.7	74
105	Enhanced mesenchymal stromal cell recruitment via natural killer cells by incorporation of inflammatory signals in biomaterials. Journal of the Royal Society Interface, 2012, 9, 261-271.	3.4	53
106	The effect of octadecyl chain immobilization on the hemocompatibility of poly (2-hydroxyethyl) Tj ETQq0 0 0 rgB	Г /Qverlocl 11.4	₹ 10 Tf 50 14
107	Bioengineered surfaces to improve the blood compatibility of biomaterials through direct thrombin inactivation. Acta Biomaterialia, 2012, 8, 4101-4110.	8.3	20

108The effect of adsorbed fibronectin and osteopontin on macrophage adhesion and morphology on
hydrophilic and hydrophobic model surfaces. Acta Biomaterialia, 2012, 8, 3669-3677.8.321

#	Article	IF	CITATIONS
109	Protein Adsorption Characterization. Methods in Molecular Biology, 2012, 811, 141-161.	0.9	16
110	Biosynthesis of highly pure poly-γ-glutamic acid for biomedical applications. Journal of Materials Science: Materials in Medicine, 2012, 23, 1583-1591.	3.6	32
111	The mechanically adaptive connective tissue of echinoderms: Its potential for bio-innovation in applied technology and ecology. Marine Environmental Research, 2012, 76, 108-113.	2.5	32
112	Matrix Metalloproteinases in a Sea Urchin Ligament with Adaptable Mechanical Properties. PLoS ONE, 2012, 7, e49016.	2.5	26
113	Mesenchymal stem cell recruitment by stromal derived factor-1-delivery systems based on chitosan/poly(γ-glutamic acid) polyelectrolyte complexes. , 2012, 23, 249-261.		46
114	Chitosan drives anti-inflammatory macrophage polarisation and pro-inflammatory dendritic cell stimulation. , 2012, 24, 136-153.		125
115	Layer-by-Layer Self-Assembly of Chitosan and Poly(γ-glutamic acid) into Polyelectrolyte Complexes. Biomacromolecules, 2011, 12, 4183-4195.	5.4	107
116	Pectin-Based Injectable Biomaterials for Bone Tissue Engineering. Biomacromolecules, 2011, 12, 568-577.	5.4	213
117	Phenotypic and proliferative modulation of human mesenchymal stem cells via crosstalk with endothelial cells. Stem Cell Research, 2011, 7, 186-197.	0.7	98
118	Injectable in situ crosslinkable RGD-modified alginate matrix for endothelial cells delivery. Biomaterials, 2011, 32, 7897-7904.	11.4	145
119	Platelet and leukocyte adhesion to albumin binding self-assembled monolayers. Journal of Materials Science: Materials in Medicine, 2011, 22, 2053-2063.	3.6	20
120	Interactions of leukocytes and platelets with poly(lysine/leucine) immobilized on tetraethylene glycol-terminated self-assembled monolayers. Acta Biomaterialia, 2011, 7, 1949-1955.	8.3	10
121	New Insights into Mutable Collagenous Tissue: Correlations between the Microstructure and Mechanical State of a Sea-Urchin Ligament. PLoS ONE, 2011, 6, e24822.	2.5	39
122	Adhesion of human leukocytes on mixtures of hydroxyl―and methylâ€ŧerminated selfâ€∎ssembled monolayers: Effect of blood protein adsorption. Journal of Biomedical Materials Research - Part A, 2010, 93A, 12-19.	4.0	11
123	Evaluation of the effect of the degree of acetylation on the inflammatory response to 3D porous chitosan scaffolds. Journal of Biomedical Materials Research - Part A, 2010, 93A, 20-28.	4.0	43
124	Characterization of Polymeric Solutions as Injectable Vehicles for Hydroxyapatite Microspheres. AAPS PharmSciTech, 2010, 11, 852-858.	3.3	23
125	The effect of immobilization of thrombin inhibitors onto self-assembled monolayers on the adsorption and activity of thrombin. Biomaterials, 2010, 31, 3772-3780.	11.4	28
126	Targeted gene delivery into peripheral sensorial neurons mediated by self-assembled vectors composed of poly(ethylene imine) and tetanus toxin fragment c. Journal of Controlled Release, 2010, 143, 350-358.	9.9	41

#	Article	IF	CITATIONS
127	Bioactivity of immobilized EGF on selfâ€assembled monolayers: Optimization of the immobilization process. Journal of Biomedical Materials Research - Part A, 2010, 94A, 576-585.	4.0	14
128	The stability of selfâ€assembled monolayers with time and under biological conditions. Journal of Biomedical Materials Research - Part A, 2010, 94A, 833-843.	4.0	16
129	Immobilization of Human Mesenchymal Stem Cells within RGD-Grafted Alginate Microspheres and Assessment of Their Angiogenic Potential. Biomacromolecules, 2010, 11, 1956-1964.	5.4	131
130	Engineering Endochondral Bone: <i>In Vitro</i> Studies. Tissue Engineering - Part A, 2009, 15, 625-634.	3.1	47
131	Cellular response to the surface chemistry of nanostructured biomaterials. , 2009, , 85-113.		3
132	Engineering Endochondral Bone: <i>In Vivo</i> Studies. Tissue Engineering - Part A, 2009, 15, 635-643.	3.1	77
133	Molecularly designed surfaces for blood deheparinization using an immobilized heparinâ€binding peptide. Journal of Biomedical Materials Research - Part A, 2009, 88A, 162-173.	4.0	28
134	Selective protein adsorption modulates platelet adhesion and activation to oligo(ethylene) Tj ETQq0 0 0 rgBT /O Research - Part A, 2009, 89A, 642-653.	verlock 10 4.0	Tf 50 467 Td 22
135	The effect of the co-immobilization of human osteoprogenitors and endothelial cells within alginate microspheres on mineralization in a bone defect. Biomaterials, 2009, 30, 3271-3278.	11.4	192
136	Protein adsorption and clotting time of pHEMA hydrogels modified with C18 ligands to adsorb albumin selectively and reversibly. Biomaterials, 2009, 30, 5541-5551.	11.4	32
137	Fibronectin-mediated endothelialisation of chitosan porous matrices. Biomaterials, 2009, 30, 5465-5475.	11.4	41
138	The correlation between the adsorption of adhesive proteins and cell behaviour on hydroxyl-methyl mixed self-assembled monolayers. Biomaterials, 2009, 30, 307-316.	11.4	147
139	Induction of notch signaling by immobilization of jagged-1 on self-assembled monolayers. Biomaterials, 2009, 30, 6879-6887.	11.4	29
140	Improving chitosan-mediated gene transfer by the introduction of intracellular buffering moieties into the chitosan backbone. Acta Biomaterialia, 2009, 5, 2995-3006.	8.3	144
141	Hip fractures cluster in space: an epidemiological analysis in Portugal. Osteoporosis International, 2008, 19, 1797-1804.	3.1	30
142	Osteoblast adhesion and morphology on TiO ₂ depends on the competitive preadsorption of albumin and fibronectin. Journal of Biomedical Materials Research - Part A, 2008, 84A, 281-290.	4.0	90
143	Surface characterization and cell response of a PLA/CaP glass biodegradable composite material. Journal of Biomedical Materials Research - Part A, 2008, 85A, 477-486.	4.0	46
144	Injectability of a bone filler system based on hydroxyapatite microspheres and a vehicle with <i>in situ</i> gelâ€forming ability. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 87B, 49-58.	3.4	49

#	Article	IF	CITATIONS
145	Microstructure, mechanical properties and chemical degradation of brazed AISI 316 stainless steel/alumina systems. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 480, 306-315.	5.6	13
146	Characterization of Hydroxyapatite Sputtered Films Doped with Titanium. Key Engineering Materials, 2007, 330-332, 649-652.	0.4	4
147	Dynamics of Fibronectin Adsorption on TiO2Surfaces. Langmuir, 2007, 23, 7046-7054.	3.5	69
148	Attachment, spreading and short-term proliferation of human osteoblastic cells cultured on chitosan films with different degrees of acetylation. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 469-485.	3.5	75
149	Upregulation of bone cell differentiation through immobilization within a synthetic extracellular matrix. Biomaterials, 2007, 28, 3644-3655.	11.4	139
150	A Novel Dry Active Electrode for EEG Recording. IEEE Transactions on Biomedical Engineering, 2007, 54, 162-165.	4.2	124
151	The uptake of titanium ions by hydroxyapatite particles—structural changes and possible mechanisms. Biomaterials, 2006, 27, 1749-1761.	11.4	130
152	Cellulose phosphates as biomaterials. In vitro biocompatibility studies. Reactive and Functional Polymers, 2006, 66, 728-739.	4.1	33
153	Preparation and characterisation of calcium-phosphate porous microspheres with a uniform size for biomedical applications. Journal of Materials Science: Materials in Medicine, 2006, 17, 455-463.	3.6	96
154	Fibrinogen adsorption, platelet adhesion and activation on mixed hydroxyl-/methyl-terminated self-assembled monolayers. Biomaterials, 2006, 27, 5357-5367.	11.4	217
155	Functionalization of chitosan membranes through phosphorylation: Atomic force microscopy, wettability, and cytotoxicity studies. Journal of Applied Polymer Science, 2006, 102, 276-284.	2.6	25
156	Three-dimensional culture of human osteoblastic cells in chitosan sponges: The effect of the degree of acetylation. Journal of Biomedical Materials Research - Part A, 2006, 76A, 335-346.	4.0	64
157	The influence of functional groups of self-assembled monolayers on fibrous capsule formation and cell recruitment. Journal of Biomedical Materials Research - Part A, 2006, 76A, 737-743.	4.0	65
158	Leptin effect on RANKL and OPG expression in MC3T3-E1 osteoblasts. Journal of Cellular Biochemistry, 2006, 98, 1123-1129.	2.6	46
159	Calcium Phosphate Microspheres for Localised Delivery of a Therapeutic Enzyme. Key Engineering Materials, 2006, 309-311, 903-906.	0.4	1
160	Polysaccharides as scaffolds for bone regeneration. IRBM News, 2005, 26, 212-217.	0.1	88
161	Improving the adhesion of poly(ethylene terephthalate) fibers to poly(hydroxyethyl methacrylate) hydrogels by ozone treatment: Surface characterization and pull-out tests. Polymer, 2005, 46, 9840-9850.	3.8	30
162	Adsorption of a therapeutic enzyme to self-assembled monolayers: effect of surface chemistry and solution pH on the amount and activity of adsorbed enzyme. Biomaterials, 2005, 26, 2695-2704.	11.4	33

#	Article	IF	CITATIONS
163	The attraction of Mac-1+ phagocytes during acute inflammation by methyl-coated self-assembled monolayers. Biomaterials, 2005, 26, 3021-3027.	11.4	15
164	Proliferation, activity, and osteogenic differentiation of bone marrow stromal cells cultured on calcium titanium phosphate microspheres. Journal of Biomedical Materials Research Part B, 2005, 72A, 57-66.	3.1	53
165	Rat bone marrow stromal cell osteogenic differentiation and fibronectin adsorption on chitosan membranes: The effect of the degree of acetylation. Journal of Biomedical Materials Research - Part A, 2005, 75A, 387-397.	4.0	59
166	Inflammatory cell recruitment and adhesion to methyl-terminated self-assembled monolayers: Effect of implantation time. Microscopy Research and Technique, 2005, 66, 37-42.	2.2	5
167	In vitro degradation behavior of a novel bioresorbable composite material based on PLA and a soluble CaP glass. Acta Biomaterialia, 2005, 1, 411-419.	8.3	90
168	Protein adsorption on 18-alkyl chains immobilized on hydroxyl-terminated self-assembled monolayers. Biomaterials, 2005, 26, 3891-3899.	11.4	38
169	TiO2 type influences fibronectin adsorption. Journal of Materials Science: Materials in Medicine, 2005, 16, 1173-1178.	3.6	52
170	Effect of Calcium Phosphate Addition to Alginate Microspheres: Modulation of Enzyme Release Kinetics and Improvement of Cell Adhesion. Key Engineering Materials, 2005, 284-286, 689-692.	0.4	6
171	Chemical modification of chitosan by phosphorylation: an XPS, FT-IR and SEM study. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 1575-1593.	3.5	379
172	Biological evaluation of calcium alginate microspheres as a vehicle for the localized delivery of a therapeutic enzyme. Journal of Biomedical Materials Research - Part A, 2005, 74A, 545-552.	4.0	43
173	Recombinant glucocerebrosidase uptake by Gaucher disease human osteoblast culture model. Blood Cells, Molecules, and Diseases, 2005, 35, 348-354.	1.4	5
174	Adhesion and Proliferation of Human Osteoblastic Cells Seeded on Injectable Hydroxyapatite Microspheres. Key Engineering Materials, 2004, 254-256, 877-880.	0.4	10
175	In Vitro Mineralisation of Chitosan Membranes Carrying Phosphate Functionalities. Key Engineering Materials, 2004, 254-256, 577-580.	0.4	5
176	Fabrication of alternating polycation and albumin mutilayer coating by electrostatic layer-by-layer adsorption. Journal of Materials Science, 2004, 39, 349-351.	3.7	2
177	Calcium phosphate-alginate microspheres as enzyme delivery matrices. Biomaterials, 2004, 25, 4363-4373.	11.4	235
178	Biocompatibility of chemoenzymatically derived dextran-acrylate hydrogels. Journal of Biomedical Materials Research Part B, 2004, 68A, 584-596.	3.1	52
179	Protein electrostatic self-assembly on poly(DL-lactide) scaffold to promote osteoblast growth. Journal of Biomedical Materials Research Part B, 2004, 71B, 159-165.	3.1	26
180	Inflammatory responses and cell adhesion to self-assembled monolayers of alkanethiolates on gold. Biomaterials, 2004, 25, 2557-2563.	11.4	61

#	Article	IF	CITATIONS
181	Fabrication of alternating polycation and albumin multilayer coating onto stainless steel by electrostatic layer-by-layer adsorption. Colloids and Surfaces B: Biointerfaces, 2004, 34, 185-190.	5.0	33
182	Human Serum Albumin Adsorption on TiO2from Single Protein Solutions and from Plasma. Langmuir, 2004, 20, 9745-9754.	3.5	125
183	Albumin adsorption on cibacron blue F3G-A immobilized onto oligo(ethylene glycol)-terminated self-assembled monolayers. Journal of Materials Science: Materials in Medicine, 2003, 14, 945-954.	3.6	29
184	Protein adsorption on mixtures of hydroxyl- and methyl-terminated alkanethiols self-assembled monolayers. Journal of Biomedical Materials Research Part B, 2003, 67A, 158-171.	3.1	122
185	Adhesion of human leukocytes to biomaterials: Anin vitrostudy using alkanethiolate monolayers with different chemically functionalized surfaces. Journal of Biomedical Materials Research - Part A, 2003, 65A, 429-434.	4.0	40
186	Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications. Biomaterials, 2003, 24, 263-273.	11.4	259
187	Albumin and fibrinogen adsorption on PU–PHEMA surfaces. Biomaterials, 2003, 24, 2067-2076.	11.4	110
188	Albumin adsorption on alkanethiols self-assembled monolayers on gold electrodes studied by chronopotentiometry. Biomaterials, 2003, 24, 3697-3706.	11.4	47
189	Constructing thromboresistant surface on biomedical stainless steel via layer-by-layer deposition anticoagulant. Biomaterials, 2003, 24, 4699-4705.	11.4	106
190	Surface Engineering of Poly(dl-lactide) via Electrostatic Self-Assembly of Extracellular Matrix-like Molecules. Biomacromolecules, 2003, 4, 378-386.	5.4	62
191	Albumin and fibrinogen adsorption on Cibacron blue F3G-A immobilised onto PU-PHEMA (polyurethane-poly(hydroxyethylmethacrylate)) surfaces. Journal of Biomaterials Science, Polymer Edition, 2003, 14, 439-455.	3.5	21
192	Preparation of albumin preferential surfaces on poly(vinyl chloride) membranes via surface self-segregation. Journal of Biomedical Materials Research Part B, 2002, 61, 252-259.	3.1	3
193	Cellulose phosphates as biomaterials. In vivo biocompatibility studies. Biomaterials, 2002, 23, 971-980.	11.4	120
194	A novel urethane containing copolymer as a surface modification additive for blood contact materials. Journal of Materials Science: Materials in Medicine, 2002, 13, 677-684.	3.6	7
195	Affinity of Hydroxyapatite to Metal Cations - A Study on the Composition and Structure of Phosphates formed in the Presence of Titanium and Aluminium. Key Engineering Materials, 2001, 192-195, 55-58.	0.4	0
196	Corrosion behaviour of titanium in biofluids containing H2O2 studied by electrochemical impedance spectroscopy. Corrosion Science, 2001, 43, 547-559.	6.6	187
197	Stearyl poly(ethylene oxide) grafted surfaces for preferential adsorption of albumin. Biomaterials, 2001, 22, 3015-3023.	11.4	31
198	Interactions between calcium, phosphate, and albumin on the surface of titanium. Journal of Biomedical Materials Research Part B, 2001, 55, 45-53.	3.1	59

#	Article	IF	CITATIONS
199	Cellulose phosphates as biomaterials. I. Synthesis and characterization of highly phosphorylated cellulose gels. Journal of Applied Polymer Science, 2001, 82, 3341-3353.	2.6	133
200	Cellulose phosphates as biomaterials. II. Surface chemical modification of regenerated cellulose hydrogels. Journal of Applied Polymer Science, 2001, 82, 3354-3365.	2.6	45
201	Title is missing!. Journal of Materials Science, 2001, 36, 2163-2172.	3.7	88
202	Staphylococcus epidermidis RP62A adhesion to chemically modified cellulose derivatives. Journal of Materials Science: Materials in Medicine, 2001, 12, 543-548.	3.6	21
203	Mineralization of regenerated cellulose hydrogels. Journal of Materials Science: Materials in Medicine, 2001, 12, 785-791.	3.6	38
204	Self-Assembly and Surface Structure of an Amphiphilic Graft Copolymer, Polystyrene-graft-ï‰-Stearyl–Poly(ethylene oxide). Journal of Colloid and Interface Science, 2000, 224, 255-260.	9.4	13
205	Concept, design and fabrication of smart orthopedic implants. Medical Engineering and Physics, 2000, 22, 469-479.	1.7	93
206	Title is missing!. Journal of Materials Science, 2000, 35, 1165-1175.	3.7	19
207	In vitro testing of surface-modified biomaterials. Journal of Materials Science: Materials in Medicine, 1998, 9, 543-548.	3.6	23
208	Corrosion of Metallic Implants. , 1998, , 420-463.		2
209	Microstructure, Mechanical Properties and Stability of Brazed Metal/Ceramic Systems. , 1998, , 329-340.		2
210	Electrochemical and surface modifications on N+-ION implanted Ti-5Al-2.5Fe immersed in HBSS. Corrosion Science, 1997, 39, 377-383.	6.6	23
211	XPS characterization of surface films formed on surface-modified implant materials after cell culture. Journal of Materials Science: Materials in Medicine, 1997, 8, 423-426.	3.6	10
212	Title is missing!. Journal of Materials Science, 1997, 32, 653-659.	3.7	17
213	Electrochemical and surface modifications on N+-ion-implanted 316 L stainless steel. Journal of Materials Science: Materials in Medicine, 1997, 8, 365-368.	3.6	30
214	Investigation of the dissolution of the bioceramic hydroxyapatite in the presence of titanium ions using ToF-SIMS and XPS. Biomaterials, 1997, 18, 311-316.	11.4	44
215	Apatite deposition on titanium surfaces — the role of albumin adsorption. Biomaterials, 1997, 18, 963-968.	11.4	111
216	Influence of substrate material and surface finishing on the morphology of the calcium-phosphate coating. , 1997, 36, 85-90.		17

#	Article	IF	CITATIONS
217	Effect of hydroxyapatite thickness on metal ion release from Ti6Al4V substrates. Biomaterials, 1996, 17, 397-404.	11.4	101
218	The effect of hydroxyapatite thickness on metal ion release from stainless steel substrates. Journal of Materials Science: Materials in Medicine, 1995, 6, 818-823.	3.6	14
219	Modifications in the molecular structure of hydroxyapatite induced by titanium ions. Journal of Materials Science: Materials in Medicine, 1995, 6, 829-834.	3.6	24
220	Active metal brazing for joining glass-ceramic to titanium?a study on silver enrichment. Journal of Materials Science: Materials in Medicine, 1995, 6, 835-838.	3.6	8
221	In vitro calcification of orthopaedic implant materials. Journal of Materials Science: Materials in Medicine, 1995, 6, 849-852.	3.6	22
222	Electrochemical and surface modifications on N+-ion implanted Ti-6A1-4V immersed in HBSS. Corrosion Science, 1995, 37, 1861-1866.	6.6	31
223	Electrochemical studies of laser-treated Co-Cr-Mo alloy in a simulated physiological solution. Journal of Materials Science: Materials in Medicine, 1994, 5, 353-356.	3.6	15
224	Use of microelectrodes as electrochemical sensors of metal ions released from biomaterials. Biomaterials, 1994, 15, 821-826.	11.4	3
225	Corrosion resistance of titanium CP in saline physiological solutions with calcium phosphate and proteins. Clinical Materials, 1993, 14, 287-294.	0.5	47
226	The surface composition and corrosion behaviour of AISI 304 stainless steel after immersion in 20% HNO3 solution. Corrosion Science, 1991, 32, 179-184.	6.6	24
227	Electrochemical behaviour of laser treated AISI 316L stainless steel surfaces in a physiological solution. Clinical Materials, 1991, 7, 31-37.	0.5	5
228	Pretreatments of improve the adhesion of electrodeposits on aluminium. Surface and Interface Analysis, 1991, 17, 519-528.	1.8	24
229	Electrochemistry of AISI 316L stainless steel in calcium phosphate and protein solutions. Journal of Materials Science: Materials in Electronics, 1991, 2, 19-26.	2.2	22
230	Microstructure, Growth Kinetics, and Corrosion Resistance of Hot-Dip Galvanized Zn-5% Al Coatings. Corrosion, 1991, 47, 536-541.	1.1	10
231	The Immune System at the Metallic Implant Interface; Metal Ions Inhibit Immune Function but are not Cytotoxic. , 1991, , 19-28.		0
232	Effects of Metal Ions Present in lincate Solutions on the Characteristics of linc Alloy Films on Aluminium. Surface Engineering, 1990, 6, 287-293.	2.2	0
233	Diffusion and corrosion behaviour of tungsten-implanted Aluminium and the Al12W phase. Nuclear Instruments & Methods in Physics Research B, 1990, 50, 423-427.	1.4	7
234	Differential effects of eight metal ions on lymphocyte differentiation antigensin vitro. Journal of Biomedical Materials Research Part B, 1990, 24, 1059-1068.	3.1	48

#	Article	IF	CITATIONS
235	Electrochemistry of galvanic couples between carbon and common metallic biomaterials in the presence of crevices. Biomaterials, 1990, 11, 336-340.	11.4	13
236	Impedance and photo electrochemical measurements on passive films formed on metallic biomaterials. Corrosion Engineering Science and Technology, 1990, 25, 136-140.	0.3	25
237	Electrochemical studies of magnesium implanted with high doses of light ions. Nuclear Instruments & Methods in Physics Research B, 1989, 39, 559-562.	1.4	3
238	A contribution to the understanding of a.c. anodizing of aluminium. Journal of Applied Electrochemistry, 1989, 19, 829-838.	2.9	9
239	Surface pretreatments of aluminium for electroplating. Surface and Coatings Technology, 1988, 35, 321-331.	4.8	26
240	Changes induced in anodic behaviour of stainless steel in H ₂ SO ₄ solutionsby preanodic treatment and potential sweep rate. Corrosion Engineering Science and Technology, 1988, 23, 47-54.	0.3	6
241	The pitting resistance of AISI 316 stainless steel passivated in diluted nitric acid. Corrosion Science, 1983, 23, 1293-1305.	6.6	50
242	The Biomaterials Network (Biomat.net) as a Major Internet Resource for Biomaterials, Tissue Engineering and Biomineralization. , 0, , 373-390.		0
243	Morphology and Mechanical Properties of Injectable Ceramic Microspheres. Key Engineering Materials, 0, 396-398, 691-694.	0.4	2
244	The Blood Compatibility Challenge. Part 4: Surface Modification for Hemocompatible Materials: Passive and Active Approaches to Guide Blood-Material Interactions. SSRN Electronic Journal, 0, , .	0.4	0