Mrio A Barbosa

List of Publications by Citations

Source: https://exaly.com/author-pdf/8889368/mario-a-barbosa-publications-by-citations.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 242
 9,801
 55
 85

 papers
 citations
 h-index
 g-index

 247
 11,086
 7
 6.21

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
242	Chemical modification of chitosan by phosphorylation: an XPS, FT-IR and SEM study. <i>Journal of Biomaterials Science, Polymer Edition</i> , 2005 , 16, 1575-93	3.5	307
241	Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications. <i>Biomaterials</i> , 2003 , 24, 263-73	15.6	217
240	Calcium phosphate-alginate microspheres as enzyme delivery matrices. <i>Biomaterials</i> , 2004 , 25, 4363-73	15.6	210
239	Mesenchymal Stromal Cell Secretome: Influencing Therapeutic Potential by Cellular Pre-conditioning. <i>Frontiers in Immunology</i> , 2018 , 9, 2837	8.4	203
238	Impact of 3-D printed PLA- and chitosan-based scaffolds on human monocyte/macrophage responses: unraveling the effect of 3-D structures on inflammation. <i>Acta Biomaterialia</i> , 2014 , 10, 613-22	,10.8	200
237	Fibrinogen adsorption, platelet adhesion and activation on mixed hydroxyl-/methyl-terminated self-assembled monolayers. <i>Biomaterials</i> , 2006 , 27, 5357-67	15.6	184
236	Pectin-based injectable biomaterials for bone tissue engineering. <i>Biomacromolecules</i> , 2011 , 12, 568-77	6.9	174
235	The effect of the co-immobilization of human osteoprogenitors and endothelial cells within alginate microspheres on mineralization in a bone defect. <i>Biomaterials</i> , 2009 , 30, 3271-8	15.6	171
234	Inflammation in intervertebral disc degeneration and regeneration. <i>Journal of the Royal Society Interface</i> , 2015 , 12, 20141191	4.1	169
233	Corrosion behaviour of titanium in biofluids containing H2O2 studied by electrochemical impedance spectroscopy. <i>Corrosion Science</i> , 2001 , 43, 547-559	6.8	156
232	The correlation between the adsorption of adhesive proteins and cell behaviour on hydroxyl-methyl mixed self-assembled monolayers. <i>Biomaterials</i> , 2009 , 30, 307-16	15.6	132
231	Improving chitosan-mediated gene transfer by the introduction of intracellular buffering moieties into the chitosan backbone. <i>Acta Biomaterialia</i> , 2009 , 5, 2995-3006	10.8	129
230	Upregulation of bone cell differentiation through immobilization within a synthetic extracellular matrix. <i>Biomaterials</i> , 2007 , 28, 3644-55	15.6	128
229	Injectable in situ crosslinkable RGD-modified alginate matrix for endothelial cells delivery. <i>Biomaterials</i> , 2011 , 32, 7897-904	15.6	126
228	Immobilization of human mesenchymal stem cells within RGD-grafted alginate microspheres and assessment of their angiogenic potential. <i>Biomacromolecules</i> , 2010 , 11, 1956-64	6.9	119
227	Protein adsorption on mixtures of hydroxyl- and methyl-terminated alkanethiols self-assembled monolayers. <i>Journal of Biomedical Materials Research Part B</i> , 2003 , 67, 158-71		117
226	Human serum albumin adsorption on TiO2 from single protein solutions and from plasma. <i>Langmuir</i> , 2004 , 20, 9745-54	4	116

(2014-2006)

225	The uptake of titanium ions by hydroxyapatite particles-structural changes and possible mechanisms. <i>Biomaterials</i> , 2006 , 27, 1749-61	15.6	112
224	Ionizing radiation modulates human macrophages towards a pro-inflammatory phenotype preserving their pro-invasive and pro-angiogenic capacities. <i>Scientific Reports</i> , 2016 , 6, 18765	4.9	107
223	Cellulose phosphates as biomaterials. In vivo biocompatibility studies. <i>Biomaterials</i> , 2002 , 23, 971-80	15.6	104
222	Chitosan drives anti-inflammatory macrophage polarisation and pro-inflammatory dendritic cell stimulation. <i>European Cells and Materials</i> , 2012 , 24, 136-52; discussion 152-3	4.3	104
221	Apatite deposition on titanium surfacesthe role of albumin adsorption. <i>Biomaterials</i> , 1997 , 18, 963-8	15.6	101
220	Cellulose phosphates as biomaterials. I. Synthesis and characterization of highly phosphorylated cellulose gels. <i>Journal of Applied Polymer Science</i> , 2001 , 82, 3341-3353	2.9	100
219	A novel dry active electrode for EEG recording. <i>IEEE Transactions on Biomedical Engineering</i> , 2007 , 54, 162-5	5	99
218	Albumin and fibrinogen adsorption on PU-PHEMA surfaces. <i>Biomaterials</i> , 2003 , 24, 2067-76	15.6	99
217	Constructing thromboresistant surface on biomedical stainless steel via layer-by-layer deposition anticoagulant. <i>Biomaterials</i> , 2003 , 24, 4699-705	15.6	99
216	Modulation of the inflammatory response to chitosan through M2 macrophage polarization using pro-resolution mediators. <i>Biomaterials</i> , 2015 , 37, 116-23	15.6	97
215	The Two Faces of Tumor-Associated Macrophages and Their Clinical Significance in Colorectal Cancer. <i>Frontiers in Immunology</i> , 2019 , 10, 1875	8.4	93
214	Layer-by-layer self-assembly of chitosan and poly(Eglutamic acid) into polyelectrolyte complexes. <i>Biomacromolecules</i> , 2011 , 12, 4183-95	6.9	92
213	Macrophage polarization following chitosan implantation. <i>Biomaterials</i> , 2013 , 34, 9952-9	15.6	90
212	Effect of hydroxyapatite thickness on metal ion release from Ti6Al4V substrates. <i>Biomaterials</i> , 1996 , 17, 397-404	15.6	89
211	Osteoblast adhesion and morphology on TiO2 depends on the competitive preadsorption of albumin and fibronectin. <i>Journal of Biomedical Materials Research - Part A</i> , 2008 , 84, 281-90	5.4	85
21 0	Phenotypic and proliferative modulation of human mesenchymal stem cells via crosstalk with endothelial cells. <i>Stem Cell Research</i> , 2011 , 7, 186-97	1.6	84
209	Preparation and characterisation of calcium-phosphate porous microspheres with a uniform size for biomedical applications. <i>Journal of Materials Science: Materials in Medicine</i> , 2006 , 17, 455-63	4.5	84
208	Macrophages stimulate gastric and colorectal cancer invasion through EGFR Y(1086), c-Src, Erk1/2 and Akt phosphorylation and smallGTPase activity. <i>Oncogene</i> , 2014 , 33, 2123-33	9.2	77

207	Polysaccharides as scaffolds for bone regeneration. <i>IRBM News</i> , 2005 , 26, 212-217		77
206	The two faces of metal ions: From implants rejection to tissue repair/regeneration. <i>Biomaterials</i> , 2016 , 84, 262-275	15.6	76
205	In vitro degradation behavior of a novel bioresorbable composite material based on PLA and a soluble CaP glass. <i>Acta Biomaterialia</i> , 2005 , 1, 411-9	10.8	75
204	Concept, design and fabrication of smart orthopedic implants. <i>Medical Engineering and Physics</i> , 2000 , 22, 469-79	2.4	75
203	Cellulose phosphates as biomaterials. Mineralization of chemically modified regenerated cellulose hydrogels. <i>Journal of Materials Science</i> , 2001 , 36, 2163-2172	4.3	74
202	Bridging Autism Spectrum Disorders and Schizophrenia through inflammation and biomarkers - pre-clinical and clinical investigations. <i>Journal of Neuroinflammation</i> , 2017 , 14, 179	10.1	72
201	Attachment, spreading and short-term proliferation of human osteoblastic cells cultured on chitosan films with different degrees of acetylation. <i>Journal of Biomaterials Science, Polymer Edition</i> , 2007 , 18, 469-85	3.5	71
2 00	Decellularized human colorectal cancer matrices polarize macrophages towards an anti-inflammatory phenotype promoting cancer cell invasion via CCL18. <i>Biomaterials</i> , 2017 , 124, 211-22	24 ^{15.6}	70
199	Extracellular Vesicles: Immunomodulatory messengers in the context of tissue repair/regeneration. <i>European Journal of Pharmaceutical Sciences</i> , 2017 , 98, 86-95	5.1	63
198	Biofunctional chemically modified pectin for cell delivery. Soft Matter, 2012, 8, 4731	3.6	63
197	miR-195 in human primary mesenchymal stromal/stem cells regulates proliferation, osteogenesis and paracrine effect on angiogenesis. <i>Oncotarget</i> , 2016 , 7, 7-22	3.3	61
196	Development of an immunomodulatory biomaterial: using resolvin D1 to modulate inflammation. <i>Biomaterials</i> , 2015 , 53, 566-73	15.6	60
195	The effect of hyaluronan-based delivery of stromal cell-derived factor-1 on the recruitment of MSCs in degenerating intervertebral discs. <i>Biomaterials</i> , 2014 , 35, 8144-53	15.6	59
194	Dynamics of fibronectin adsorption on TiO2 surfaces. <i>Langmuir</i> , 2007 , 23, 7046-54	4	59
193	Extracellular vesicles: intelligent delivery strategies for therapeutic applications. <i>Journal of Controlled Release</i> , 2018 , 289, 56-69	11.7	58
192	Surface engineering of poly(DL-lactide) via electrostatic self-assembly of extracellular matrix-like molecules. <i>Biomacromolecules</i> , 2003 , 4, 378-86	6.9	57
191	The inflammatory response in the regression of lumbar disc herniation. <i>Arthritis Research and Therapy</i> , 2018 , 20, 251	5.7	56
190	Inflammatory responses and cell adhesion to self-assembled monolayers of alkanethiolates on gold. <i>Biomaterials</i> , 2004 , 25, 2557-63	15.6	55

(1983-2005)

189	Rat bone marrow stromal cell osteogenic differentiation and fibronectin adsorption on chitosan membranes: the effect of the degree of acetylation. <i>Journal of Biomedical Materials Research - Part A</i> , 2005 , 75, 387-97	5.4	55	
188	Production, characterization and biocompatibility of marine collagen matrices from an alternative and sustainable source: the sea urchin Paracentrotus lividus. <i>Marine Drugs</i> , 2014 , 12, 4912-33	6	54	
187	Three-dimensional culture of human osteoblastic cells in chitosan sponges: the effect of the degree of acetylation. <i>Journal of Biomedical Materials Research - Part A</i> , 2006 , 76, 335-46	5.4	53	
186	Interactions between calcium, phosphate, and albumin on the surface of titanium. <i>Journal of Biomedical Materials Research Part B</i> , 2001 , 55, 45-53		53	
185	The influence of functional groups of self-assembled monolayers on fibrous capsule formation and cell recruitment. <i>Journal of Biomedical Materials Research - Part A</i> , 2006 , 76, 737-43	5.4	52	
184	Enhanced mesenchymal stromal cell recruitment via natural killer cells by incorporation of inflammatory signals in biomaterials. <i>Journal of the Royal Society Interface</i> , 2012 , 9, 261-71	4.1	51	
183	Biocompatibility of chemoenzymatically derived dextran-acrylate hydrogels. <i>Journal of Biomedical Materials Research Part B</i> , 2004 , 68, 584-96		50	
182	The inflammasome in host response to biomaterials: Bridging inflammation and tissue regeneration. <i>Acta Biomaterialia</i> , 2019 , 83, 1-12	10.8	50	
181	Engineering endochondral bone: in vivo studies. <i>Tissue Engineering - Part A</i> , 2009 , 15, 635-43	3.9	48	
180	Proliferation, activity, and osteogenic differentiation of bone marrow stromal cells cultured on calcium titanium phosphate microspheres. <i>Journal of Biomedical Materials Research Part B</i> , 2005 , 72, 57-66		48	
179	Effect of Polyelectrolyte Film Stiffness on Endothelial Cells During Endothelial-to-Mesenchymal Transition. <i>Biomacromolecules</i> , 2015 , 16, 3584-93	6.9	47	
178	Injectability of a bone filler system based on hydroxyapatite microspheres and a vehicle with in situ gel-forming ability. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2008 , 87, 49-5	i8 ^{.5}	47	
177	TiO2 type influences fibronectin adsorption. <i>Journal of Materials Science: Materials in Medicine</i> , 2005 , 16, 1173-8	4.5	47	
176	Engineering endochondral bone: in vitro studies. <i>Tissue Engineering - Part A</i> , 2009 , 15, 625-34	3.9	46	
175	NAP-2 Secreted by Human NK Cells Can Stimulate Mesenchymal Stem/Stromal Cell Recruitment. <i>Stem Cell Reports</i> , 2016 , 6, 466-473	8	46	
174	Modulation of stability and mucoadhesive properties of chitosan microspheres for therapeutic gastric application. <i>International Journal of Pharmaceutics</i> , 2013 , 454, 116-24	6.5	44	
173	Differential effects of eight metal ions on lymphocyte differentiation antigens in vitro. <i>Journal of Biomedical Materials Research Part B</i> , 1990 , 24, 1059-68		44	
172	The pitting resistance of AISI 316 stainless steel passivated in diluted nitric acid. <i>Corrosion Science</i> , 1983 , 23, 1293-1305	6.8	44	

171	Anti-inflammatory Chitosan/Poly-Eglutamic acid nanoparticles control inflammation while remodeling extracellular matrix in degenerated intervertebral disc. <i>Acta Biomaterialia</i> , 2016 , 42, 168-17	⁄ €0.8	44
170	Adsorbed fibrinogen leads to improved bone regeneration and correlates with differences in the systemic immune response. <i>Acta Biomaterialia</i> , 2013 , 9, 7209-17	10.8	43
169	Fibrinogen scaffolds with immunomodulatory properties promote in vivo bone regeneration. <i>Biomaterials</i> , 2016 , 111, 163-178	15.6	43
168	Dendritic Cell-derived Extracellular Vesicles mediate Mesenchymal Stem/Stromal Cell recruitment. <i>Scientific Reports</i> , 2017 , 7, 1667	4.9	41
167	The blood compatibility challenge. Part 4: Surface modification for hemocompatible materials: Passive and active approaches to guide blood-material interactions. <i>Acta Biomaterialia</i> , 2019 , 94, 33-43	10.8	41
166	Long noncoding RNAs: a missing link in osteoporosis. <i>Bone Research</i> , 2019 , 7, 10	13.3	41
165	Fibronectin-mediated endothelialisation of chitosan porous matrices. <i>Biomaterials</i> , 2009 , 30, 5465-75	15.6	41
164	Investigation of the dissolution of the bioceramic hydroxyapatite in the presence of titanium ions using ToF-SIMS and XPS. <i>Biomaterials</i> , 1997 , 18, 311-6	15.6	41
163	Surface characterization and cell response of a PLA/CaP glass biodegradable composite material. Journal of Biomedical Materials Research - Part A, 2008, 85, 477-86	5.4	41
162	Albumin adsorption on alkanethiols self-assembled monolayers on gold electrodes studied by chronopotentiometry. <i>Biomaterials</i> , 2003 , 24, 3697-706	15.6	41
161	Targeted gene delivery into peripheral sensorial neurons mediated by self-assembled vectors composed of poly(ethylene imine) and tetanus toxin fragment c. <i>Journal of Controlled Release</i> , 2010 , 143, 350-8	11.7	40
160	Three-dimensional scaffolds of fetal decellularized hearts exhibit enhanced potential to support cardiac cells in comparison to the adult. <i>Biomaterials</i> , 2016 , 104, 52-64	15.6	40
159	and clinical application of strontium-enriched biomaterials for bone regeneration: A systematic review. <i>Bone and Joint Research</i> , 2017 , 6, 366-375	4.2	39
158	Cellulose phosphates as biomaterials. II. Surface chemical modification of regenerated cellulose hydrogels. <i>Journal of Applied Polymer Science</i> , 2001 , 82, 3354-3365	2.9	39
157	Corrosion resistance of titanium CP in saline physiological solutions with calcium phosphate and proteins. <i>Clinical Materials</i> , 1993 , 14, 287-294		39
156	Ibuprofen-loaded poly(trimethylene carbonate-co-Etaprolactone) electrospun fibres for nerve regeneration. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2016 , 10, E154-66	4.4	38
155	Adhesion of human leukocytes to biomaterials: an in vitro study using alkanethiolate monolayers with different chemically functionalized surfaces. <i>Journal of Biomedical Materials Research - Part A</i> , 2003 , 65, 429-34	5.4	38
154	Mesenchymal stem cell recruitment by stromal derived factor-1-delivery systems based on chitosan/poly(Eglutamic acid) polyelectrolyte complexes. <i>European Cells and Materials</i> , 2012 , 23, 249-60; discussion 260-1	4.3	38

(1995-2017)

153	Octadecyl Chains Immobilized onto Hyaluronic Acid Coatings by Thiol-ene "Click Chemistry" Increase the Surface Antimicrobial Properties and Prevent Platelet Adhesion and Activation to Polyurethane. ACS Applied Materials & Samp; Interfaces, 2017, 9, 7979-7989	9.5	37
152	Leptin effect on RANKL and OPG expression in MC3T3-E1 osteoblasts. <i>Journal of Cellular Biochemistry</i> , 2006 , 98, 1123-9	4.7	37
151	Biological evaluation of calcium alginate microspheres as a vehicle for the localized delivery of a therapeutic enzyme. <i>Journal of Biomedical Materials Research - Part A</i> , 2005 , 74, 545-52	5.4	37
150	TNF-alpha-induced microglia activation requires miR-342: impact on NF-kB signaling and neurotoxicity. <i>Cell Death and Disease</i> , 2020 , 11, 415	9.8	36
149	Protein adsorption on 18-alkyl chains immobilized on hydroxyl-terminated self-assembled monolayers. <i>Biomaterials</i> , 2005 , 26, 3891-99	15.6	36
148	An interferon-Edelivery system based on chitosan/poly(Eglutamic acid) polyelectrolyte complexes modulates macrophage-derived stimulation of cancer cell invasion in vitro. <i>Acta Biomaterialia</i> , 2015 , 23, 157-171	10.8	34
147	Mineralization of regenerated cellulose hydrogels. <i>Journal of Materials Science: Materials in Medicine</i> , 2001 , 12, 785-91	4.5	34
146	New insights into mutable collagenous tissue: correlations between the microstructure and mechanical state of a sea-urchin ligament. <i>PLoS ONE</i> , 2011 , 6, e24822	3.7	34
145	Immunomodulation of Human Mesenchymal Stem/Stromal Cells in Intervertebral Disc Degeneration: Insights From a Proinflammatory/Degenerative Ex Vivo Model. <i>Spine</i> , 2018 , 43, E673-E68	3 2 ·3	34
144	Evaluation of the effect of the degree of acetylation on the inflammatory response to 3D porous chitosan scaffolds. <i>Journal of Biomedical Materials Research - Part A</i> , 2010 , 93, 20-8	5.4	33
143	miR-195 inhibits macrophages pro-inflammatory profile and impacts the crosstalk with smooth muscle cells. <i>PLoS ONE</i> , 2017 , 12, e0188530	3.7	32
142	Cellulose phosphates as biomaterials. In vitro biocompatibility studies. <i>Reactive and Functional Polymers</i> , 2006 , 66, 728-739	4.6	31
141	Adsorption of a therapeutic enzyme to self-assembled monolayers: effect of surface chemistry and solution pH on the amount and activity of adsorbed enzyme. <i>Biomaterials</i> , 2005 , 26, 2695-704	15.6	31
140	Self-Healing Spongy Coating for Drug "Cocktail" Delivery. <i>ACS Applied Materials & Delivery and Materials & Delivery and Materials & Delivery and Materials & Delivery and Del</i>	9.5	30
139	Pro-inflammatory chitosan/poly(回lutamic acid) nanoparticles modulate human antigen-presenting cells phenotype and revert their pro-invasive capacity. <i>Acta Biomaterialia</i> , 2017 , 63, 96-109	10.8	30
138	Adsorbed fibrinogen enhances production of bone- and angiogenic-related factors by monocytes/macrophages. <i>Tissue Engineering - Part A</i> , 2014 , 20, 250-63	3.9	30
137	Fabrication of alternating polycation and albumin multilayer coating onto stainless steel by electrostatic layer-by-layer adsorption. <i>Colloids and Surfaces B: Biointerfaces</i> , 2004 , 34, 185-90	6	30
136	Electrochemical and surface modifications on N+-ion implanted Ti-6A1-4V immersed in HBSS. <i>Corrosion Science</i> , 1995 , 37, 1861-1866	6.8	30

135	Macrophage interactions with polylactic acid and chitosan scaffolds lead to improved recruitment of human mesenchymal stem/stromal cells: a comprehensive study with different immune cells. Journal of the Royal Society Interface, 2016, 13,	4.1	29
134	Osteogenic, anti-osteoclastogenic and immunomodulatory properties of a strontium-releasing hybrid scaffold for bone repair. <i>Materials Science and Engineering C</i> , 2019 , 99, 1289-1303	8.3	29
133	Mesenchymal Stem/Stromal Cells seeded on cartilaginous endplates promote Intervertebral Disc Regeneration through Extracellular Matrix Remodeling. <i>Scientific Reports</i> , 2016 , 6, 33836	4.9	28
132	A Degenerative/Proinflammatory Intervertebral Disc Organ Culture: An Ex Vivo Model for Anti-inflammatory Drug and Cell Therapy. <i>Tissue Engineering - Part C: Methods</i> , 2016 , 22, 8-19	2.9	28
131	Injectable hybrid system for strontium local delivery promotes bone regeneration in a rat critical-sized defect model. <i>Scientific Reports</i> , 2017 , 7, 5098	4.9	28
130	Electrochemical and surface modifications on N+-ion-implanted 316 L stainless steel. <i>Journal of Materials Science: Materials in Medicine</i> , 1997 , 8, 365-8	4.5	28
129	Stearyl poly(ethylene oxide) grafted surfaces for preferential adsorption of albumin. <i>Biomaterials</i> , 2001 , 22, 3015-23	15.6	28
128	Protein adsorption and clotting time of pHEMA hydrogels modified with C18 ligands to adsorb albumin selectively and reversibly. <i>Biomaterials</i> , 2009 , 30, 5541-51	15.6	27
127	Induction of notch signaling by immobilization of jagged-1 on self-assembled monolayers. <i>Biomaterials</i> , 2009 , 30, 6879-87	15.6	27
126	Albumin adsorption on cibacron blue F3G-A immobilized onto oligo(ethylene glycol)-terminated self-assembled monolayers. <i>Journal of Materials Science: Materials in Medicine</i> , 2003 , 14, 945-54	4.5	27
125	Chitosan/EPGA nanoparticles-based immunotherapy as adjuvant to radiotherapy in breast cancer. <i>Biomaterials</i> , 2020 , 257, 120218	15.6	27
124	The mechanically adaptive connective tissue of echinoderms: its potential for bio-innovation in applied technology and ecology. <i>Marine Environmental Research</i> , 2012 , 76, 108-13	3.3	26
123	Molecularly designed surfaces for blood deheparinization using an immobilized heparin-binding peptide. <i>Journal of Biomedical Materials Research - Part A</i> , 2009 , 88, 162-73	5.4	26
122	Improving the adhesion of poly(ethylene terephthalate) fibers to poly(hydroxyethyl methacrylate) hydrogels by ozone treatment: Surface characterization and pull-out tests. <i>Polymer</i> , 2005 , 46, 9840-985	50 ^{3.9}	26
121	Joint analysis of IVD herniation and degeneration by rat caudal needle puncture model. <i>Journal of Orthopaedic Research</i> , 2017 , 35, 258-268	3.8	25
120	Macrophage response to chitosan/poly-(Eglutamic acid) nanoparticles carrying an anti-inflammatory drug. <i>Journal of Materials Science: Materials in Medicine</i> , 2015 , 26, 167	4.5	25
119	Nanostructured lipid carriers loaded with resveratrol modulate human dendritic cells. <i>International Journal of Nanomedicine</i> , 2016 , 11, 3501-16	7.3	25
118	Dynamic stiffness of polyelectrolyte multilayer films based on disulfide bonds for in situ control of cell adhesion. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 7546-7553	7.3	24

(2006-2012)

117	Biosynthesis of highly pure poly-Eglutamic acid for biomedical applications. <i>Journal of Materials Science: Materials in Medicine</i> , 2012 , 23, 1583-91	4.5	24	
116	Surface pretreatments of aluminium for electroplating. Surface and Coatings Technology, 1988, 35, 321	-3β4	24	
115	Systemic Delivery of Bone Marrow Mesenchymal Stem Cells for In Situ Intervertebral Disc Regeneration. <i>Stem Cells Translational Medicine</i> , 2017 , 6, 1029-1039	6.9	23	
114	The effect of immobilization of thrombin inhibitors onto self-assembled monolayers on the adsorption and activity of thrombin. <i>Biomaterials</i> , 2010 , 31, 3772-80	15.6	23	
113	Protein electrostatic self-assembly on poly(DL-lactide) scaffold to promote osteoblast growth. Journal of Biomedical Materials Research Part B, 2004 , 71, 159-65		23	
112	Circulating extracellular vesicles: Their role in tissue repair and regeneration. <i>Transfusion and Apheresis Science</i> , 2016 , 55, 53-61	2.4	23	
111	Strontium-rich injectable hybrid system for bone regeneration. <i>Materials Science and Engineering C</i> , 2016 , 59, 818-827	8.3	22	
110	Hip fractures cluster in space: an epidemiological analysis in Portugal. <i>Osteoporosis International</i> , 2008 , 19, 1797-804	5.3	22	
109	Pretreatments of improve the adhesion of electrodeposits on aluminium. <i>Surface and Interface Analysis</i> , 1991 , 17, 519-528	1.5	22	
108	Electrochemistry of AISI 316L stainless steel in calcium phosphate and protein solutions. <i>Journal of Materials Science: Materials in Electronics</i> , 1991 , 2, 19-26	2.1	22	
107	The surface composition and corrosion behaviour of AISI 304 stainless steel after immersion in 20% HNO3 solution. <i>Corrosion Science</i> , 1991 , 32, 179-184	6.8	22	
106	Impedance and photo electrochemical measurements on passive films formed on metallic biomaterials. <i>Corrosion Engineering Science and Technology</i> , 1990 , 25, 136-140		22	
105	Chitosan/poly(Eglutamic acid) nanoparticles incorporating IFN-Ifor immune response modulation in the context of colorectal cancer. <i>Biomaterials Science</i> , 2019 , 7, 3386-3403	7.4	21	
104	Resveratrol as a natural anti-tumor necrosis factor-Imolecule: implications to dendritic cells and their crosstalk with mesenchymal stromal cells. <i>PLoS ONE</i> , 2014 , 9, e91406	3.7	21	
103	Selective protein adsorption modulates platelet adhesion and activation to oligo(ethylene glycol)-terminated self-assembled monolayers with C18 ligands. <i>Journal of Biomedical Materials Research - Part A</i> , 2009 , 89, 642-53	5.4	21	
102	Electrochemical and surface modifications on N+-ION implanted Ti-5Al-2.5Fe immersed in HBSS. <i>Corrosion Science</i> , 1997 , 39, 377-383	6.8	21	
101	In vitro testing of surface-modified biomaterials. <i>Journal of Materials Science: Materials in Medicine</i> , 1998 , 9, 543-8	4.5	21	
100	Functionalization of chitosan membranes through phosphorylation: Atomic force microscopy, wettability, and cytotoxicity studies. <i>Journal of Applied Polymer Science</i> , 2006 , 102, 276-284	2.9	21	

99	Matrix metalloproteinases in a sea urchin ligament with adaptable mechanical properties. <i>PLoS ONE</i> , 2012 , 7, e49016	3.7	21
98	Stiffness of polyelectrolyte multilayer film influences endothelial function of endothelial cell monolayer. <i>Colloids and Surfaces B: Biointerfaces</i> , 2017 , 149, 379-387	6	20
97	Albumin and fibrinogen adsorption on cibacron blue F3G-A immobilised onto PU-PHEMA (polyurethane-poly(hydroxyethylmethacrylate)) surfaces. <i>Journal of Biomaterials Science, Polymer Edition</i> , 2003 , 14, 439-55	3.5	20
96	Staphylococcus epidermidis RP62A adhesion to chemically modified cellulose derivatives. <i>Journal of Materials Science: Materials in Medicine</i> , 2001 , 12, 543-8	4.5	20
95	Adsorbed Fibrinogen stimulates TLR-4 on monocytes and induces BMP-2 expression. <i>Acta Biomaterialia</i> , 2017 , 49, 296-305	10.8	19
94	Bioengineered surfaces to improve the blood compatibility of biomaterials through direct thrombin inactivation. <i>Acta Biomaterialia</i> , 2012 , 8, 4101-10	10.8	19
93	Modifications in the molecular structure of hydroxyapatite induced by titanium ions. <i>Journal of Materials Science: Materials in Medicine</i> , 1995 , 6, 829-834	4.5	19
92	Neonatal human dermal fibroblasts immobilized in RGD-alginate induce angiogenesis. <i>Cell Transplantation</i> , 2014 , 23, 945-57	4	18
91	The effect of adsorbed fibronectin and osteopontin on macrophage adhesion and morphology on hydrophilic and hydrophobic model surfaces. <i>Acta Biomaterialia</i> , 2012 , 8, 3669-77	10.8	18
90	In vitro calcification of orthopaedic implant materials. <i>Journal of Materials Science: Materials in Medicine</i> , 1995 , 6, 849-852	4.5	18
89	Fibrinogen and magnesium combination biomaterials modulate macrophage phenotype, NF-kB signaling and crosstalk with mesenchymal stem/stromal cells. <i>Acta Biomaterialia</i> , 2020 , 114, 471-484	10.8	18
88	Macrophages Down-Regulate Gene Expression of Intervertebral Disc Degenerative Markers Under a Pro-inflammatory Microenvironment. <i>Frontiers in Immunology</i> , 2019 , 10, 1508	8.4	17
87	Genetically Engineered-MSC Therapies for Non-unions, Delayed Unions and Critical-size Bone Defects. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	17
86	Characterization of polymeric solutions as injectable vehicles for hydroxyapatite microspheres. <i>AAPS PharmSciTech</i> , 2010 , 11, 852-8	3.9	17
85	Platelet and leukocyte adhesion to albumin binding self-assembled monolayers. <i>Journal of Materials Science: Materials in Medicine</i> , 2011 , 22, 2053-63	4.5	16
84	3D chitosan scaffolds impair NLRP3 inflammasome response in macrophages. <i>Acta Biomaterialia</i> , 2019 , 91, 123-134	10.8	15
83	E-cadherin-defective gastric cancer cells depend on Laminin to survive and invade. <i>Human Molecular Genetics</i> , 2015 , 24, 5891-900	5.6	15
82	Matrix metalloproteases as maestros for the dual role of LPS- and IL-10-stimulated macrophages in cancer cell behaviour. <i>BMC Cancer</i> , 2015 , 15, 456	4.8	15

81	Chitosan porous 3D scaffolds embedded with resolvin D1 to improve in vivo bone healing. <i>Journal of Biomedical Materials Research - Part A</i> , 2018 , 106, 1626-1633	5.4	15
80	Immune response and innervation signatures in aseptic hip implant loosening. <i>Journal of Translational Medicine</i> , 2016 , 14, 205	8.5	15
79	The Contribution of Inflammation to Autism Spectrum Disorders: Recent Clinical Evidence. <i>Methods in Molecular Biology</i> , 2019 , 2011, 493-510	1.4	15
78	Fibrinogen promotes resorption of chitosan by human osteoclasts. <i>Acta Biomaterialia</i> , 2013 , 9, 6553-62	10.8	15
77	Protein adsorption characterization. <i>Methods in Molecular Biology</i> , 2012 , 811, 141-61	1.4	15
76	Brazing parameters determine the degradation and mechanical behaviour of alumina/titanium brazed joints. <i>Journal of Materials Science</i> , 2000 , 35, 1165-1175	4.3	15
75	A co-culture system with three different primary human cell populations reveals that biomaterials and MSC modulate macrophage-driven fibroblast recruitment. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2018 , 12, e1433-e1440	4.4	14
74	Endothelialization of chitosan porous conduits via immobilization of a recombinant fibronectin fragment (rhFNIII7-10). <i>Acta Biomaterialia</i> , 2013 , 9, 5643-52	10.8	14
73	Poly(Eglutamic acid) and poly(Eglutamic acid)-based nanocomplexes enhance type II collagen production in intervertebral disc. <i>Journal of Materials Science: Materials in Medicine</i> , 2017 , 28, 6	4.5	14
72	Correlations between the biochemistry and mechanical states of a sea-urchin ligament: a mutable collagenous structure. <i>Biointerphases</i> , 2012 , 7, 38	1.8	14
71	Production, bonding strength and electrochemical behaviour of commercially pure Ti/Al2O3 brazed joints. <i>Journal of Materials Science</i> , 1997 , 32, 653-659	4.3	14
70	Influence of substrate material and surface finishing on the morphology of the calcium-phosphate coating. <i>Journal of Biomedical Materials Research Part B</i> , 1997 , 36, 85-90		14
69	The attraction of Mac-1+ phagocytes during acute inflammation by methyl-coated self-assembled monolayers. <i>Biomaterials</i> , 2005 , 26, 3021-7	15.6	14
68	The effect of octadecyl chain immobilization on the hemocompatibility of poly (2-hydroxyethyl methacrylate). <i>Biomaterials</i> , 2012 , 33, 7677-85	15.6	13
67	Implanted neonatal human dermal fibroblasts influence the recruitment of endothelial cells in mice. <i>Biomatter</i> , 2012 , 2, 43-52		13
66	Microstructure, mechanical properties and chemical degradation of brazed AISI 316 stainless steel/alumina systems. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2008 , 480, 306-315	5.3	13
65	Self-Assembly and Surface Structure of an Amphiphilic Graft Copolymer, Polystyrene-graft-omega-Stearyl-Poly(ethylene oxide). <i>Journal of Colloid and Interface Science</i> , 2000 , 224, 255-260	9.3	13
64	Electrochemical studies of laser-treated Co-Cr-Mo alloy in a simulated physiological solution. Journal of Materials Science: Materials in Medicine, 1994, 5, 353-356	4.5	12

63	Electrochemistry of galvanic couples between carbon and common metallic biomaterials in the presence of crevices. <i>Biomaterials</i> , 1990 , 11, 336-40	15.6	12
62	Intricate Macrophage-Colorectal Cancer Cell Communication in Response to Radiation. <i>PLoS ONE</i> , 2016 , 11, e0160891	3.7	12
61	Improvement of Bovine Nucleus Pulposus Cells Isolation Leads to Identification of Three Phenotypically Distinct Cell Subpopulations. <i>Tissue Engineering - Part A</i> , 2015 , 21, 2216-27	3.9	11
60	Ultrastructural and biochemical characterization of mechanically adaptable collagenous structures in the edible sea urchin Paracentrotus lividus. <i>Zoology</i> , 2015 , 118, 147-60	1.7	11
59	Fundamentals of protein and cell interactions in biomaterials 2018, 1-27		11
58	The effect of hydroxyapatite thickness on metal ion release from stainless steel substrates. <i>Journal of Materials Science: Materials in Medicine</i> , 1995 , 6, 818-823	4.5	11
57	Age-Correlated Phenotypic Alterations in Cells Isolated From Human Degenerated Intervertebral Discs With Contained Hernias. <i>Spine</i> , 2018 , 43, E274-E284	3.3	10
56	Adhesion and Proliferation of Human Osteoblastic Cells Seeded on Injectable Hydroxyapatite Microspheres. <i>Key Engineering Materials</i> , 2003 , 254-256, 877-880	0.4	10
55	Poly(EGlutamic Acid) as an Exogenous Promoter of Chondrogenic Differentiation of Human Mesenchymal Stem/Stromal Cells. <i>Tissue Engineering - Part A</i> , 2015 , 21, 1869-85	3.9	9
54	miR-99a in bone homeostasis: Regulating osteogenic lineage commitment and osteoclast differentiation. <i>Bone</i> , 2020 , 134, 115303	4.7	9
53	Human Bone Marrow Mesenchymal Stem/Stromal Cells Preserve Their Immunomodulatory and Chemotactic Properties When Expanded in a Human Plasma Derived Xeno-Free Medium. <i>Stem Cells International</i> , 2017 , 2017, 2185351	5	9
52	Bioactivity of immobilized EGF on self-assembled monolayers: optimization of the immobilization process. <i>Journal of Biomedical Materials Research - Part A</i> , 2010 , 94, 576-85	5.4	9
51	XPS characterization of surface films formed on surface-modified implant materials after cell culture. <i>Journal of Materials Science: Materials in Medicine</i> , 1997 , 8, 423-6	4.5	9
50	Modulation of the In Vivo Inflammatory Response by Pro- Versus Anti-Inflammatory Intervertebral Disc Treatments. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	8
49	Profiling the circulating miRnome reveals a temporal regulation of the bone injury response. <i>Theranostics</i> , 2018 , 8, 3902-3917	12.1	8
48	The stability of self-assembled monolayers with time and under biological conditions. <i>Journal of Biomedical Materials Research - Part A</i> , 2010 , 94, 833-43	5.4	8
47	A contribution to the understanding of a.c. anodizing of aluminium. <i>Journal of Applied Electrochemistry</i> , 1989 , 19, 829-838	2.6	8
46	Adhesion of human leukocytes on mixtures of hydroxyl- and methyl-terminated self-assembled monolayers: effect of blood protein adsorption. <i>Journal of Biomedical Materials Research - Part A</i> , 2010 , 93, 12-9	5.4	7

(2013-2002)

45	A novel urethane containing copolymer as a surface modification additive for blood contact materials. <i>Journal of Materials Science: Materials in Medicine</i> , 2002 , 13, 677-84	4.5	7	
44	Active metal brazing for joining glass-ceramic to titanium study on silver enrichment. <i>Journal of Materials Science: Materials in Medicine</i> , 1995 , 6, 835-838	4.5	7	
43	Microstructure, Growth Kinetics, and Corrosion Resistance of Hot-Dip Galvanized Zn-5% Al Coatings. <i>Corrosion</i> , 1991 , 47, 536-541	1.8	7	
42	Diffusion and corrosion behaviour of tungsten-implanted Aluminium and the Al12W phase. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1990 , 50, 423-427	1.2	7	
41	Immunomodulatory potential of chitosan-based materials for cancer therapy: a systematic review of , and clinical studies. <i>Biomaterials Science</i> , 2021 , 9, 3209-3227	7.4	7	
40	Interactions of leukocytes and platelets with poly(lysine/leucine) immobilized on tetraethylene glycol-terminated self-assembled monolayers. <i>Acta Biomaterialia</i> , 2011 , 7, 1949-55	10.8	6	
39	Changes induced in anodic behaviour of stainless steel in H2SO4 solutionsby preanodic treatment and potential sweep rate. <i>Corrosion Engineering Science and Technology</i> , 1988 , 23, 47-54		6	
38	Stromal Cell Derived Factor-1-Mediated Migration of Mesenchymal Stem Cells Enhances Collagen Type II Expression in Intervertebral Disc. <i>Tissue Engineering - Part A</i> , 2018 ,	3.9	6	
37	Peripheral Biomarkers of Inflammation in Depression: Evidence from Animal Models and Clinical Studies. <i>Methods in Molecular Biology</i> , 2019 , 2011, 467-492	1.4	5	
36	Selective albumin-binding surfaces modified with a thrombin-inhibiting peptide. <i>Acta Biomaterialia</i> , 2014 , 10, 1227-37	10.8	5	
35	Finding and tracing human MSC in 3D microenvironments with the photoconvertible protein Dendra2. <i>Scientific Reports</i> , 2015 , 5, 10079	4.9	5	
34	Inflammatory cell recruitment and adhesion to methyl-terminated self-assembled monolayers: effect of implantation time. <i>Microscopy Research and Technique</i> , 2005 , 66, 37-42	2.8	5	
33	Effect of Calcium Phosphate Addition to Alginate Microspheres: Modulation of Enzyme Release Kinetics and Improvement of Cell Adhesion. <i>Key Engineering Materials</i> , 2005 , 284-286, 689-692	0.4	5	
32	Electrochemical behaviour of laser treated AISI 316L stainless steel surfaces in a physiological solution. <i>Clinical Materials</i> , 1991 , 7, 31-37		5	
31	IL-1Dpre-conditioned mesenchymal stem/stromal cellsPsecretome modulates the inflammatory response and aggrecan deposition in intervertebral disc. <i>European Cells and Materials</i> , 2021 , 41, 431-453	₃ 4·3	5	
30	Decellularized Scaffolds for Intervertebral Disc Regeneration. <i>Trends in Biotechnology</i> , 2020 , 38, 947-95	115.1	4	
29	The Systemic Immune Response to Collagen-Induced Arthritis and the Impact of Bone Injury in Inflammatory Conditions. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	4	
28	Kinetics and isotherm of fibronectin adsorption to three-dimensional porous chitosan scaffolds explored by III radiolabelling. <i>Biomatter</i> , 2013 , 3,		4	

27	Recombinant glucocerebrosidase uptake by Gaucher disease human osteoblast culture model. <i>Blood Cells, Molecules, and Diseases</i> , 2005 , 35, 348-54	2.1	4
26	In Vitro Mineralisation of Chitosan Membranes Carrying Phosphate Functionalities. <i>Key Engineering Materials</i> , 2003 , 254-256, 577-580	0.4	4
25	Multinuclear Cell Analysis Using Laplacian of Gaussian and Delaunay Graphs. <i>Lecture Notes in Computer Science</i> , 2013 , 441-449	0.9	4
24	Preparation of albumin preferential surfaces on poly(vinyl chloride) membranes via surface self-segregation. <i>Journal of Biomedical Materials Research Part B</i> , 2002 , 61, 252-9		3
23	Use of microelectrodes as electrochemical sensors of metal ions released from biomaterials. <i>Biomaterials</i> , 1994 , 15, 821-6	15.6	3
22	Electrochemical studies of magnesium implanted with high doses of light ions. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1989 , 39, 559-562	1.2	3
21	Stress-induced depressive-like behavior in male rats is associated with microglial activation and inflammation dysregulation in the hippocampus in adulthood. <i>Brain, Behavior, and Immunity</i> , 2022 , 99, 397-408	16.6	3
20	Comparable Decellularization of Fetal and Adult Cardiac Tissue Explants as 3D-like Platforms for In Vitro Studies. <i>Journal of Visualized Experiments</i> , 2019 ,	1.6	2
19	Morphology and Mechanical Properties of Injectable Ceramic Microspheres. <i>Key Engineering Materials</i> , 2008 , 396-398, 691-694	0.4	2
18	Fabrication of alternating polycation and albumin mutilayer coating by electrostatic layer-by-layer adsorption. <i>Journal of Materials Science</i> , 2004 , 39, 349-351	4.3	2
17	Corrosion of Metallic Implants 1998 , 420-463		2
16	Osteoclasts degrade fibrinogen scaffolds and induce mesenchymal stem/stromal osteogenic differentiation. <i>Journal of Biomedical Materials Research - Part A</i> , 2020 , 108, 851-862	5.4	2
15	Fibroblast growth factor improves the motility of human mesenchymal stem cells expanded in a human plasma-derived xeno-free medium through IVIB integrin. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2019 , 13, 36-45	4.4	2
14	Alkaline phosphatase dual-binding sites for collagen dictate cell migration and microvessel assembly in vitro. <i>Journal of Cellular Biochemistry</i> , 2021 , 122, 116-129	4.7	2
13	Articular Repair/Regeneration in Healthy and Inflammatory Conditions: From Advanced In Vitro to In Vivo Models. <i>Advanced Functional Materials</i> , 2020 , 30, 1909523	15.6	1
12	Cellular response to the surface chemistry of nanostructured biomaterials 2009 , 85-113		1
11	Characterization of Hydroxyapatite Sputtered Films Doped with Titanium. <i>Key Engineering Materials</i> , 2007 , 330-332, 649-652	0.4	1
10	Microstructure, Mechanical Properties and Stability of Brazed Metal/Ceramic Systems 1998 , 329-340		1

Chapter 10 Corrosion of Metallic Implants 2016, 509-548 9 1 Immunomodulatory properties of Musa paradisiaca L. inflorescence in Combined Allergic Rhinitis and Asthma Syndrome (CARAS) model towards NFB pathway inhibition. Journal of Functional 5.1 Foods, 2021, 83, 104540 Calcium Phosphate Microspheres for Localised Delivery of a Therapeutic Enzyme. Key Engineering 0.4 О Materials, 2006, 309-311, 903-906 Fibrotic alterations in human annulus fibrosus correlate with progression of intervertebral disc 5.7 herniation.. Arthritis Research and Therapy, 2022, 24, 25 Harnessing chitosan and poly-(Eglutamic acid)-based biomaterials towards cancer immunotherapy. Ο 5 7.4 Materials Today Advances, 2022, 15, 100252 The Biomaterials Network (Biomat.net) as a Major Internet Resource for Biomaterials, Tissue Engineering and Biomineralization373-390 Affinity of Hydroxyapatite to Metal Cations - A Study on the Composition and Structure of Phosphates formed in the Presence of Titanium and Aluminium. Key Engineering Materials, 2000, 3 0.4 192-195, 55-58

The Immune System at the Metallic Implant Interface; Metal Ions Inhibit Immune Function but are not Cytotoxic **1991**, 19-28

Effects of Metal Ions Present in Iincate Solutions on the Characteristics of Iinc Alloy Films on

Aluminium. Surface Engineering, 1990, 6, 287-293

2.6