J David Sweatt

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8888765/j-david-sweatt-publications-by-year.pdf

Version: 2024-04-03

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

30,481 209 174 93 h-index g-index citations papers 216 7.5 32,953 9.1 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
209	Isoforms Differentially Regulate Gene Expression, Synaptic Transmission, and Memory in the Mammalian Brain. <i>Journal of Neuroscience</i> , 2021 , 41, 578-593	6.6	6
208	Synthetic female gonadal hormones alter neurodevelopmental programming and behavior in F offspring. <i>Hormones and Behavior</i> , 2020 , 126, 104848	3.7	1
207	An Antisense Oligonucleotide Leads to Suppressed Transcription of Hdac2 and Long-Term Memory Enhancement. <i>Molecular Therapy - Nucleic Acids</i> , 2020 , 19, 1399-1412	10.7	12
206	A myelin-related transcriptomic profile is shared by Pitt-Hopkins syndrome models and human autism spectrum disorder. <i>Nature Neuroscience</i> , 2020 , 23, 375-385	25.5	34
205	Broad domains of histone 3 lysine 4 trimethylation are associated with transcriptional activation in CA1 neurons of the hippocampus during memory formation. <i>Neurobiology of Learning and Memory</i> , 2019 , 161, 149-157	3.1	16
204	Cognition-Enhancing Vagus Nerve Stimulation Alters the Epigenetic Landscape. <i>Journal of Neuroscience</i> , 2019 , 39, 3454-3469	6.6	10
203	The Epigenetic Basis of Individuality. <i>Current Opinion in Behavioral Sciences</i> , 2019 , 25, 51-56	4	8
202	Locus-Specific DNA Methylation Assays to Study Glutamate Receptor Regulation. <i>Methods in Molecular Biology</i> , 2019 , 1941, 167-188	1.4	1
201	Histone H3 lysine K4 methylation and its role in learning and memory. <i>Epigenetics and Chromatin</i> , 2019 , 12, 7	5.8	52
200	APOE genotype modifies the association between central arterial stiffening and cognition in older adults. <i>Neurobiology of Aging</i> , 2018 , 67, 120-127	5.6	12
199	Autosomal dominant retinitis pigmentosa rhodopsin mutant Q344X drives specific alterations in chromatin complex gene transcription. <i>Molecular Vision</i> , 2018 , 24, 153-164	2.3	4
198	Experience-dependent epigenomic reorganization in the hippocampus. <i>Learning and Memory</i> , 2017 , 24, 278-288	2.8	39
197	Epigenetics of Memory Processes 2017 , 347-358		
196	Tcf4 Regulates Synaptic Plasticity, DNA Methylation, and Memory Function. Cell Reports, 2016, 16, 266	6- 26.8 5	74
195	GENE EXPRESSION. Chromatin controls behavior. <i>Science</i> , 2016 , 353, 218-9	33.3	3
194	Dynamic DNA methylation regulates neuronal intrinsic membrane excitability. <i>Science Signaling</i> , 2016 , 9, ra83	8.8	40
193	Obesity Weighs down Memory through a Mechanism Involving the Neuroepigenetic Dysregulation of Sirt1. <i>Journal of Neuroscience</i> , 2016 , 36, 1324-35	6.6	55

(2013-2016)

192	Drugging the methylome: DNA methylation and memory. <i>Critical Reviews in Biochemistry and Molecular Biology</i> , 2016 , 51, 185-94	8.7	14
191	An epigenomics approach to individual differences and its translation to neuropsychiatric conditions. <i>Dialogues in Clinical Neuroscience</i> , 2016 , 18, 289-298	5.7	12
190	Extra-coding RNAs regulate neuronal DNA methylation dynamics. <i>Nature Communications</i> , 2016 , 7, 120	91 7.4	41
189	Dynamic DNA methylation controls glutamate receptor trafficking and synaptic scaling. <i>Journal of Neurochemistry</i> , 2016 , 137, 312-30	6	40
188	Neural plasticity and behavior - sixty years of conceptual advances. <i>Journal of Neurochemistry</i> , 2016 , 139 Suppl 2, 179-199	6	332
187	Memory-Associated Dynamic Regulation of the "Stable" Core of the Chromatin Particle. <i>Neuron</i> , 2015 , 87, 1-4	13.9	32
186	DNA methylation regulates neuronal glutamatergic synaptic scaling. <i>Science Signaling</i> , 2015 , 8, ra61	8.8	80
185	DNA methylation regulates neurophysiological spatial representation in memory formation. <i>Neuroepigenetics</i> , 2015 , 2, 1-8		30
184	Pharmacological Selectivity Within Class I Histone Deacetylases Predicts Effects on Synaptic Function and Memory Rescue. <i>Neuropsychopharmacology</i> , 2015 , 40, 2307-16	8.7	57
183	DNA Methylation in Memory Formation: Emerging Insights. <i>Neuroscientist</i> , 2015 , 21, 475-89	7.6	61
182	DNA methylation and its implications and accessibility for neuropsychiatric therapeutics. <i>Annual Review of Pharmacology and Toxicology</i> , 2015 , 55, 591-611	17.9	57
181	Pitt-Hopkins Mouse Model has Altered Particular Gastrointestinal Transits In Vivo. <i>Autism Research</i> , 2015 , 8, 629-33	5.1	23
180	Tet1 Oxidase Regulates Neuronal Gene Transcription, Active DNA Hydroxy-methylation, Object Location Memory, and Threat Recognition Memory. <i>Neuroepigenetics</i> , 2015 , 4, 12-27		30
179	Behavioral and electrophysiological characterization of Dyt1 heterozygous knockout mice. <i>PLoS ONE</i> , 2015 , 10, e0120916	3.7	14
178	Transcriptional and epigenetic regulation of Hebbian and non-Hebbian plasticity. <i>Neuropharmacology</i> , 2014 , 80, 3-17	5.5	55
177	Histone H2A.Z subunit exchange controls consolidation of recent and remote memory. <i>Nature</i> , 2014 , 515, 582-6	50.4	119
176	Aging and energetics' 'Top 40' future research opportunities 2010-2013. <i>F1000Research</i> , 2014 , 3, 219	3.6	14
175	DNA methylation regulates associative reward learning. <i>Nature Neuroscience</i> , 2013 , 16, 1445-52	25.5	170

174	The emerging field of neuroepigenetics. <i>Neuron</i> , 2013 , 80, 624-32	13.9	227
173	TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation. <i>Neuron</i> , 2013 , 79, 1086-93	13.9	320
172	Epigenetic regulation of memory formation and maintenance. <i>Learning and Memory</i> , 2013 , 20, 61-74	2.8	249
171	Disruption of neocortical histone H3 homeostasis by soluble Allimplications for Alzheimer's disease. <i>Neurobiology of Aging</i> , 2013 , 34, 2081-90	5.6	41
170	Protease-activated receptor-1 modulates hippocampal memory formation and synaptic plasticity. Journal of Neurochemistry, 2013 , 124, 109-22	6	44
169	Epigenetic mechanisms in learned fear: implications for PTSD. <i>Neuropsychopharmacology</i> , 2013 , 38, 77-9	98 .7	142
168	Cellular, molecular, and epigenetic mechanisms in non-associative conditioning: implications for pain and memory. <i>Neurobiology of Learning and Memory</i> , 2013 , 105, 133-50	3.1	78
167	Pitt-Hopkins Syndrome: intellectual disability due to loss of TCF4-regulated gene transcription. <i>Experimental and Molecular Medicine</i> , 2013 , 45, e21	12.8	78
166	Epigenetic Mechanisms in Learning and Memory 2013 , 121-170		
165	An Overview of the Molecular Basis of Epigenetics 2013 , 3-33		4
165 164	An Overview of the Molecular Basis of Epigenetics 2013, 3-33 Interindividual Variability in Stress Susceptibility: A Role for Epigenetic Mechanisms in PTSD. Frontiers in Psychiatry, 2013, 4, 60	5	4
	Interindividual Variability in Stress Susceptibility: A Role for Epigenetic Mechanisms in PTSD.	5	4 44 15
164	Interindividual Variability in Stress Susceptibility: A Role for Epigenetic Mechanisms in PTSD. Frontiers in Psychiatry, 2013 , 4, 60	3.7	
164 163	Interindividual Variability in Stress Susceptibility: A Role for Epigenetic Mechanisms in PTSD. Frontiers in Psychiatry, 2013, 4, 60 Pre-synaptic release deficits in a DYT1 dystonia mouse model. PLoS ONE, 2013, 8, e72491 The role of the Gadd45 family in the pervous system: a focus on peurodevelopment, neuronal	3.7	15
164 163 162	Interindividual Variability in Stress Susceptibility: A Role for Epigenetic Mechanisms in PTSD. Frontiers in Psychiatry, 2013, 4, 60 Pre-synaptic release deficits in a DYT1 dystonia mouse model. PLoS ONE, 2013, 8, e72491 The role of the Gadd45 family in the nervous system: a focus on neurodevelopment, neuronal injury, and cognitive neuroepigenetics. Advances in Experimental Medicine and Biology, 2013, 793, 81-119	3.7	15
164 163 162	Interindividual Variability in Stress Susceptibility: A Role for Epigenetic Mechanisms in PTSD. Frontiers in Psychiatry, 2013, 4, 60 Pre-synaptic release deficits in a DYT1 dystonia mouse model. PLoS ONE, 2013, 8, e72491 The role of the Gadd45 family in the nervous system: a focus on neurodevelopment, neuronal injury, and cognitive neuroepigenetics. Advances in Experimental Medicine and Biology, 2013, 793, 81-11. DNA Methylation in Memory Formation. Research and Perspectives in Neurosciences, 2012, 81-96 Adult mice maintained on a high-fat diet exhibit object location memory deficits and reduced	3.7 93.6	15 42 1
164 163 162 161	Interindividual Variability in Stress Susceptibility: A Role for Epigenetic Mechanisms in PTSD. Frontiers in Psychiatry, 2013, 4, 60 Pre-synaptic release deficits in a DYT1 dystonia mouse model. PLoS ONE, 2013, 8, e72491 The role of the Gadd45 family in the nervous system: a focus on neurodevelopment, neuronal injury, and cognitive neuroepigenetics. Advances in Experimental Medicine and Biology, 2013, 793, 81-11. DNA Methylation in Memory Formation. Research and Perspectives in Neurosciences, 2012, 81-96 Adult mice maintained on a high-fat diet exhibit object location memory deficits and reduced hippocampal SIRT1 gene expression. Neurobiology of Learning and Memory, 2012, 98, 25-32 Enhanced hippocampal long-term potentiation and fear memory in Btbd9 mutant mice. PLoS ONE,	3.7 93.6 3.1	15 42 1 125

(2010-2012)

	156	Genetic deletion of Gadd45b, a regulator of active DNA demethylation, enhances long-term memory and synaptic plasticity. <i>Journal of Neuroscience</i> , 2012 , 32, 17059-66	6.6	103
	155	Hippocampal phenotypes in kalirin-deficient mice. <i>Molecular and Cellular Neurosciences</i> , 2011 , 46, 45-54	4.8	27
	154	Epigenetic marking of the BDNF gene by early-life adverse experiences. <i>Hormones and Behavior</i> , 2011 , 59, 315-20	3.7	148
	153	Epigenetic mechanisms in cognition. <i>Neuron</i> , 2011 , 70, 813-29	13.9	378
	152	Cognitive neuroepigenetics: a role for epigenetic mechanisms in learning and memory. <i>Neurobiology of Learning and Memory</i> , 2011 , 96, 2-12	3.1	106
	151	Epigenetics of Memory Processes 2011 , 381-390		
:	150	Annual Research Review: Epigenetic mechanisms and environmental shaping of the brain during sensitive periods of development. <i>Journal of Child Psychology and Psychiatry and Allied Disciplines</i> , 2011 , 52, 398-408	7.9	181
	149	Behavioral epigenetics. Annals of the New York Academy of Sciences, 2011 , 1226, 14-33	6.5	101
	148	Epigenetic modification of hippocampal Bdnf DNA in adult rats in an animal model of post-traumatic stress disorder. <i>Journal of Psychiatric Research</i> , 2011 , 45, 919-26	5.2	253
;	147	Serine proteases, serine protease inhibitors, and protease-activated receptors: roles in synaptic function and behavior. <i>Brain Research</i> , 2011 , 1407, 107-22	3.7	54
:	146	Neuroscience. Creating stable memories. <i>Science</i> , 2011 , 331, 869-70	33.3	7
:	145	Epigenetic modifications in neurons are essential for formation and storage of behavioral memory. <i>Neuropsychopharmacology</i> , 2011 , 36, 357-8	8.7	26
	144	Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. <i>Nature Neuroscience</i> , 2010 , 13, 423-30	25.5	759
:	143	Cortical DNA methylation maintains remote memory. <i>Nature Neuroscience</i> , 2010 , 13, 664-6	25.5	431
:	142	DNA methylation and memory formation. <i>Nature Neuroscience</i> , 2010 , 13, 1319-23	25.5	358
	141	An epigenetic hypothesis of aging-related cognitive dysfunction. <i>Frontiers in Aging Neuroscience</i> , 2010 , 2, 9	5.3	98
	140	RGS14 is a natural suppressor of both synaptic plasticity in CA2 neurons and hippocampal-based learning and memory. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 16994-8	11.5	124
	139	Biochemical Mechanisms for Information Storage at the Cellular Level 2010 , 208-235		

Molecular Genetic Mechanisms for Long-Term Information Storage at the Cellular Level **2010**, 236-267

137	Inherited Disorders of Human MemoryMental Retardation Syndromes 2010 , 268-291		
136	Aging-Related Memory Disorders⊠lzheimer∃ Disease 2010 , 292-319		1
135	Rodent Behavioral Learning and Memory Models 2010 , 76-103		2
134	Neuroscience. Epigenetics and cognitive aging. <i>Science</i> , 2010 , 328, 701-2	33.3	39
133	Loss of alpha7 nicotinic receptors enhances beta-amyloid oligomer accumulation, exacerbating early-stage cognitive decline and septohippocampal pathology in a mouse model of Alzheimer's disease. <i>Journal of Neuroscience</i> , 2010 , 30, 2442-53	6.6	149
132	Deficiency in the inhibitory serine-phosphorylation of glycogen synthase kinase-3 increases sensitivity to mood disturbances. <i>Neuropsychopharmacology</i> , 2010 , 35, 1761-74	8.7	184
131	Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer's disease. <i>Neuropsychopharmacology</i> , 2010 , 35, 870-80	8.7	531
130	Epigenetic regulation of genes in learning and memory. Essays in Biochemistry, 2010, 48, 263-74	7.6	30
129	Histone methylation regulates memory formation. <i>Journal of Neuroscience</i> , 2010 , 30, 3589-99	6.6	427
128	Lithium ameliorates altered glycogen synthase kinase-3 and behavior in a mouse model of fragile X syndrome. <i>Biochemical Pharmacology</i> , 2010 , 79, 632-46	6	148
127	The role of calsenilin/DREAM/KChIP3 in contextual fear conditioning. <i>Learning and Memory</i> , 2009 , 16, 167-77	2.8	50
126	Reduced expression of the NMDA receptor-interacting protein SynGAP causes behavioral abnormalities that model symptoms of Schizophrenia. <i>Neuropsychopharmacology</i> , 2009 , 34, 1659-72	8.7	78
125	Regulation of chromatin structure in memory formation. Current Opinion in Neurobiology, 2009, 19, 336	- 4 26	120
124	Increased c-fos expression in the central nucleus of the amygdala and enhancement of cued fear memory in Dyt1 DeltaGAG knock-in mice. <i>Neuroscience Research</i> , 2009 , 65, 228-35	2.9	30
123	Experience-dependent epigenetic modifications in the central nervous system. <i>Biological Psychiatry</i> , 2009 , 65, 191-7	7.9	252
122	Lasting epigenetic influence of early-life adversity on the BDNF gene. <i>Biological Psychiatry</i> , 2009 , 65, 760-9	7.9	988
121	NADPH oxidase mediates beta-amyloid peptide-induced activation of ERK in hippocampal organotypic cultures. <i>Molecular Brain</i> , 2009 , 2, 31	4.5	21

(2007-2009)

120	Kalirin regulates cortical spine morphogenesis and disease-related behavioral phenotypes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 13058-63	11.5	123
119	Kv4.2 is a locus for PKC and ERK/MAPK cross-talk. <i>Biochemical Journal</i> , 2009 , 417, 705-15	3.8	34
118	Rhythms of memory. <i>Nature Neuroscience</i> , 2008 , 11, 993-4	25.5	21
117	Striatal histone modifications in models of levodopa-induced dyskinesia. <i>Journal of Neurochemistry</i> , 2008 , 106, 486-94	6	82
116	Covalent Modification of DNA Regulates Memory Formation. <i>Neuron</i> , 2008 , 59, 1051	13.9	2
115	DNA methylation and histone acetylation work in concert to regulate memory formation and synaptic plasticity. <i>Neurobiology of Learning and Memory</i> , 2008 , 89, 599-603	3.1	342
114	Altered protein synthesis is a trigger for long-term memory formation. <i>Neurobiology of Learning and Memory</i> , 2008 , 89, 247-59	3.1	71
113	Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. <i>Journal of Neuroscience</i> , 2008 , 28, 10576-86	6.6	635
112	c-Rel, an NF-kappaB family transcription factor, is required for hippocampal long-term synaptic plasticity and memory formation. <i>Learning and Memory</i> , 2008 , 15, 539-49	2.8	110
111	Deletion of ERK2 mitogen-activated protein kinase identifies its key roles in cortical neurogenesis and cognitive function. <i>Journal of Neuroscience</i> , 2008 , 28, 6983-95	6.6	205
110	Astroglial nuclear factor-kappaB regulates learning and memory and synaptic plasticity in female mice. <i>Journal of Neurochemistry</i> , 2008 , 104, 611-23	6	45
109	Alpha3-integrins are required for hippocampal long-term potentiation and working memory. <i>Learning and Memory</i> , 2007 , 14, 606-15	2.8	41
108	The nuclear kinase mitogen- and stress-activated protein kinase 1 regulates hippocampal chromatin remodeling in memory formation. <i>Journal of Neuroscience</i> , 2007 , 27, 12732-42	6.6	195
107	Developmental regulation of Eed complex composition governs a switch in global histone modification in brain. <i>Journal of Biological Chemistry</i> , 2007 , 282, 9962-9972	5.4	56
106	Covalent modification of DNA regulates memory formation. <i>Neuron</i> , 2007 , 53, 857-69	13.9	952
105	The IkappaB kinase regulates chromatin structure during reconsolidation of conditioned fear memories. <i>Neuron</i> , 2007 , 55, 942-57	13.9	201
104	Learning and memory deficits in mice lacking protease activated receptor-1. <i>Neurobiology of Learning and Memory</i> , 2007 , 88, 295-304	3.1	47
103	An atomic switch for memory. <i>Cell</i> , 2007 , 129, 23-4	56.2	2

102	ERK/MAPK regulates the Kv4.2 potassium channel by direct phosphorylation of the pore-forming subunit. <i>American Journal of Physiology - Cell Physiology</i> , 2006 , 290, C852-61	5.4	140
101	Functional dissection of Reelin signaling by site-directed disruption of Disabled-1 adaptor binding to apolipoprotein E receptor 2: distinct roles in development and synaptic plasticity. <i>Journal of Neuroscience</i> , 2006 , 26, 2041-52	6.6	98
100	Beta 1-integrins are required for hippocampal AMPA receptor-dependent synaptic transmission, synaptic plasticity, and working memory. <i>Journal of Neuroscience</i> , 2006 , 26, 223-32	6.6	131
99	Deletion of Kv4.2 gene eliminates dendritic A-type K+ current and enhances induction of long-term potentiation in hippocampal CA1 pyramidal neurons. <i>Journal of Neuroscience</i> , 2006 , 26, 12143-51	6.6	252
98	Amnesia or retrieval deficit? Implications of a molecular approach to the question of reconsolidation. <i>Learning and Memory</i> , 2006 , 13, 498-505	2.8	46
97	NF- B in Neurons 2006 , 147-161		1
96	Regulation of nuclear factor kappaB in the hippocampus by group I metabotropic glutamate receptors. <i>Journal of Neuroscience</i> , 2006 , 26, 4870-9	6.6	83
95	Signal transduction mechanisms in memory disorders. <i>Progress in Brain Research</i> , 2006 , 157, 25-41	2.9	9
94	ERK/MAPK regulates hippocampal histone phosphorylation following contextual fear conditioning. <i>Learning and Memory</i> , 2006 , 13, 322-8	2.8	273
93	Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome. <i>Journal of Neuroscience</i> , 2006 , 26, 319-27	6.6	417
92	Secretin receptor-deficient mice exhibit impaired synaptic plasticity and social behavior. <i>Human Molecular Genetics</i> , 2006 , 15, 3241-50	5.6	46
91	Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. Journal of Biological Chemistry, 2006 , 281, 15763-73	5.4	478
90	Kinase suppressor of Ras1 compartmentalizes hippocampal signal transduction and subserves synaptic plasticity and memory formation. <i>Neuron</i> , 2006 , 50, 765-79	13.9	76
89	Modulation of synaptic plasticity and memory by Reelin involves differential splicing of the lipoprotein receptor Apoer2. <i>Neuron</i> , 2005 , 47, 567-79	13.9	359
88	Epigenetic mechanisms in memory formation. <i>Nature Reviews Neuroscience</i> , 2005 , 6, 108-18	13.5	603
87	Normal development and fertility of knockout mice lacking the tumor suppressor gene LRP1b suggest functional compensation by LRP1. <i>Molecular and Cellular Biology</i> , 2004 , 24, 3782-93	4.8	53
86	Generation and characterization of LANP/pp32 null mice. <i>Molecular and Cellular Biology</i> , 2004 , 24, 3140	-9 .8	32
85	Mouse genetic approaches to investigating calcium/calmodulin-dependent protein kinase II function in plasticity and cognition. <i>Journal of Neuroscience</i> , 2004 , 24, 8410-5	6.6	118

(2003-2004)

84	Reelin and cyclin-dependent kinase 5-dependent signals cooperate in regulating neuronal migration and synaptic transmission. <i>Journal of Neuroscience</i> , 2004 , 24, 1897-906	6.6	100
83	Calcium-calmodulin-dependent kinase II modulates Kv4.2 channel expression and upregulates neuronal A-type potassium currents. <i>Journal of Neuroscience</i> , 2004 , 24, 3643-54	6.6	136
82	A bioinformatics analysis of memory consolidation reveals involvement of the transcription factor c-rel. <i>Journal of Neuroscience</i> , 2004 , 24, 3933-43	6.6	144
81	Structure and function of Kv4-family transient potassium channels. <i>Physiological Reviews</i> , 2004 , 84, 803-	- 3 3 9	282
80	Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. <i>Human Molecular Genetics</i> , 2004 , 13, 2679-89	5.6	478
79	Receptor clustering is involved in Reelin signaling. <i>Molecular and Cellular Biology</i> , 2004 , 24, 1378-86	4.8	157
78	Neuronal LRP1 functionally associates with postsynaptic proteins and is required for normal motor function in mice. <i>Molecular and Cellular Biology</i> , 2004 , 24, 8872-83	4.8	159
77	MAPK recruitment by beta-amyloid in organotypic hippocampal slice cultures depends on physical state and exposure time. <i>Journal of Neurochemistry</i> , 2004 , 91, 349-61	6	97
76	Mitogen-activated protein kinases in synaptic plasticity and memory. <i>Current Opinion in Neurobiology</i> , 2004 , 14, 311-7	7.6	816
75	Hippocampal function in cognition. <i>Psychopharmacology</i> , 2004 , 174, 99-110	4.7	133
74	Neuronal MEK is important for normal fear conditioning in mice. <i>Journal of Neuroscience Research</i> , 2004 , 75, 760-70	4.4	46
73	Regulation of histone acetylation during memory formation in the hippocampus. <i>Journal of Biological Chemistry</i> , 2004 , 279, 40545-59	5.4	867
72	Mitochondrial regulation of synaptic plasticity in the hippocampus. <i>Journal of Biological Chemistry</i> , 2003 , 278, 17727-34	5.4	134
71	A role for ERK MAP kinase in physiologic temporal integration in hippocampal area CA1. <i>Learning and Memory</i> , 2003 , 10, 26-39	2.8	128
70	Inherited Disorders of Human Memory 2003 , 307-336		
69	Integrin requirement for hippocampal synaptic plasticity and spatial memory. <i>Journal of Neuroscience</i> , 2003 , 23, 7107-16	6.6	158
68	Rodent Behavioral Learning and Memory Models 2003 , 29-60		
67	Derangements of hippocampal calcium/calmodulin-dependent protein kinase II in a mouse model for Angelman mental retardation syndrome. <i>Journal of Neuroscience</i> , 2003 , 23, 2634-44	6.6	214

66	Postsynaptic contributions to hippocampal network hyperexcitability induced by chronic activity blockade in vivo. <i>European Journal of Neuroscience</i> , 2003 , 18, 1861-72	3.5	35
65	Genetics of childhood disorders: LI. Learning and memory, Part 4: Human cognitive disorders and the ras/ERK/CREB pathway. <i>Journal of the American Academy of Child and Adolescent Psychiatry</i> , 2003 , 42, 741-4	7.2	9
64	Genetics of childhood disorders: LII. Learning and memory, part 5: human cognitive disorders and the ras/ERK/CREB pathway. <i>Journal of the American Academy of Child and Adolescent Psychiatry</i> , 2003 , 42, 873-6	7.2	12
63	Mice lacking Tropomodulin-2 show enhanced long-term potentiation, hyperactivity, and deficits in learning and memory. <i>Molecular and Cellular Neurosciences</i> , 2003 , 23, 1-12	4.8	58
62	Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. <i>Neuron</i> , 2003 , 37, 233-47	13.9	371
61	SCA7 knockin mice model human SCA7 and reveal gradual accumulation of mutant ataxin-7 in neurons and abnormalities in short-term plasticity. <i>Neuron</i> , 2003 , 37, 383-401	13.9	173
60	Rap1 couples cAMP signaling to a distinct pool of p42/44MAPK regulating excitability, synaptic plasticity, learning, and memory. <i>Neuron</i> , 2003 , 39, 309-25	13.9	199
59	A fundamental role for KChIPs in determining the molecular properties and trafficking of Kv4.2 potassium channels. <i>Journal of Biological Chemistry</i> , 2003 , 278, 36445-54	5.4	205
58	The Biochemistry of LTP Induction 2003 , 147-188		0
57	The Chemistry of Perpetual Memory 2003 , 367-390		1
56	Biochemical Mechanisms for Short-Term Information Storage at the Cellular Level 2003 , 189-232		
55	Biochemical Mechanisms for Long-Term Information Storage at the Cellular Level 2003 , 233-262		
54	Complexities of Long-Term Potentiation 2003 , 117-146		
53	LTP Does Not Equal Memory 2003 , 263-306		1
52	Aging-Related Memory Disorders 2003 , 337-366		1
51	Protein kinase modulation of dendritic K+ channels in hippocampus involves a mitogen-activated protein kinase pathway. <i>Journal of Neuroscience</i> , 2002 , 22, 4860-8	6.6	279
50	Long-term potentiation and contextual fear conditioning increase neuronal glutamate uptake. <i>Nature Neuroscience</i> , 2002 , 5, 155-61	25.5	127
49	Protein kinase signal transduction cascades in mammalian associative conditioning. <i>Neuroscientist</i> , 2002 , 8, 122-31	7.6	67

(2001-2002)

48	The other half of Hebb: K+ channels and the regulation of neuronal excitability in the hippocampus. <i>Molecular Neurobiology</i> , 2002 , 25, 51-66	6.2	27
47	beta -Amyloid peptide activates alpha 7 nicotinic acetylcholine receptors expressed in Xenopus oocytes. <i>Journal of Biological Chemistry</i> , 2002 , 277, 25056-61	5.4	175
46	Accelerated plaque accumulation, associative learning deficits, and up-regulation of alpha 7 nicotinic receptor protein in transgenic mice co-expressing mutant human presenilin 1 and amyloid precursor proteins. <i>Journal of Biological Chemistry</i> , 2002 , 277, 22768-80	5.4	171
45	The role of mitochondrial porins and the permeability transition pore in learning and synaptic plasticity. <i>Journal of Biological Chemistry</i> , 2002 , 277, 18891-7	5.4	138
44	Molecular psychology: roles for the ERK MAP kinase cascade in memory. <i>Annual Review of Pharmacology and Toxicology</i> , 2002 , 42, 135-63	17.9	506
43	Noninvasive, in vivo approaches to evaluating behavior and exercise physiology in mouse models of mitochondrial disease. <i>Methods</i> , 2002 , 26, 364-70	4.6	9
42	Molecular neurobiology of human cognition. <i>Neuron</i> , 2002 , 33, 845-8	13.9	125
41	A long CAG repeat in the mouse Sca1 locus replicates SCA1 features and reveals the impact of protein solubility on selective neurodegeneration. <i>Neuron</i> , 2002 , 34, 905-19	13.9	250
40	Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. <i>Journal of Biological Chemistry</i> , 2002 , 277, 39944-52	5.4	464
39	Impaired conditioned fear and enhanced long-term potentiation in Fmr2 knock-out mice. <i>Journal of Neuroscience</i> , 2002 , 22, 2753-63	6.6	93
38	Molecular genetics of human cognition. <i>Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics</i> , 2002 , 2, 376-91, 339		36
37	Glutamate uptake in synaptic plasticity: from mollusc to mammal. <i>Current Molecular Medicine</i> , 2002 , 2, 593-603	2.5	13
36	The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. <i>Journal of Neurochemistry</i> , 2001 , 76, 1-10	6	893
35	Leitmotifs in the biochemistry of LTP induction: amplification, integration and coordination. <i>Journal of Neurochemistry</i> , 2001 , 77, 961-71	6	45
34	Roles of serine/threonine phosphatases in hippocampal synaptic plasticity. <i>Nature Reviews Neuroscience</i> , 2001 , 2, 461-74	13.5	276
33	Memory-forming chemical reactions. <i>Reviews in the Neurosciences</i> , 2001 , 12, 41-50	4.7	13
32	Protein kinase inhibition by omega-3 fatty acids. <i>Journal of Biological Chemistry</i> , 2001 , 276, 10888-96	5.4	122
31	Increased histone acetyltransferase and lysine acetyltransferase activity and biphasic activation of the ERK/RSK cascade in insular cortex during novel taste learning. <i>Journal of Neuroscience</i> , 2001 , 21, 3383-91	6.6	170

30	Beta-amyloid activates the mitogen-activated protein kinase cascade via hippocampal alpha7 nicotinic acetylcholine receptors: In vitro and in vivo mechanisms related to Alzheimer's disease. <i>Journal of Neuroscience</i> , 2001 , 21, 4125-33	6.6	479
29	The A-type potassium channel Kv4.2 is a substrate for the mitogen-activated protein kinase ERK. <i>Journal of Neurochemistry</i> , 2000 , 75, 2277-87	6	193
28	Activation of ERK/MAP kinase in the amygdala is required for memory consolidation of pavlovian fear conditioning. <i>Journal of Neuroscience</i> , 2000 , 20, 8177-87	6.6	543
27	A role for the beta isoform of protein kinase C in fear conditioning. <i>Journal of Neuroscience</i> , 2000 , 20, 5906-14	6.6	159
26	Input-specific immunolocalization of differentially phosphorylated Kv4.2 in the mouse brain. <i>Learning and Memory</i> , 2000 , 7, 321-32	2.8	65
25	Regulation of myelin basic protein phosphorylation by mitogen-activated protein kinase during increased action potential firing in the hippocampus. <i>Journal of Neurochemistry</i> , 1999 , 73, 1090-7	6	28
24	The mitogen-activated protein kinase cascade couples PKA and PKC to cAMP response element binding protein phosphorylation in area CA1 of hippocampus. <i>Journal of Neuroscience</i> , 1999 , 19, 4337-4	8 ^{6.6}	473
23	Reactive oxygen species mediate activity-dependent neuron-glia signaling in output fibers of the hippocampus. <i>Journal of Neuroscience</i> , 1999 , 19, 7241-8	6.6	63
22	A necessity for MAP kinase activation in mammalian spatial learning. <i>Learning and Memory</i> , 1999 , 6, 478	-98	275
21	Mitochondria mediate tumor necrosis factor-alpha/NF-kappaB signaling in skeletal muscle myotubes. <i>Antioxidants and Redox Signaling</i> , 1999 , 1, 97-104	8.4	68
20	A Biochemical Blueprint for Long-Term Memory. <i>Learning and Memory</i> , 1999 , 6, 381-388	2.8	30
19	The MAPK cascade is required for mammalian associative learning. <i>Nature Neuroscience</i> , 1998 , 1, 602-9	25.5	933
18	Protected-site phosphorylation of protein kinase C in hippocampal long-term potentiation. <i>Journal of Neurochemistry</i> , 1998 , 71, 1075-85	6	48
17	A role for superoxide in protein kinase C activation and induction of long-term potentiation. <i>Journal of Biological Chemistry</i> , 1998 , 273, 4516-22	5.4	148
16	A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. <i>Journal of Biological Chemistry</i> , 1997 , 272, 19103-6	5.4	695
15	Enhanced phosphorylation of the postsynaptic protein kinase C substrate RC3/neurogranin during long-term potentiation. <i>Brain Research</i> , 1997 , 749, 181-7	3.7	68
14	Increased phosphorylation of myelin basic protein during hippocampal long-term potentiation. <i>Journal of Neurochemistry</i> , 1997 , 68, 1960-7	6	20
13	Activation of p42 mitogen-activated protein kinase in hippocampal long term potentiation. <i>Journal of Biological Chemistry</i> , 1996 , 271, 24329-32	5.4	466

LIST OF PUBLICATIONS

12	potentiation. <i>Journal of Biological Chemistry</i> , 1996 , 271, 30436-41	5.4	132
11	Regulation of adenylyl cyclase in LTP. Behavioral and Brain Sciences, 1995, 18, 485	0.9	1
10	Studies with synthetic peptide substrates derived from the neuronal protein neurogranin reveal structural determinants of potency and selectivity for protein kinase C. <i>Biochemistry</i> , 1993 , 32, 1032-9	3.2	71
9	Nitric oxide synthase-independent long-term potentiation in area CA1 of hippocampus. <i>NeuroReport</i> , 1993 , 4, 919-22	1.7	117
8	nMDA receptor activation increases cyclic AMP in area CA1 of the hippocampus via calcium/calmodulin stimulation of adenylyl cyclase. <i>Journal of Neurochemistry</i> , 1993 , 61, 1933-42	6	184
7	Oxidation-induced persistent activation of protein kinase C in hippocampal homogenates. <i>Biochemical and Biophysical Research Communications</i> , 1992 , 187, 1439-45	3.4	68
6	Amygdala kindling alters protein kinase C activity in dentate gyrus. <i>Journal of Neurochemistry</i> , 1992 , 59, 1761-9	6	28
5	Increased phosphorylation of a 17-kDa protein kinase C substrate (P17) in long-term potentiation. <i>Journal of Neurochemistry</i> , 1992 , 58, 1576-9	6	103
4	Development of a database of amino acid sequences for proteins identified and isolated on two-dimensional polyacrylamide gels. <i>Electrophoresis</i> , 1989 , 10, 152-7	3.6	10
3	Persistent and transcriptionally-dependent increase in protein phosphorylation in long-term facilitation of Aplysia sensory neurons. <i>Nature</i> , 1989 , 339, 51-4	50.4	118
2	FMRFamide reverses protein phosphorylation produced by 5-HT and cAMP in Aplysia sensory neurons. <i>Nature</i> , 1989 , 342, 275-8	50.4	51
1	Defects of myelination are common pathophysiology in syndromic and idiopathic autism spectrum diso	rder	1