
J David Sweatt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8888765/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lasting Epigenetic Influence of Early-Life Adversity on the BDNF Gene. Biological Psychiatry, 2009, 65, 760-769.	1.3	1,115
2	Covalent Modification of DNA Regulates Memory Formation. Neuron, 2007, 53, 857-869.	8.1	1,074
3	The MAPK cascade is required for mammalian associative learning. Nature Neuroscience, 1998, 1, 602-609.	14.8	1,007
4	The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. Journal of Neurochemistry, 2001, 76, 1-10.	3.9	1,005
5	Regulation of Histone Acetylation during Memory Formation in the Hippocampus. Journal of Biological Chemistry, 2004, 279, 40545-40559.	3.4	982
6	Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nature Neuroscience, 2010, 13, 423-430.	14.8	892
7	Mitogen-activated protein kinases in synaptic plasticity and memory. Current Opinion in Neurobiology, 2004, 14, 311-317.	4.2	889
8	A Requirement for the Mitogen-activated Protein Kinase Cascade in Hippocampal Long Term Potentiation. Journal of Biological Chemistry, 1997, 272, 19103-19106.	3.4	771
9	Epigenetic Regulation of <i>bdnf</i> Gene Transcription in the Consolidation of Fear Memory. Journal of Neuroscience, 2008, 28, 10576-10586.	3.6	717
10	Epigenetic mechanisms in memory formation. Nature Reviews Neuroscience, 2005, 6, 108-118.	10.2	680
11	Inhibitors of Class 1 Histone Deacetylases Reverse Contextual Memory Deficits in a Mouse Model of Alzheimer's Disease. Neuropsychopharmacology, 2010, 35, 870-880.	5.4	627
12	Activation of ERK/MAP Kinase in the Amygdala Is Required for Memory Consolidation of Pavlovian Fear Conditioning. Journal of Neuroscience, 2000, 20, 8177-8187.	3.6	602
13	Molecular Psychology: Roles for the ERK MAP Kinase Cascade in Memory. Annual Review of Pharmacology and Toxicology, 2002, 42, 135-163.	9.4	558
14	Evidence That DNA (Cytosine-5) Methyltransferase Regulates Synaptic Plasticity in the Hippocampus. Journal of Biological Chemistry, 2006, 281, 15763-15773.	3.4	549
15	Reelin and ApoE Receptors Cooperate to Enhance Hippocampal Synaptic Plasticity and Learning. Journal of Biological Chemistry, 2002, 277, 39944-39952.	3.4	548
16	Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Human Molecular Genetics, 2004, 13, 2679-2689.	2.9	540
17	β-Amyloid Activates the Mitogen-Activated Protein Kinase Cascade via Hippocampal α7 Nicotinic Acetylcholine Receptors: <i>In Vitro</i> and <i>In Vivo</i> Mechanisms Related to Alzheimer's Disease. Journal of Neuroscience, 2001, 21, 4125-4133.	3.6	524
18	Activation of p42 Mitogen-activated Protein Kinase in Hippocampal Long Term Potentiation. Journal of Biological Chemistry, 1996, 271, 24329-24332.	3.4	518

#	Article	IF	CITATIONS
19	The Mitogen-Activated Protein Kinase Cascade Couples PKA and PKC to cAMP Response Element Binding Protein Phosphorylation in Area CA1 of Hippocampus. Journal of Neuroscience, 1999, 19, 4337-4348.	3.6	499
20	Histone Methylation Regulates Memory Formation. Journal of Neuroscience, 2010, 30, 3589-3599.	3.6	495
21	Learning and Memory and Synaptic Plasticity Are Impaired in a Mouse Model of Rett Syndrome. Journal of Neuroscience, 2006, 26, 319-327.	3.6	493
22	Cortical DNA methylation maintains remote memory. Nature Neuroscience, 2010, 13, 664-666.	14.8	481
23	Epigenetic Mechanisms in Cognition. Neuron, 2011, 70, 813-829.	8.1	434
24	DNA methylation and memory formation. Nature Neuroscience, 2010, 13, 1319-1323.	14.8	432
25	Neural plasticity and behavior – sixty years of conceptual advances. Journal of Neurochemistry, 2016, 139, 179-199.	3.9	432
26	Modulation of Synaptic Plasticity and Memory by Reelin Involves Differential Splicing of the Lipoprotein Receptor Apoer2. Neuron, 2005, 47, 567-579.	8.1	429
27	Pet-1 ETS Gene Plays a Critical Role in 5-HT Neuron Development and Is Required for Normal Anxiety-like and Aggressive Behavior. Neuron, 2003, 37, 233-247.	8.1	428
28	DNA methylation and histone acetylation work in concert to regulate memory formation and synaptic plasticity. Neurobiology of Learning and Memory, 2008, 89, 599-603.	1.9	380
29	TET1 Controls CNS 5-Methylcytosine Hydroxylation, Active DNA Demethylation, Gene Transcription, and Memory Formation. Neuron, 2013, 79, 1086-1093.	8.1	367
30	A Long CAG Repeat in the Mouse Sca1 Locus Replicates SCA1 Features and Reveals the Impact of Protein Solubility on Selective Neurodegeneration. Neuron, 2002, 34, 905-919.	8.1	320
31	A Necessity for MAP Kinase Activation in Mammalian Spatial Learning. Learning and Memory, 1999, 6, 478-490.	1.3	312
32	Roles of serine/threonine phosphatases in hippocampel synaptic plasticity. Nature Reviews Neuroscience, 2001, 2, 461-474.	10.2	309
33	Structure and Function of Kv4-Family Transient Potassium Channels. Physiological Reviews, 2004, 84, 803-833.	28.8	307
34	ERK/MAPK regulates hippocampal histone phosphorylation following contextual fear conditioning. Learning and Memory, 2006, 13, 322-328.	1.3	301
35	Epigenetic regulation of memory formation and maintenance. Learning and Memory, 2013, 20, 61-74.	1.3	294
36	Deletion of Kv4.2 Gene Eliminates Dendritic A-Type K+ Current and Enhances Induction of Long-Term Potentiation in Hippocampal CA1 Pyramidal Neurons. Journal of Neuroscience, 2006, 26, 12143-12151.	3.6	291

#	Article	IF	CITATIONS
37	Protein Kinase Modulation of Dendritic K ⁺ Channels in Hippocampus Involves a Mitogen-Activated Protein Kinase Pathway. Journal of Neuroscience, 2002, 22, 4860-4868.	3.6	288
38	Epigenetic modification of hippocampal Bdnf DNA in adult rats in an animal model of post-traumatic stress disorder. Journal of Psychiatric Research, 2011, 45, 919-926.	3.1	281
39	Experience-Dependent Epigenetic Modifications in the Central Nervous System. Biological Psychiatry, 2009, 65, 191-197.	1.3	278
40	The Emerging Field of Neuroepigenetics. Neuron, 2013, 80, 624-632.	8.1	270
41	Derangements of Hippocampal Calcium/Calmodulin-Dependent Protein Kinase II in a Mouse Model for Angelman Mental Retardation Syndrome. Journal of Neuroscience, 2003, 23, 2634-2644.	3.6	240
42	Deletion of ERK2 Mitogen-Activated Protein Kinase Identifies Its Key Roles in Cortical Neurogenesis and Cognitive Function. Journal of Neuroscience, 2008, 28, 6983-6995.	3.6	240
43	A Fundamental Role for KChIPs in Determining the Molecular Properties and Trafficking of Kv4.2 Potassium Channels. Journal of Biological Chemistry, 2003, 278, 36445-36454.	3.4	229
44	The IκB Kinase Regulates Chromatin Structure during Reconsolidation of Conditioned Fear Memories. Neuron, 2007, 55, 942-957.	8.1	226
45	The A-Type Potassium Channel Kv4.2 Is a Substrate for the Mitogen-Activated Protein Kinase ERK. Journal of Neurochemistry, 2008, 75, 2277-2287.	3.9	219
46	Rap1 Couples cAMP Signaling to a Distinct Pool of p42/44MAPK Regulating Excitability, Synaptic Plasticity, Learning, and Memory. Neuron, 2003, 39, 309-325.	8.1	217
47	The Nuclear Kinase Mitogen- and Stress-Activated Protein Kinase 1 Regulates Hippocampal Chromatin Remodeling in Memory Formation. Journal of Neuroscience, 2007, 27, 12732-12742.	3.6	211
48	Deficiency in the Inhibitory Serine-Phosphorylation of Glycogen Synthase Kinase-3 Increases Sensitivity to Mood Disturbances. Neuropsychopharmacology, 2010, 35, 1761-1774.	5.4	211
49	Annual Research Review: Epigenetic mechanisms and environmental shaping of the brain during sensitive periods of development. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2011, 52, 398-408.	5.2	209
50	β-Amyloid Peptide Activates α7 Nicotinic Acetylcholine Receptors Expressed in Xenopus Oocytes. Journal of Biological Chemistry, 2002, 277, 25056-25061.	3.4	201
51	SCA7 Knockin Mice Model Human SCA7 and Reveal Gradual Accumulation of Mutant Ataxin-7 in Neurons and Abnormalities in Short-Term Plasticity. Neuron, 2003, 37, 383-401.	8.1	201
52	Neuronal LRP1 Functionally Associates with Postsynaptic Proteins and Is Required for Normal Motor Function in Mice. Molecular and Cellular Biology, 2004, 24, 8872-8883.	2.3	197
53	DNA methylation regulates associative reward learning. Nature Neuroscience, 2013, 16, 1445-1452.	14.8	197
54	NMDA Receptor Activation Increases Cyclic AMP in Area CA1 of the Hippocampus via Calcium/Calmodulin Stimulation of Adenylyl Cyclase. Journal of Neurochemistry, 1993, 61, 1933-1942.	3.9	195

#	Article	IF	CITATIONS
55	Increased Histone Acetyltransferase and Lysine Acetyltransferase Activity and Biphasic Activation of the ERK/RSK Cascade in Insular Cortex During Novel Taste Learning. Journal of Neuroscience, 2001, 21, 3383-3391.	3.6	186
56	Accelerated Plaque Accumulation, Associative Learning Deficits, and Up-regulation of α7 Nicotinic Receptor Protein in Transgenic Mice Co-expressing Mutant Human Presenilin 1 and Amyloid Precursor Proteins. Journal of Biological Chemistry, 2002, 277, 22768-22780.	3.4	184
57	Receptor Clustering Is Involved in Reelin Signaling. Molecular and Cellular Biology, 2004, 24, 1378-1386.	2.3	179
58	Integrin Requirement for Hippocampal Synaptic Plasticity and Spatial Memory. Journal of Neuroscience, 2003, 23, 7107-7116.	3.6	175
59	Epigenetic Mechanisms in Learned Fear: Implications for PTSD. Neuropsychopharmacology, 2013, 38, 77-93.	5.4	174
60	A Role for Superoxide in Protein Kinase C Activation and Induction of Long-term Potentiation. Journal of Biological Chemistry, 1998, 273, 4516-4522.	3.4	173
61	RGS14 is a natural suppressor of both synaptic plasticity in CA2 neurons and hippocampal-based learning and memory. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16994-16998.	7.1	172
62	Loss of α7 Nicotinic Receptors Enhances β-Amyloid Oligomer Accumulation, Exacerbating Early-Stage Cognitive Decline and Septohippocampal Pathology in a Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2010, 30, 2442-2453.	3.6	171
63	A Role for the β Isoform of Protein Kinase C in Fear Conditioning. Journal of Neuroscience, 2000, 20, 5906-5914.	3.6	166
64	Epigenetic marking of the BDNF gene by early-life adverse experiences. Hormones and Behavior, 2011, 59, 315-320.	2.1	165
65	Mitochondrial Regulation of Synaptic Plasticity in the Hippocampus. Journal of Biological Chemistry, 2003, 278, 17727-17734.	3.4	163
66	Lithium ameliorates altered glycogen synthase kinase-3 and behavior in a mouse model of Fragile X syndrome. Biochemical Pharmacology, 2010, 79, 632-646.	4.4	163
67	ERK/MAPK regulates the Kv4.2 potassium channel by direct phosphorylation of the pore-forming subunit. American Journal of Physiology - Cell Physiology, 2006, 290, C852-C861.	4.6	162
68	A Bioinformatics Analysis of Memory Consolidation Reveals Involvement of the Transcription Factor c-Rel. Journal of Neuroscience, 2004, 24, 3933-3943.	3.6	157
69	Hippocampal function in cognition. Psychopharmacology, 2004, 174, 99-110.	3.1	156
70	The Role of Mitochondrial Porins and the Permeability Transition Pore in Learning and Synaptic Plasticity. Journal of Biological Chemistry, 2002, 277, 18891-18897.	3.4	154
71	Â1-Integrins Are Required for Hippocampal AMPA Receptor-Dependent Synaptic Transmission, Synaptic Plasticity, and Working Memory. Journal of Neuroscience, 2006, 26, 223-232.	3.6	150
72	Kalirin regulates cortical spine morphogenesis and disease-related behavioral phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13058-13063.	7.1	150

#	Article	IF	CITATIONS
73	Calcium-Calmodulin-Dependent Kinase II Modulates Kv4.2 Channel Expression and Upregulates Neuronal A-Type Potassium Currents. Journal of Neuroscience, 2004, 24, 3643-3654.	3.6	148
74	Protein Kinase Inhibition by ω-3 Fatty Acids. Journal of Biological Chemistry, 2001, 276, 10888-10896.	3.4	147
75	Histone H2A.Z subunit exchange controls consolidation of recent and remote memory. Nature, 2014, 515, 582-586.	27.8	147
76	Transient Activation of Cyclic AMP-dependent Protein Kinase during Hippocampal Long-term Potentiation. Journal of Biological Chemistry, 1996, 271, 30436-30441.	3.4	143
77	Adult mice maintained on a high-fat diet exhibit object location memory deficits and reduced hippocampal SIRT1 gene expression. Neurobiology of Learning and Memory, 2012, 98, 25-32.	1.9	142
78	A Role for ERK MAP Kinase in Physiologic Temporal Integration in Hippocampal Area CA1. Learning and Memory, 2003, 10, 26-39.	1.3	139
79	Molecular Neurobiology of Human Cognition. Neuron, 2002, 33, 845-848.	8.1	137
80	Long-term potentiation and contextual fear conditioning increase neuronal glutamate uptake. Nature Neuroscience, 2002, 5, 155-161.	14.8	136
81	Persistent and transcriptionally-dependent increase in protein phosphorylation in long-term facilitation of Aplysia sensory neurons. Nature, 1989, 339, 51-54.	27.8	135
82	Mouse Genetic Approaches to Investigating Calcium/Calmodulin-Dependent Protein Kinase II Function in Plasticity and Cognition. Journal of Neuroscience, 2004, 24, 8410-8415.	3.6	133
83	Regulation of chromatin structure in memory formation. Current Opinion in Neurobiology, 2009, 19, 336-342.	4.2	131
84	c-Rel, an NF-κB family transcription factor, is required for hippocampal long-term synaptic plasticity and memory formation. Learning and Memory, 2008, 15, 539-549.	1.3	130
85	Nitric oxide synthase-independent long-term potentiation in area CA1 of hippocampus. NeuroReport, 1993, 4, 919-922.	1.2	122
86	An epigenetic hypothesis of aging-related cognitive dysfunction. Frontiers in Aging Neuroscience, 2010, 2, 9.	3.4	120
87	Cognitive neuroepigenetics: A role for epigenetic mechanisms in learning and memory. Neurobiology of Learning and Memory, 2011, 96, 2-12.	1.9	117
88	DNA methylation regulates neuronal glutamatergic synaptic scaling. Science Signaling, 2015, 8, ra61.	3.6	113
89	Tcf4 Regulates Synaptic Plasticity, DNA Methylation, and Memory Function. Cell Reports, 2016, 16, 2666-2685.	6.4	113
90	Histone H3 lysine K4 methylation and its role in learning and memory. Epigenetics and Chromatin, 2019, 12, 7.	3.9	113

#	Article	IF	CITATIONS
91	Genetic Deletion of <i>gadd45b</i> , a Regulator of Active DNA Demethylation, Enhances Long-Term Memory and Synaptic Plasticity. Journal of Neuroscience, 2012, 32, 17059-17066.	3.6	111
92	Behavioral epigenetics. Annals of the New York Academy of Sciences, 2011, 1226, 14-33.	3.8	109
93	Reelin and Cyclin-Dependent Kinase 5-Dependent Signals Cooperate in Regulating Neuronal Migration and Synaptic Transmission. Journal of Neuroscience, 2004, 24, 1897-1906.	3.6	107
94	Reduced Expression of the NMDA Receptor-Interacting Protein SynGAP Causes Behavioral Abnormalities that Model Symptoms of Schizophrenia. Neuropsychopharmacology, 2009, 34, 1659-1672.	5.4	106
95	Impaired Conditioned Fear and Enhanced Long-Term Potentiation inFmr2 Knock-Out Mice. Journal of Neuroscience, 2002, 22, 2753-2763.	3.6	105
96	MAPK recruitment by beta-amyloid in organotypic hippocampal slice cultures depends on physical state and exposure time. Journal of Neurochemistry, 2004, 91, 349-361.	3.9	105
97	Functional Dissection of Reelin Signaling by Site-Directed Disruption of Disabled-1 Adaptor Binding to Apolipoprotein E Receptor 2: Distinct Roles in Development and Synaptic Plasticity. Journal of Neuroscience, 2006, 26, 2041-2052.	3.6	105
98	Increased Phosphorylation of a 17-kDa Protein Kinase C Substrate (P17) in Long-Term Potentiation. Journal of Neurochemistry, 1992, 58, 1576-1579.	3.9	104
99	Epigenetic Treatments for Cognitive Impairments. Neuropsychopharmacology, 2012, 37, 247-260.	5.4	101
100	Regulation of Nuclear Factor ÂB in the Hippocampus by Group I Metabotropic Glutamate Receptors. Journal of Neuroscience, 2006, 26, 4870-4879.	3.6	98
101	Cellular, molecular, and epigenetic mechanisms in non-associative conditioning: Implications for pain and memory. Neurobiology of Learning and Memory, 2013, 105, 133-150.	1.9	93
102	Striatal histone modifications in models of levodopaâ€induced dyskinesia. Journal of Neurochemistry, 2008, 106, 486-494.	3.9	92
103	Pitt–Hopkins Syndrome: intellectual disability due to loss of TCF4-regulated gene transcription. Experimental and Molecular Medicine, 2013, 45, e21-e21.	7.7	91
104	A myelin-related transcriptomic profile is shared by Pitt–Hopkins syndrome models and human autism spectrum disorder. Nature Neuroscience, 2020, 23, 375-385.	14.8	89
105	Altered protein synthesis is a trigger for long-term memory formation. Neurobiology of Learning and Memory, 2008, 89, 247-259.	1.9	86
106	Kinase Suppressor of Ras1 Compartmentalizes Hippocampal Signal Transduction and Subserves Synaptic Plasticity and Memory Formation. Neuron, 2006, 50, 765-779.	8.1	83
107	Pharmacological Selectivity Within Class I Histone Deacetylases Predicts Effects on Synaptic Function and Memory Rescue. Neuropsychopharmacology, 2015, 40, 2307-2316.	5.4	79
108	Mitochondria Mediate Tumor Necrosis Factor- <i>î±</i> /NF- <i>îº</i> B Signaling in Skeletal Muscle Myotubes. Antioxidants and Redox Signaling, 1999, 1, 97-104.	5.4	78

#	Article	IF	CITATIONS
109	Studies with synthetic peptide substrates derived from the neuronal protein neurogranin reveal structural determinants of potency and selectivity for protein kinase C. Biochemistry, 1993, 32, 1032-1039.	2.5	77
110	Review: Protein Kinase Signal Transduction Cascades in Mammalian Associative Conditioning. Neuroscientist, 2002, 8, 122-131.	3.5	77
111	Input-Specific Immunolocalization of Differentially Phosphorylated Kv4.2 in the Mouse Brain. Learning and Memory, 2000, 7, 321-332.	1.3	76
112	Oxidation-induced persistent activation of protein kinase C in hippocampal homogenates. Biochemical and Biophysical Research Communications, 1992, 187, 1439-1445.	2.1	74
113	Enhanced phosphorylation of the postsynaptic protein kinase C substrate RC3/neurogranin during long-term potentiation. Brain Research, 1997, 749, 181-187.	2.2	73
114	Reactive Oxygen Species Mediate Activity-Dependent Neuron–Glia Signaling in Output Fibers of the Hippocampus. Journal of Neuroscience, 1999, 19, 7241-7248.	3.6	72
115	Mice lacking tropomodulin-2 show enhanced long-term potentiation, hyperactivity, and deficits in learning and memory. Molecular and Cellular Neurosciences, 2003, 23, 1-12.	2.2	71
116	DNA Methylation in Memory Formation. Neuroscientist, 2015, 21, 475-489.	3.5	71
117	Obesity Weighs down Memory through a Mechanism Involving the Neuroepigenetic Dysregulation of Sirt1. Journal of Neuroscience, 2016, 36, 1324-1335.	3.6	69
118	Transcriptional and epigenetic regulation of Hebbian and non-Hebbian plasticity. Neuropharmacology, 2014, 80, 3-17.	4.1	68
119	Normal Development and Fertility of Knockout Mice Lacking the Tumor Suppressor Gene LRP1b Suggest Functional Compensation by LRP1. Molecular and Cellular Biology, 2004, 24, 3782-3793.	2.3	67
120	Serine proteases, serine protease inhibitors, and protease-activated receptors: Roles in synaptic function and behavior. Brain Research, 2011, 1407, 107-122.	2.2	66
121	Dynamic DNA methylation regulates neuronal intrinsic membrane excitability. Science Signaling, 2016, 9, ra83.	3.6	64
122	Developmental Regulation of Eed Complex Composition Governs a Switch in Global Histone Modification in Brain. Journal of Biological Chemistry, 2007, 282, 9962-9972.	3.4	63
123	The role of calsenilin/DREAM/KChIP3 in contextual fear conditioning. Learning and Memory, 2009, 16, 167-177.	1.3	63
124	DNA Methylation and Its Implications and Accessibility for Neuropsychiatric Therapeutics. Annual Review of Pharmacology and Toxicology, 2015, 55, 591-611.	9.4	63
125	Extra-coding RNAs regulate neuronal DNA methylation dynamics. Nature Communications, 2016, 7, 12091.	12.8	57
126	Mechanisms of Age-Related Cognitive Change and Targets for Intervention: Epigenetics. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2012, 67, 741-746.	3.6	56

#	Article	IF	CITATIONS
127	Disruption of neocortical histone H3 homeostasis by soluble AÎ ² : implications for Alzheimer's disease. Neurobiology of Aging, 2013, 34, 2081-2090.	3.1	56
128	Protected‧ite Phosphorylation of Protein Kinase C in Hippocampal Longâ€Term Potentiation. Journal of Neurochemistry, 1998, 71, 1075-1085.	3.9	54
129	FMRFamide reverses protein phosphorylation produced by 5-HT and cAMP in Aplysia sensory neurons. Nature, 1989, 342, 275-278.	27.8	53
130	Secretin receptor-deficient mice exhibit impaired synaptic plasticity and social behavior. Human Molecular Genetics, 2006, 15, 3241-3250.	2.9	53
131	Interindividual Variability in Stress Susceptibility: A Role for Epigenetic Mechanisms in PTSD. Frontiers in Psychiatry, 2013, 4, 60.	2.6	52
132	The Role of the Gadd45 Family in the Nervous System: A Focus on Neurodevelopment, Neuronal Injury, and Cognitive Neuroepigenetics. Advances in Experimental Medicine and Biology, 2013, 793, 81-119.	1.6	52
133	A Biochemical Blueprint for Long-Term Memory. Learning and Memory, 1999, 6, 381-388.	1.3	52
134	Proteaseâ€activated receptorâ€1 modulates hippocampal memory formation and synaptic plasticity. Journal of Neurochemistry, 2013, 124, 109-122.	3.9	51
135	Astroglial nuclear factorâ€̂ºB regulates learning and memory and synaptic plasticity in female mice. Journal of Neurochemistry, 2008, 104, 611-623.	3.9	50
136	Experience-dependent epigenomic reorganization in the hippocampus. Learning and Memory, 2017, 24, 278-288.	1.3	50
137	Amnesia or retrieval deficit? Implications of a molecular approach to the question of reconsolidation. Learning and Memory, 2006, 13, 498-505.	1.3	49
138	Leitmotifs in the biochemistry of LTP induction: amplification, integration and coordination. Journal of Neurochemistry, 2001, 77, 961-971.	3.9	48
139	Neuronal MEK is important for normal fear conditioning in mice. Journal of Neuroscience Research, 2004, 75, 760-770.	2.9	48
140	α3-Integrins are required for hippocampal long-term potentiation and working memory. Learning and Memory, 2007, 14, 606-615.	1.3	48
141	Learning and memory deficits in mice lacking protease activated receptor-1. Neurobiology of Learning and Memory, 2007, 88, 295-304.	1.9	47
142	Dynamic <scp>DNA</scp> methylation controls glutamate receptor trafficking and synaptic scaling. Journal of Neurochemistry, 2016, 137, 312-330.	3.9	47
143	Epigenetics and Cognitive Aging. Science, 2010, 328, 701-702.	12.6	46
144	Tet1 oxidase regulates neuronal gene transcription, active DNA hydroxymethylation, object location memory, and threat recognition memory. Neuroepigenetics, 2015, 4, 12-27.	2.8	42

#	Article	IF	CITATIONS
145	Regulation of Myelin Basic Protein Phosphorylation by Mitogen-Activated Protein Kinase During Increased Action Potential Firing in the Hippocampus. Journal of Neurochemistry, 2001, 73, 1090-1097.	3.9	39
146	Enhanced Hippocampal Long-Term Potentiation and Fear Memory in Btbd9 Mutant Mice. PLoS ONE, 2012, 7, e35518.	2.5	39
147	Molecular Genetics of Human Cognition. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2002, 2, 376-391.	3.4	39
148	Generation and Characterization of LANP/pp32 Null Mice. Molecular and Cellular Biology, 2004, 24, 3140-3149.	2.3	38
149	Kv4.2 is a locus for PKC and ERK/MAPK cross-talk. Biochemical Journal, 2009, 417, 705-715.	3.7	37
150	Memory-Associated Dynamic Regulation of the "Stable―Core of the Chromatin Particle. Neuron, 2015, 87, 1-4.	8.1	37
151	Postsynaptic contributions to hippocampal network hyperexcitability induced by chronic activity blockade <i>in vivo</i> . European Journal of Neuroscience, 2003, 18, 1861-1872.	2.6	36
152	Pitt–Hopkins Mouse Model has Altered Particular Gastrointestinal Transits In Vivo. Autism Research, 2015, 8, 629-633.	3.8	35
153	Epigenetic regulation of genes in learning and memory. Essays in Biochemistry, 2010, 48, 263-274.	4.7	33
154	Increased c-fos expression in the central nucleus of the amygdala and enhancement of cued fear memory in Dyt1 ΔGAG knock-in mice. Neuroscience Research, 2009, 65, 228-235.	1.9	32
155	DNA methylation regulates neurophysiological spatial representation in memory formation. Neuroepigenetics, 2015, 2, 1-8.	2.8	32
156	Epigenetic Modifications in Neurons are Essential for Formation and Storage of Behavioral Memory. Neuropsychopharmacology, 2011, 36, 357-358.	5.4	31
157	Amygdala Kindling Alters Protein Kinase C Activity in Dentate Gyrus. Journal of Neurochemistry, 1992, 59, 1761-1769.	3.9	30
158	Hippocampal phenotypes in kalirin-deficient mice. Molecular and Cellular Neurosciences, 2011, 46, 45-54.	2.2	30
159	The Other Half of Hebb. Molecular Neurobiology, 2002, 25, 051-066.	4.0	28
160	Cognition-Enhancing Vagus Nerve Stimulation Alters the Epigenetic Landscape. Journal of Neuroscience, 2019, 39, 2407-18.	3.6	27
161	Broad domains of histone 3 lysine 4 trimethylation are associated with transcriptional activation in CA1 neurons of the hippocampus during memory formation. Neurobiology of Learning and Memory, 2019, 161, 149-157.	1.9	24
162	Increased Phosphorylation of Myelin Basic Protein During Hippocampal Long-Term Potentiation. Journal of Neurochemistry, 2002, 68, 1960-1967.	3.9	23

#	Article	IF	CITATIONS
163	<i>Tet1</i> Isoforms Differentially Regulate Gene Expression, Synaptic Transmission, and Memory in the Mammalian Brain. Journal of Neuroscience, 2021, 41, 578-593.	3.6	23
164	Rhythms of memory. Nature Neuroscience, 2008, 11, 993-994.	14.8	22
165	NADPH oxidase mediates β-amyloid peptide-induced activation of ERK in hippocampal organotypic cultures. Molecular Brain, 2009, 2, 31.	2.6	22
166	Behavioral and Electrophysiological Characterization of Dyt1 Heterozygous Knockout Mice. PLoS ONE, 2015, 10, e0120916.	2.5	21
167	Drugging the methylome: DNA methylation and memory. Critical Reviews in Biochemistry and Molecular Biology, 2016, 51, 185-194.	5.2	20
168	Pre-Synaptic Release Deficits in a DYT1 Dystonia Mouse Model. PLoS ONE, 2013, 8, e72491.	2.5	20
169	Genetics of Childhood Disorders: LII. Learning and Memory, Part 5: Human Cognitive Disorders and the ras/ERK/CREB Pathway. Journal of the American Academy of Child and Adolescent Psychiatry, 2003, 42, 873-876.	0.5	18
170	An Antisense Oligonucleotide Leads to Suppressed Transcription of Hdac2 and Long-Term Memory Enhancement. Molecular Therapy - Nucleic Acids, 2020, 19, 1399-1412.	5.1	18
171	Aging and energetics' †Top 40' future research opportunities 2010-2013. F1000Research, 2014, 3, 219.	. 1.6	17
172	APOE genotype modifies the association between central arterial stiffening and cognition in older adults. Neurobiology of Aging, 2018, 67, 120-127.	3.1	16
173	Down memory lane. Nature, 2007, 447, 151-152.	27.8	15
174	An epigenomics approach to individual differences and its translation to neuropsychiatric conditions. Dialogues in Clinical Neuroscience, 2016, 18, 289-298.	3.7	15
175	Memory-forming Chemical Reactions. Reviews in the Neurosciences, 2001, 12, 41-50.	2.9	13
176	Signal transduction mechanisms in memory disorders. Progress in Brain Research, 2006, 157, 25-384.	1.4	13
177	The epigenetic basis of individuality. Current Opinion in Behavioral Sciences, 2019, 25, 51-56.	3.9	13
178	Glutamate Uptake in Synaptic Plasticity: From Mollusc to Mammal. Current Molecular Medicine, 2002, 2, 593-603.	1.3	13
179	Development of a database of amino acid sequences for proteins identified and isolated on two-dimensional polyacrylamide gels. Electrophoresis, 1989, 10, 152-157.	2.4	10
180	Noninvasive, in vivo approaches to evaluating behavior and exercise physiology in mouse models of mitochondrial disease. Methods, 2002, 26, 364-370.	3.8	10

#	Article	IF	CITATIONS
181	Genetics of Childhood Disorders: LI. Learning and Memory, Part 4: Human Cognitive Disorders and the ras/ERK/CREB Pathway. Journal of the American Academy of Child and Adolescent Psychiatry, 2003, 42, 741-744.	0.5	10
182	An Overview of the Molecular Basis of Epigenetics. , 2013, , 3-33.		9
183	Creating Stable Memories. Science, 2011, 331, 869-870.	12.6	8
184	Craving cocaine pERKs up the amygdala. Nature Neuroscience, 2005, 8, 129-130.	14.8	5
185	Autosomal dominant retinitis pigmentosa rhodopsin mutant Q344X drives specific alterations in chromatin complex gene transcription. Molecular Vision, 2018, 24, 153-164.	1.1	5
186	Rodent Behavioral Learning and Memory Models. , 2010, , 76-103.		4
187	Layered-up regulation in the developing brain. Nature, 2017, 551, 448-449.	27.8	4
188	Covalent Modification of DNA Regulates Memory Formation. Neuron, 2008, 59, 1051.	8.1	3
189	Chromatin controls behavior. Science, 2016, 353, 218-219.	12.6	3
190	An Atomic Switch for Memory. Cell, 2007, 129, 23-24.	28.9	2
191	Aging-Related Memory Disorders—Alzheimer's Disease. , 2010, , 292-319.		2
192	Synthetic female gonadal hormones alter neurodevelopmental programming and behavior in F1 offspring. Hormones and Behavior, 2020, 126, 104848.	2.1	2
193	Aging-Related Memory Disorders. , 2003, , 337-366.		2
194	Regulation of adenylyl cyclase in LTP. Behavioral and Brain Sciences, 1995, 18, 485-486.	0.7	1
195	NF-κB in Neurons. , 2006, , 147-161.		1
196	DNA Methylation in Memory Formation. Research and Perspectives in Neurosciences, 2012, , 81-96.	0.4	1
197	LTP Does Not Equal Memory. , 2003, , 263-306.		1
198	The Biochemistry of LTP Induction. , 2003, , 147-188.		1

The Biochemistry of LTP Induction. , 2003, , 147-188. 198

#	Article	IF	CITATIONS
199	The Chemistry of Perpetual Memory. , 2003, , 367-390.		1
200	Locus-Specific DNA Methylation Assays to Study Glutamate Receptor Regulation. Methods in Molecular Biology, 2019, 1941, 167-188.	0.9	1
201	Inherited Disorders of Human Memory. , 2003, , 307-336.		0
202	Rodent Behavioral Learning and Memory Models. , 2003, , 29-60.		0
203	Biochemical Mechanisms for Information Storage at the Cellular Level. , 2010, , 208-235.		0
204	Molecular Genetic Mechanisms for Long-Term Information Storage at the Cellular Level. , 2010, , 236-267.		0
205	Inherited Disorders of Human Memory—Mental Retardation Syndromes. , 2010, , 268-291.		0
206	Epigenetics of Memory Processes. , 2011, , 381-390.		0
207	Epigenetic Mechanisms in Learning and Memory. , 2013, , 121-170.		0
208	Epigenetics of Memory Processes. , 2017, , 347-358.		0
209	Biochemical Mechanisms for Short-Term Information Storage at the Cellular Level. , 2003, , 189-232.		0
210	Biochemical Mechanisms for Long-Term Information Storage at the Cellular Level. , 2003, , 233-262.		0
211	Complexities of Long-Term Potentiation. , 2003, , 117-146.		0